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�!supersymmetry!:!one!of!the!most!aoracIve!candidates!of!new!physics�

�!Bounds!from!direct!searches!have!been!pushed!up!beyond!1!TeV.! �

suggesIon!of!high!scale!susy��!Higgs!mass!can!be!realized!due!to!heavy!stop.! �

Supersymmetry)



�!soq!SUSY!breaking!terms �

Supersymmetry)

Trilinear!scalar!terms �

EW!breaking�

TD,U):)Trilinear)scalar)

)))))))coupling �
��

d q �
h

TD �

��

Scalar!mass!terms �



Supersymmetry)

Squark!mass!matrix �

2 Signals and constraints

2.1 Notations

We basically follow the definition of SUSY Les Houches accord (SLHA) to describe the SUSY
Lagrangian [19,20]. The up-type squarks and charginos appear in the chargino contributions
to the flavor-violating Z-boson couplings of the down-type quarks. In terms of the squark
fields, Φu = (ũL, c̃L, t̃L, ũR, c̃R, t̃R)T , the up-type squark mass matrix is described as

M2
ũ =

(
m2

Q̃
+m2

u + cos 2βm2
Z

(
1
2 −

2
3 sin

2 θW
)

v2√
2
T ∗
U − µmu cot β

v2√
2
T T
U − µ∗mu cot β m2T

Ũ
+m2

u +
2
3 cos 2βm2

Z sin2 θW

)
. (2.1)

It is diagonalized by a unitary matrix Ru,

RuM2
ũRu† = diag(m2

ũi
). (2.2)

In this letter, the soft mass parameters are set in the superCKM basis, where the Yukawa
matrices are diagonalized. Although the soft SUSY-breaking masses, m2

Q̃
and m2

Ũ
, generally

have flavor off-diagonal components, they are irrelevant for the current discrepancy of ϵ′/ϵ,
because SUSY contributions to the Z penguin are enhanced when the SU(2)L symmetry
is broken, as will be mentioned in the next section. A significant contribution is provided
by flavor mixings in the trilinear scalar coupling TU , which is also expressed by the MI
parameters,

(δuLR)ij =
v2√
2
(TU)∗ij

m2
q̃

, (δuRL)ij =
v2√
2
(TU)ji

m2
q̃

. (2.3)

Here, mq̃ is a squark mass. It is noted that (TU)ij and (δuLR)ij are complex parameters, and
(δuLR)ij = (δuRL)

∗
ji is satisfied.

The chargino mass matrix is given by

Mψ̃+ =

(
M2

√
2mW sin β√

2mW cos β µ

)
, (2.4)

which is diagonalized by two unitary matrices U and V as

U∗Mψ̃+V† = diag(mχ̃+
i
). (2.5)

2.2 K meson observables

Chargino contributions to the Z-penguin diagrams are studied in this letter. They are
described by the flavor-violating Z-boson vertex,

Leff =
−g3

8π2 cos θW
Zds s̄LγµdLZ

µ + h.c. . (2.6)
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LR)mixing)
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because!if!we!allow!large!trilinear!couplings,!this!contribuIon!does!
!not!decouple!even!if!susy!parIcle!masses!are!heavy!!!
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!
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�!LR!mixing!of!quark!
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!
!
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2)!NP!with!!SU(2)!breaking!gauge!invariance!�!!no!suppression!
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SU(2)!breaking�
�!LR!mixing!of!quark!
�!LR!mixing!of!squark!
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single!LR!mixing!effect!

Z �
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Z � Z �
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double!LR!mixing!effect!
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!WinoShiggsino!mixing!
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the!mass!inserIon!(MI)!parameters!(δLRq!)∗!(δLRq)!is!fixed.!!

not!assume!trilinear!coupling!!!!!!!!!yukawa!
large!trilinear!coupling!S>!large!contribuIon!
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�!large!trilinear!couplings!!make!the!vacuum!unstable!
!
!
!
�!The!chargino!ZSpenguin!contribuIons!are!constrained!by!requiring!the!meta!
stability!of!the!electroweak!(EW)!vacuum!!

The!lifeIme!of!the!EW!vacuum!is!longer!than!the!age!of!the!universe!if!the!bounce!
!acIon!saIsfies!!

large!A!term!may!vacuum!stability!

scalar!potenIal��

Here, PX , PY and PZ assemble the information below the weak scale such as hadron matrix
elements and QCD corrections. Their numerical results are [2],

PX + PY + PZ = 1.52 + 0.12R6 − 13.65R8, (2.19)

where R6 and R8 are defined as

R6 = B(1/2)
6 (mc)

[
114.54MeV

ms(mc) +md(mc)

]2
, R8 = B(3/2)

8 (mc)

[
114.54MeV

ms(mc) +md(mc)

]2
, (2.20)

and hadron matrix elements are [1, 2]

B(1/2)
6 (mc) = 0.57± 0.19, B(3/2)

8 (mc) = 0.76± 0.05. (2.21)

Therefore, PX + PY + PZ is negative.
The SUSY contribution (2.9) is evaluated at the SUSY scale, which is higher than the

weak scale. Renormalization group (RG) corrections between the SUSY and weak scales
are subleading. Those below the weak scale are included in Pi. Above the weak scale, the
SU(2)L symmetry is restored, and the effective Z-boson vertex is described by the dimension-

6 operators, (H†i
←→
D µH)(q̄′γµq) and (H†i

←→
D I

µH)(q̄′τ Iγµq). Anomalous dimensions of their
RG equations are not large [23–25]. This is not the case of Ref. [3], where the effective
operators of s→ dqq̄ are generated at the SUSY scale.

The flavor-changing Z-boson coupling also contributes to KL → π0νν̄. The branching
ratio is expressed as [9, 15]

B(KL → π0νν̄) = κL

[
Im
(
λtX(SM) + Z(SUSY)

ds

)

λ5

]2
, (2.22)

where κL = (2.231±0.013) ·10−10(λ/0.225)8, X(SM) = 1.481±0.009 and λ is the Wolfenstein
parameter. The SM prediction is about 2.8 × 10−11 [11]. Compared with Eq. (2.18), it is
noticed that the SUSY contribution to B(KL → π0νν̄) has a negative correlation with that
to ϵ′/ϵ as long as it is dominated by the chargino Z-penguin contribution (c.f., Ref. [9]).
Although K+ → π+νν̄ includes a similar contribution, its effect is weak.

2.3 Vacuum stability

According to Eq. (2.13), large ϵ′/ϵ is achieved when ũL and c̃L have a large mixing with t̃R.
The left-right mixing is proportional to the scalar trilinear coupling (TU)ij. Large flavor-
violating trilinear couplings may generate instabilities of the EW vacuum [26]. Requiring
that the lifetime of the EW vacuum is longer than the present age of the universe, the
trilinear couplings, or equivalently (δuLR)13 and (δuLR)23, are constrained.

The vacuum decay rate per unit volume is expressed as

Γ/V = A exp(−SE). (2.23)

5

In this letter, SE is estimated at the semi-classical level, which is called the bounce action [27]
and calculated by CosmoTransition 2.0a2 [28]. The prefactor A is not determined at this
level; higher-order calculations are needed for determining A [29]. We adopt an order-
of-estimation analysis. Since typical energy scales are the EW and SUSY ones, we take
A ∼ (100GeV)4 or (10TeV)4. The lifetime of the EW vacuum is longer than the age of the
universe if the bounce action satisfies

SE ! 400. (2.24)

Thermal effects are neglected in this letter.
The bounce action potentially involves O(10%) uncertainties due to renormalization scale

dependences of the model parameters. They are improved by taking radiative corrections
into account [30]. However, they are neglected in this letter for simplicity; calculations of
the radiative corrections are complicated and will be studied elsewhere.

The bounce action is calculated once the scalar potential is given. In the superCKM
basis, the relevant part of the potential is given by

V =
1

2
m2

11 h
2
d +

1

2
m2

22 h
2
u −m2

12 hdhu +
1

2
m2

Q̃i
ũ2
iL +

1

2
m2

Q̃3
t̃2L +

1

2
m2

Ũ3
t̃2R

+
1√
2
[(TU)33hu − ytµhd] t̃Lt̃R +

1√
2
(TU)i3huũiLt̃R +

1

4
y2t (t̃

2
Lt̃

2
R + t̃2Lh

2
u + t̃2Rh

2
u)

+
1

24
g23(ũ

2
iL + t̃2L − t̃2R)

2 +
1

32
g2(h2

u − h2
d − ũ2

iL − t̃2L)
2

+
1

32
g2Y

(
h2
u − h2

d +
1

3
ũ2
iL +

1

3
t̃2L −

4

3
t̃2R

)2

, (2.25)

where hu, hd, ũiL, t̃R and t̃L are real scalar fields. Here, ũiL denotes the left-handed sup or
scharm (i = 1, 2). Terms including yu or yc are neglected, while mixings of hu–hd or t̃R–t̃L
are kept included. The coefficients in the Higgs sector are expressed as

m2
11 = m2

A sin2 β − 1

2
m2

Z cos 2β, m2
22 = m2

A cos2 β +
1

2
m2

Z cos 2β, m2
12 =

1

2
m2

A sin 2β. (2.26)

In general, (TU)13 and (TU)23 have complex phases. They can be rephased out in the
potential (2.25) before taking real parts of the fields, and the model parameters are set to
be real. Thus, the vacuum stability conditions provide upper bounds on the magnitude of
(TU)ij.

Two trilinear couplings (TU)13 and (TU)23 generate two CCB vacua. In the calculation
of SE, one CCB vacuum does not affect another. The bounce action is a solution of the
Euclidean equation of motion. A semi-classical path belonging to one CCB vacuum is hardly
affected by another. Therefore, the bounce actions are calculated for (TU)13 and (TU)23,
separately.

The trilinear coupling is composed by hu, ũiL and t̃R. In the limit when heavy Higgs
bosons are decoupled and the stop left-right mixing is negligible, hu becomes close to the
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where hu, hd, ũiL, t̃R and t̃L are real scalar fields. Here, ũiL denotes the left-handed sup or
scharm (i = 1, 2). Terms including yu or yc are neglected, while mixings of hu–hd or t̃R–t̃L
are kept included. The coefficients in the Higgs sector are expressed as
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In general, (TU)13 and (TU)23 have complex phases. They can be rephased out in the
potential (2.25) before taking real parts of the fields, and the model parameters are set to
be real. Thus, the vacuum stability conditions provide upper bounds on the magnitude of
(TU)ij.

Two trilinear couplings (TU)13 and (TU)23 generate two CCB vacua. In the calculation
of SE, one CCB vacuum does not affect another. The bounce action is a solution of the
Euclidean equation of motion. A semi-classical path belonging to one CCB vacuum is hardly
affected by another. Therefore, the bounce actions are calculated for (TU)13 and (TU)23,
separately.

The trilinear coupling is composed by hu, ũiL and t̃R. In the limit when heavy Higgs
bosons are decoupled and the stop left-right mixing is negligible, hu becomes close to the
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Figure 2: Vacuum stability constraint on |(TU)i3| (left) and |(δuLR)i3| (right) for i = 1, 2 as a
function of mq̃. Here, mq̃ ≡ mQ̃i

= mŨ3
and tan β = 50. It is assumed that the heavy Higgs

bosons are decoupled and the stop left-right mixing is neglected.

coupling [11] are weaker. A weaker bound is obtained from ∆md. It changes mainly through
box diagrams with (δuLR)13 [15], which decouple as SUSY particles become heavier. The MI
parameter (δuLR)23 generates contributions to B(b → sγ). Since the dominant contribution
is from Higgsino-like chargino diagrams, its effect is sufficiently small if Higgsinos are heavy
without suppressing the contribution to ϵ′/ϵ. Electric dipole moments are sensitive probes
of the CP violations. However, contributions with (TU)13 or (TU)23 (see e.g., Ref. [33]) are
smaller than the current experimental limits if the squarks are heavier than 1TeV. Finally,
one might obtain a stringent constraint from RG analyses [16]. However, they depend on
models, and we simply neglect them to keep the discussion as model-independent as possible.

4 Conclusion

The recent analyses of the SM prediction of ϵ′/ϵ have reported a discrepancy from the
experimental value. The significance is about the 2.9σ level. We studied whether it is
explained by the chargino Z-penguin contributions. They are constrained by the vacuum
stability condition, and it is found that the SUSY contributions can bridge the discrepancy
if the SUSY masses are smaller than 4–6TeV.

The chargino Z penguin also contributes to B(KL → π0νν̄). The current discrepancy of
ϵ′/ϵ implies that B(KL → π0νν̄) is about less than 60% of the SM prediction. In future, the
KOTO experiment may measure the branching ratio at the 10% level of the SM value [31,32].
On the other hand, other experimental constraints exclude models only when the SUSY
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In general, (TU)13 and (TU)23 have complex phases. They can be rephased out in the
potential (2.25) before taking real parts of the fields, and the model parameters are set to
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(TU)ij.

Two trilinear couplings (TU)13 and (TU)23 generate two CCB vacua. In the calculation
of SE, one CCB vacuum does not affect another. The bounce action is a solution of the
Euclidean equation of motion. A semi-classical path belonging to one CCB vacuum is hardly
affected by another. Therefore, the bounce actions are calculated for (TU)13 and (TU)23,
separately.

The trilinear coupling is composed by hu, ũiL and t̃R. In the limit when heavy Higgs
bosons are decoupled and the stop left-right mixing is negligible, hu becomes close to the
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SM-like Higgs boson H, and t̃L does not contribute to the vacuum decay rate. Then, the
scalar potential is expressed by H, ũiL and t̃R as
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2
iL − t̃2R)

2 +
1

32
g2(H2 cos 2β + ũ2
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In the potential, the mass of the SM-like Higgs boson is lower than 125GeV, which is cured
by radiative corrections to the Higgs potential. Including such corrections to the vacuum
decay rate is beyond the scope of the analysis in this letter.

3 Results

We discuss whether the current discrepancy of ϵ′/ϵ is explained by the chargino Z-penguin
contributions with satisfying the constraints especially from the vacuum stability condition.
First, the vacuum decay rate is estimated to derive an upper bound on the size of (TU)i3
by requiring SE ! 400. In the left plot of Fig. 2, the bound is shown as a function of
mq̃ ≡ mQ̃i

= mŨ3
. Here and hereafter, it is assumed that the heavy Higgs bosons are

decoupled and the left-right mixing of stops is neglected. The result is insensitive to tan β
as long as it is large. In the right plot, the result is interpreted into the bound of (δuLR)i3.
Due to the relation (2.3), the limit becomes severer as the SUSY scale increases. Therefore,
the SUSY contributions to ϵ′/ϵ decrease according to Eq. (2.13).

In the left plot of Fig. 3, the SUSY contributions to ϵ′/ϵ are shown as a function of mq̃.
Here, |(TU)i3| is set at SE = 400, and |(TU)13| = |(TU)23| is assumed. The CP-violating phase
is taken to be maximal. In addition to the model parameters that determine the vacuum
decay rate, there is a degree of freedom in choosing mW̃ (see Eq. (2.9)). In the figure, mW̃ is
set to be 1, 2, 3TeV and mq̃ as reference cases. The result is insensitive to the other model
parameters. It is found that the current discrepancy of ϵ′/ϵ can be explained; the SUSY
scale can be as large as 4–6TeV, depending on the choice of mW̃ .

So far, mQ̃i
= mŨ3

and |(TU)13| = |(TU)23| are supposed. If we set mQ̃i
̸= mŨ3

and/or
|(TU)13| ̸= |(TU)23|, the SUSY contributions to ϵ′/ϵ become smaller at SE = 400.

In the right plot of Fig. 3, correlation between B(KL → π0νν̄) and (ϵ′/ϵ)SUSY is displayed.
As mentioned in the previous section, B(KL → π0νν̄) decreases as ϵ′/ϵ increases unless ϵ′/ϵ
is very large. (When ϵ′/ϵ is huge, the SUSY contribution is larger than the SM one for
KL → π0νν̄.) The current discrepancy implies that B(KL → π0νν̄) is predicted to be less
than 60% of the SM prediction. In future, the KOTO experiment may measure the branching
ratio at the 10% level of the SM value [31,32].

Some parameter regions are constrained by other observables. Those in mq̃ " 1–2TeV
are excluded by ϵK . The constraint is given by the chargino box contribution [15] and
relaxed as mq̃ increases. Double penguin contributions using the flavor-changing Z-boson
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2 Signals and constraints

2.1 Notations

We basically follow the definition of SUSY Les Houches accord (SLHA) to describe the SUSY
Lagrangian [19,20]. The up-type squarks and charginos appear in the chargino contributions
to the flavor-violating Z-boson couplings of the down-type quarks. In terms of the squark
fields, Φu = (ũL, c̃L, t̃L, ũR, c̃R, t̃R)T , the up-type squark mass matrix is described as
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Ũ
+m2

u +
2
3 cos 2βm2

Z sin2 θW

)
. (2.1)

It is diagonalized by a unitary matrix Ru,

RuM2
ũRu† = diag(m2

ũi
). (2.2)

In this letter, the soft mass parameters are set in the superCKM basis, where the Yukawa
matrices are diagonalized. Although the soft SUSY-breaking masses, m2

Q̃
and m2

Ũ
, generally

have flavor off-diagonal components, they are irrelevant for the current discrepancy of ϵ′/ϵ,
because SUSY contributions to the Z penguin are enhanced when the SU(2)L symmetry
is broken, as will be mentioned in the next section. A significant contribution is provided
by flavor mixings in the trilinear scalar coupling TU , which is also expressed by the MI
parameters,

(δuLR)ij =
v2√
2
(TU)∗ij

m2
q̃

, (δuRL)ij =
v2√
2
(TU)ji

m2
q̃

. (2.3)

Here, mq̃ is a squark mass. It is noted that (TU)ij and (δuLR)ij are complex parameters, and
(δuLR)ij = (δuRL)

∗
ji is satisfied.

The chargino mass matrix is given by

Mψ̃+ =

(
M2

√
2mW sin β√

2mW cos β µ

)
, (2.4)

which is diagonalized by two unitary matrices U and V as

U∗Mψ̃+V† = diag(mχ̃+
i
). (2.5)

2.2 K meson observables

Chargino contributions to the Z-penguin diagrams are studied in this letter. They are
described by the flavor-violating Z-boson vertex,

Leff =
−g3

8π2 cos θW
Zds s̄LγµdLZ

µ + h.c. . (2.6)

2

�!msquark!�!5!TeV!!�!!(δLRu)i3!  <!  0.07!!

Vacuum)stability)

i=1,$2$

For$illuctra*on,13$&$23�1�2)*3����-# ����$
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2
iL − t̃2R)

2 +
1

32
g2(H2 cos 2β + ũ2
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In the potential, the mass of the SM-like Higgs boson is lower than 125GeV, which is cured
by radiative corrections to the Higgs potential. Including such corrections to the vacuum
decay rate is beyond the scope of the analysis in this letter.

3 Results

We discuss whether the current discrepancy of ϵ′/ϵ is explained by the chargino Z-penguin
contributions with satisfying the constraints especially from the vacuum stability condition.
First, the vacuum decay rate is estimated to derive an upper bound on the size of (TU)i3
by requiring SE ! 400. In the left plot of Fig. 2, the bound is shown as a function of
mq̃ ≡ mQ̃i

= mŨ3
. Here and hereafter, it is assumed that the heavy Higgs bosons are

decoupled and the left-right mixing of stops is neglected. The result is insensitive to tan β
as long as it is large. In the right plot, the result is interpreted into the bound of (δuLR)i3.
Due to the relation (2.3), the limit becomes severer as the SUSY scale increases. Therefore,
the SUSY contributions to ϵ′/ϵ decrease according to Eq. (2.13).

In the left plot of Fig. 3, the SUSY contributions to ϵ′/ϵ are shown as a function of mq̃.
Here, |(TU)i3| is set at SE = 400, and |(TU)13| = |(TU)23| is assumed. The CP-violating phase
is taken to be maximal. In addition to the model parameters that determine the vacuum
decay rate, there is a degree of freedom in choosing mW̃ (see Eq. (2.9)). In the figure, mW̃ is
set to be 1, 2, 3TeV and mq̃ as reference cases. The result is insensitive to the other model
parameters. It is found that the current discrepancy of ϵ′/ϵ can be explained; the SUSY
scale can be as large as 4–6TeV, depending on the choice of mW̃ .

So far, mQ̃i
= mŨ3

and |(TU)13| = |(TU)23| are supposed. If we set mQ̃i
̸= mŨ3

and/or
|(TU)13| ̸= |(TU)23|, the SUSY contributions to ϵ′/ϵ become smaller at SE = 400.

In the right plot of Fig. 3, correlation between B(KL → π0νν̄) and (ϵ′/ϵ)SUSY is displayed.
As mentioned in the previous section, B(KL → π0νν̄) decreases as ϵ′/ϵ increases unless ϵ′/ϵ
is very large. (When ϵ′/ϵ is huge, the SUSY contribution is larger than the SM one for
KL → π0νν̄.) The current discrepancy implies that B(KL → π0νν̄) is predicted to be less
than 60% of the SM prediction. In future, the KOTO experiment may measure the branching
ratio at the 10% level of the SM value [31,32].

Some parameter regions are constrained by other observables. Those in mq̃ " 1–2TeV
are excluded by ϵK . The constraint is given by the chargino box contribution [15] and
relaxed as mq̃ increases. Double penguin contributions using the flavor-changing Z-boson
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Figure 3: (ϵ′/ϵ)SUSY is shown as a function of mq̃ (left). Here, mq̃ ≡ mQ̃i
= mŨ3

, tan β = 50
and |(TU)13| = |(TU)23| at SE = 400. The CP-violating phase is maximal. The Wino mass
mW̃ is 1, 2, 3TeV for the blue solid, dashed and dotted lines, respectively, while it is equal to
mq̃ on the black line. On the red (orange) region, ∆ (ϵ′/ϵ) is saturated at the 1σ (2σ) level.
The SM value follows Ref. [2]. Right: correlation between B(KL → π0νν̄) and (ϵ′/ϵ)SUSY is
shown.

particles are lighter than 1–2TeV.
The SM predictions of ϵ′/ϵ are expected to be improved in the near future. If the

discrepancy would be confirmed, the chargino contributions could provide an attractive
solution.
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ũ2
iL +

1

2
m2

Ũ3
t̃2R +

1√
2
(TU)i3 sin βHũiLt̃R +

1

4
y2t sin

2 βH2t̃2R

+
1

24
g23(ũ

2
iL − t̃2R)

2 +
1

32
g2(H2 cos 2β + ũ2

iL)
2 +

1

32
g2Y

(
H2 cos 2β − 1

3
ũ2
iL +

4

3
t̃2R

)2

.

(2.27)

In the potential, the mass of the SM-like Higgs boson is lower than 125GeV, which is cured
by radiative corrections to the Higgs potential. Including such corrections to the vacuum
decay rate is beyond the scope of the analysis in this letter.

3 Results

We discuss whether the current discrepancy of ϵ′/ϵ is explained by the chargino Z-penguin
contributions with satisfying the constraints especially from the vacuum stability condition.
First, the vacuum decay rate is estimated to derive an upper bound on the size of (TU)i3
by requiring SE ! 400. In the left plot of Fig. 2, the bound is shown as a function of
mq̃ ≡ mQ̃i

= mŨ3
. Here and hereafter, it is assumed that the heavy Higgs bosons are

decoupled and the left-right mixing of stops is neglected. The result is insensitive to tan β
as long as it is large. In the right plot, the result is interpreted into the bound of (δuLR)i3.
Due to the relation (2.3), the limit becomes severer as the SUSY scale increases. Therefore,
the SUSY contributions to ϵ′/ϵ decrease according to Eq. (2.13).

In the left plot of Fig. 3, the SUSY contributions to ϵ′/ϵ are shown as a function of mq̃.
Here, |(TU)i3| is set at SE = 400, and |(TU)13| = |(TU)23| is assumed. The CP-violating phase
is taken to be maximal. In addition to the model parameters that determine the vacuum
decay rate, there is a degree of freedom in choosing mW̃ (see Eq. (2.9)). In the figure, mW̃ is
set to be 1, 2, 3TeV and mq̃ as reference cases. The result is insensitive to the other model
parameters. It is found that the current discrepancy of ϵ′/ϵ can be explained; the SUSY
scale can be as large as 4–6TeV, depending on the choice of mW̃ .

So far, mQ̃i
= mŨ3

and |(TU)13| = |(TU)23| are supposed. If we set mQ̃i
̸= mŨ3

and/or
|(TU)13| ̸= |(TU)23|, the SUSY contributions to ϵ′/ϵ become smaller at SE = 400.

In the right plot of Fig. 3, correlation between B(KL → π0νν̄) and (ϵ′/ϵ)SUSY is displayed.
As mentioned in the previous section, B(KL → π0νν̄) decreases as ϵ′/ϵ increases unless ϵ′/ϵ
is very large. (When ϵ′/ϵ is huge, the SUSY contribution is larger than the SM one for
KL → π0νν̄.) The current discrepancy implies that B(KL → π0νν̄) is predicted to be less
than 60% of the SM prediction. In future, the KOTO experiment may measure the branching
ratio at the 10% level of the SM value [31,32].

Some parameter regions are constrained by other observables. Those in mq̃ " 1–2TeV
are excluded by ϵK . The constraint is given by the chargino box contribution [15] and
relaxed as mq̃ increases. Double penguin contributions using the flavor-changing Z-boson
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Figure 3: (ϵ′/ϵ)SUSY is shown as a function of mq̃ (left). Here, mq̃ ≡ mQ̃i
= mŨ3

, tanβ = 50
and |(TU)13| = |(TU)23| at SE = 400. The CP-violating phase is maximal. The Wino mass
mW̃ is 1, 2, 3TeV for the blue solid, dashed and dotted lines, respectively, while it is equal to
mq̃ on the black line. On the red (orange) region, ∆ (ϵ′/ϵ) is saturated at the 1σ (2σ) level.
The SM value follows Ref. [2]. Right: correlation between B(KL → π0νν̄) and (ϵ′/ϵ)SUSY is
shown.

particles are lighter than 1–2TeV.
The SM predictions of ϵ′/ϵ are expected to be improved in the near future. If the

discrepancy would be confirmed, the chargino contributions could provide an attractive
solution.
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Appendix A : Squark flavor mixing matrix

The flavor mixing and CP violation are induced through the quark-squark-gaugino and the
lepton-slepton-gaugino couplings. The Lagrangian of the gaugino-quark-squark interaction
is written as

Lint(G̃qq̃) = −i
√
2g1,2,3

∑

{q}

q̃∗i (T
a)G̃a

[
(Γ(q)

L )ijL+ (Γ(q)
R )ijR

]
qj +H.c. , (31)

where G̃a is the gaugino field, T a is the generator of the gauge group, and L, R are projection
operators. The left-handed and right-handed mixing matrixes Γ(q)

L and Γ(q)
R diagonalizes the

6×6 squark mass matrix M2
q̃ in the super-CKM basis to the mass eigenstate basis as follows:

M2
q̃ = Γ(q)† diag(m2

q̃)Γ
(q) =

(
M2

LL M2
LR

M2
RL M2

RR

)
, (32)

where Γ(q) is the 6 × 6 unitary matrix, and it is decomposed into the 3 × 6 matrices as
Γ(q) = (Γ(q)

L , Γ(q))
R ). The squark mass matrix M2

q̃ in the super-CKM basis is the same as that

in the SLHA notation [77]. We write Γ(q)
L,R as follows:

Γ(q)
L =

⎛

⎜⎝
cqL13 0 sqL13 e

−iφqL
13 cθqLR

0 0 −sqL13 e
−iφqL

13 sθqLR
eiφ

q
LR

−sqL23 s
qL
13 e

i(φqL
13 −φqL

23 ) cqL23 sqL23 c
qL
13 e

−iφqL
23 cθqLR

0 0 −sqL23 c
qL
13 e

−iφqL
23 sθqLR

eiφ
q
LR

−sqL13 c
qL
23 e

iφqL
13 −sqL23 e

iφqL
23 cqL13 c

qL
23 cθqLR

0 0 −cqL13 c
qL
23 sθqLR

eiφ
q
LR

⎞

⎟⎠

T

,

Γ(q)
R =

⎛

⎜⎝
0 0 sqR13 sθqLR

e−iφqR
13 e−iφq

LR cqR13 0 sqR13 e
−iφqR

13 cθqLR

0 0 sqR23 c
qR
13 sθqLR

e−iφqR
23 e−iφq

LR −sqR13 s
qR
23 e

i(φqR
13 −φqR

23 ) cqR23 sqR23 c
qR
13 e

−iφqR
23 cθqLR

0 0 cqR13 c
qR
23 sθqLR

e−iφq
LR −sqR13 c

qR
23 e

iφqR
13 −sqR23 e

iφqR
23 cqR13 c

qR
23 cθqLR

⎞

⎟⎠

T

,

(33)

where we use abbreviations cqL,qRij = cos θqL,qRij , sqL,qRij = sin θqL,qRij , cθq = cos θq and sθq = sin θq

with θqL,qRij being the mixing angles between i th and j th familes of squarks. In these mixing

matrices, we take sqL,qR12 = 0.
The 3 × 3 submatrix M2

LR is given as follows:

M2
LR = (m2

q̃3,1 −m2
q̃3,2) cos θ

q3
LR sin θq3LRe

iφq
LR

×

⎛

⎜⎝
sqL13 s

qR
13 e

i(φqL
13 −φqR

13 ) cqR13 s
qL
13 s

qR
13 e

i(φqL
13 −φqR

13 ) cqR13 c
qR
23 s

qL
13 e

iφqL
13

cqL13 s
qR
13 s

qL
23 e

i(φqL
23 −φqR

13 ) cqL13 c
qR
13 s

qL
23 s

qR
23 e

i(φqL
23 −φqR

23 ) cqL13 c
qR
13 s

qL
23 c

qR
23 e

iφqL
23

cqL13 s
qR
13 c

qL
23 e

−iφqR
13 cqL13 c

qR
13 c

qL
23 s

qR
23 e

−iφqR
23 cqL13 c

qR
13 c

qL
23 c

qR
23

⎞

⎟⎠ . (34)

The left-right mixing angles θqLR are given approximately as

θbLR ≃ mb(A
d,∗
33 − µ tan β)

m2
b̃L

−m2
b̃R

, θtLR ≃ mt(A
u,∗
33 − µ cot β)

m2
t̃L
−m2

t̃R

. (35)
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family squarks dominate the Z-penguin induced by the chargino and gluino interactions
in our model.

• We take the left-right mixing angles

θtLR = 0.07 and θbLR = 0.1− 0.3 , (27)

where θtLR is estimated by input of the stop masses in Eq.(26) with the large A term,
which is constrained by the 125 GeV Higgs mass due to the large radiative correction
[34]. On the other hand, there is no strong constraint for the left-right mixing of the
down squarks from the B meson experiments in the region of O(10) TeV 2. Therefore,
we take rather large values to see the enhancement of the KL → π0νν̄ decay.

• The flavor mixing parameters sqLij and sqRij of the up and down sectors are free parame-
ters, and are varied in

suLi3 , s
dL
i3 = 0 ∼ 0.3 (i = 1, 2), suRi3 , sdRd3 = 0 ∼ 0.3 (i = 1, 2), (28)

where the upper bound 0.3 is given by the experimental constraint of the K0−K̄0 mass
difference ∆MK . As discussed in the previous section, we ignore the mixing between
the first and second family of squarks, sqL12 , and then, can avoid the large contribution
from sqL12 to ∆MK . This single mixing effect of sqL12 to the Z-penguin mediated by the
chargino is known to be minor compared with double mixing effect [50, 54]. Namely,
the SUSY contributions of the KL → π0νν̄ and K+ → π+νν̄ processes are dominated
by the double mixing of the stop and sbottom.

• The phase parameters φqL(R)
13 and φqL(R)

23 are also free parameters. We scan them in
−π ∼ π randomly.

• We neglect the minor contribution from the slepton and sneutrino. We also neglect the
charged Higgs contribution, which is tiny due to the CKM mixing.

• For non-perturbative parameters B(1/2)
6 and B(3/2)

8 , which are key ones to estimate

ϵ′K/ϵK , we use the RBC-UKQCD result B(1/2)
6 = 0.57 ± 0.15 and B(3/2)

8 = 0.76 ± 0.05
in Eq.(10). We scan them within the 3σ error-bar.

We use the CKM elements |Vcb|, |Vub|, |Vtd| in ref.[49] with 3σ error bars, which are obtained in
the framework of the SM. If there is a large SUSY contribution to the kaon and the B meson
systems, the values of the CKM elements may be changed. Actually, the SUSY contribution
is comparable to the SM one for ϵK in our following numerical analyses, however, very small
for the CP violations and the mass differences of the B mesons at the O(10)TeV scale of
squarks [37]. We use the CKM element in the study of the unitarity triangle including the
data of the CP asymmetries and the mass differences of B mesons without inputting ϵK
(Strategy S1 in ref.[49] ).

2The metastability of vacuum can also constrain the left-right mixing for the down squark sector [66]. In
order to justify our set-up of the left-right mixing angle, the more precise analysis of the vacuum stability is
important.
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Appendix A : Squark flavor mixing matrix

The flavor mixing and CP violation are induced through the quark-squark-gaugino and the
lepton-slepton-gaugino couplings. The Lagrangian of the gaugino-quark-squark interaction
is written as

Lint(G̃qq̃) = −i
√
2g1,2,3

∑

{q}

q̃∗i (T
a)G̃a

[
(Γ(q)

L )ijL+ (Γ(q)
R )ijR

]
qj +H.c. , (31)

where G̃a is the gaugino field, T a is the generator of the gauge group, and L, R are projection
operators. The left-handed and right-handed mixing matrixes Γ(q)

L and Γ(q)
R diagonalizes the

6×6 squark mass matrix M2
q̃ in the super-CKM basis to the mass eigenstate basis as follows:

M2
q̃ = Γ(q)† diag(m2

q̃)Γ
(q) =

(
M2

LL M2
LR

M2
RL M2

RR

)
, (32)

where Γ(q) is the 6 × 6 unitary matrix, and it is decomposed into the 3 × 6 matrices as
Γ(q) = (Γ(q)

L , Γ(q))
R ). The squark mass matrix M2

q̃ in the super-CKM basis is the same as that

in the SLHA notation [77]. We write Γ(q)
L,R as follows:

Γ(q)
L =

⎛

⎜⎝
cqL13 0 sqL13 e

−iφqL
13 cθqLR

0 0 −sqL13 e
−iφqL

13 sθqLR
eiφ

q
LR

−sqL23 s
qL
13 e

i(φqL
13 −φqL

23 ) cqL23 sqL23 c
qL
13 e

−iφqL
23 cθqLR

0 0 −sqL23 c
qL
13 e

−iφqL
23 sθqLR

eiφ
q
LR

−sqL13 c
qL
23 e

iφqL
13 −sqL23 e

iφqL
23 cqL13 c

qL
23 cθqLR

0 0 −cqL13 c
qL
23 sθqLR

eiφ
q
LR

⎞

⎟⎠

T

,

Γ(q)
R =

⎛

⎜⎝
0 0 sqR13 sθqLR

e−iφqR
13 e−iφq

LR cqR13 0 sqR13 e
−iφqR

13 cθqLR

0 0 sqR23 c
qR
13 sθqLR

e−iφqR
23 e−iφq

LR −sqR13 s
qR
23 e

i(φqR
13 −φqR

23 ) cqR23 sqR23 c
qR
13 e

−iφqR
23 cθqLR

0 0 cqR13 c
qR
23 sθqLR

e−iφq
LR −sqR13 c

qR
23 e

iφqR
13 −sqR23 e

iφqR
23 cqR13 c

qR
23 cθqLR

⎞

⎟⎠

T

,

(33)

where we use abbreviations cqL,qRij = cos θqL,qRij , sqL,qRij = sin θqL,qRij , cθq = cos θq and sθq = sin θq

with θqL,qRij being the mixing angles between i th and j th familes of squarks. In these mixing

matrices, we take sqL,qR12 = 0.
The 3 × 3 submatrix M2

LR is given as follows:

M2
LR = (m2

q̃3,1 −m2
q̃3,2) cos θ

q3
LR sin θq3LRe

iφq
LR

×

⎛

⎜⎝
sqL13 s

qR
13 e

i(φqL
13 −φqR

13 ) cqR13 s
qL
13 s

qR
13 e

i(φqL
13 −φqR

13 ) cqR13 c
qR
23 s

qL
13 e

iφqL
13

cqL13 s
qR
13 s

qL
23 e

i(φqL
23 −φqR

13 ) cqL13 c
qR
13 s

qL
23 s

qR
23 e

i(φqL
23 −φqR

23 ) cqL13 c
qR
13 s

qL
23 c

qR
23 e

iφqL
23

cqL13 s
qR
13 c

qL
23 e

−iφqR
13 cqL13 c

qR
13 c

qL
23 s

qR
23 e

−iφqR
23 cqL13 c

qR
13 c

qL
23 c

qR
23

⎞

⎟⎠ . (34)

The left-right mixing angles θqLR are given approximately as

θbLR ≃ mb(A
d,∗
33 − µ tan β)

m2
b̃L

−m2
b̃R

, θtLR ≃ mt(A
u,∗
33 − µ cot β)

m2
t̃L
−m2

t̃R

. (35)
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Figure 1: The predicted region for BR(KL →
π0νν̄) versus BR(K+ → π+νν̄) without im-
posing ϵK where θbLR = 0.3. The green
line corresponds to the Grossman-Nir bound.
The dashed red lines denote the 1σ experi-
mental bounds for BR(K+ → π+νν̄). The
pink denotes the SM prediction.

Figure 2: The predicted region for BR(KL →
π0νν̄) versus BR(K+ → π+νν̄), without im-
posing ϵK , where θbLR = 0.2. Notations are
same as in Figure 1.

Figure 3: The predicted region for BR(KL →
π0νν̄) versus BR(K+ → π+νν̄), without im-
posing ϵK , where θbLR = 0.1. Notations are
same as in Figure 1.

Figure 4: The predicted region for BR(KL →
π0νν̄) versus BR(K+ → π+νν̄), with impos-
ing ϵK , where θbLR = 0.3. Notations are same
as in Figure 1.

As a result, it is found that BR(KL → π0νν̄) can be enhanced up to 4× 10−10, which is
much larger than the SM one, with satisfying the ϵK constraint.

We comment on the constraint from K0 − K̄0 mass difference ∆MK . Our SUSY contri-
bution of ∆MK(SUSY) is comparable with the SM contribution ∆MK(SM). It is possible to
fit the following condition keeping the enhancement of BR(KL → π0νν̄):

∆MK

∆MK(SM)
= 0.75 ∼ 1.25 , (29)

which is the criterion of the allowed NP contribution in ref. [69]. We also estimate the SUSY
contribution to ∆MB0 and ∆MBs , which are at most 10% of the SM.

Let us discuss the correlation between BR(KL → π0νν̄) and ϵ′K/ϵK . As discussed in
subsection 2.3, both processes come from the imaginary part of the same Z-penguin, and
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much larger than the SM one, with satisfying the ϵK constraint.

We comment on the constraint from K0 − K̄0 mass difference ∆MK . Our SUSY contri-
bution of ∆MK(SUSY) is comparable with the SM contribution ∆MK(SM). It is possible to
fit the following condition keeping the enhancement of BR(KL → π0νν̄):

∆MK

∆MK(SM)
= 0.75 ∼ 1.25 , (29)

which is the criterion of the allowed NP contribution in ref. [69]. We also estimate the SUSY
contribution to ∆MB0 and ∆MBs , which are at most 10% of the SM.

Let us discuss the correlation between BR(KL → π0νν̄) and ϵ′K/ϵK . As discussed in
subsection 2.3, both processes come from the imaginary part of the same Z-penguin, and
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�I = 1/2 rule has been considered, the diagonal couplings could be fixed by requiring
the maximal contribution of Z

0 to the A0(K ! ⇡⇡) amplitude. In this case the operator
Q6 turned out to be most important. As we will see below, a variant of this model turns
out to be interesting in view of the recent lattice result on "

0
/" in [41] and recent analyses

in [40, 42].

4.6 Can "0/" and K ! ⇡⌫⌫̄ be simultaneously enhanced?

In most extensions of the SM the enhancement of the branching ratios for K

+ ! ⇡

+
⌫⌫̄

and KL ! ⇡

0
⌫⌫̄ through NP usually imply the suppression of "

0
/" and enhancement of

"

0
/" implies suppression of KL ! ⇡

0
⌫⌫̄. We have already mentioned this feature in the

context of our analysis of Z models with MFV after (43). This is related to the fact that
there is a strong correlation between negative electroweak penguin contribution to "

0
/"

and the branching ratios for K

+ ! ⇡

+
⌫⌫̄ and KL ! ⇡

0
⌫⌫̄. Here we would like to present

two simplified models in which in fact "

0
/" and the branching ratios for K

+ ! ⇡

+
⌫⌫̄ and

KL ! ⇡

0
⌫⌫̄ can be simultaneously enhanced with respect to their SM values. This case

is of interest in view of the recent result from the RCB-UKQCD lattice collaboration
which indicates that "

0
/" in the SM could be significantly below the data. Indeed, they

find in the SM [41]
("0/")SM = (1.4 ± 7.0) · 10�4

, (52)

which is by 2.1� below the experimental world average from the NA48 [61] and KTeV
[62,63] collaborations,

("0/")exp = (16.6 ± 2.3) · 10�4
. (53)

One should note that lattice calculations were not able until now to establish the sign of
"

0
/" within the SM.

A recent detailed anatomy of "

0
/" in the SM in [40] shows that indeed "

0
/" in the

SM could be significantly below the data, although the size of this suppression depends

sensitively on the value of B

(1/2)
6 , the dominant source of uncertainty in the prediction

of "

0
/" in the SM. Motivated by these finding we looked for models in which "

0
/" and

KL ! ⇡

0
⌫⌫̄ could be simultaneously enhanced.

4.6.1 Simplified Z model

We consider a model in which Z has both LH and RH couplings, but not equal to each
other, and not di↵ering only by a sign. As seen in (48), in order to obtain a positive
contribution to "

0
/" we need Im �sd

R (Z) < 0. But this alone would suppress the rare decay
branching ratios. The solution to this problem is the contribution of the Q8 operator to
"

0
/" given in (45). While this is not evident from this formula, as shown in [39], for equal

LH and RH Z couplings this contribution is by a factor of three smaller than the one
in (48). On the other hand, the branching ratios for K

+ ! ⇡

+
⌫⌫̄ and KL ! ⇡

0
⌫⌫̄ are

sensitive to the sum of LH and RH couplings. Therefore choosing Im�sd
L (Z) > 0 with

|Im�sd
R (Z)| < Im�sd

L (Z) < 3|Im�sd
R (Z)| (54)

one can enhance simultaneously "

0
/" and the branching ratios for K

+ ! ⇡

+
⌫⌫̄ and

KL ! ⇡

0
⌫⌫̄. In doing this, Re �sd

L,R(Z) have to be kept su�ciently small in order not
to spoil the agreement of ReA0 in the SM with the data. Moreover, the �MK and "K

constraints have to be satisfied.
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Figure 5: The predicted BR(KL → π0νν̄)
versus ϵ′K/ϵK , where the Zsd coupling sat-
isfies the condition of eq.(18). The vertical
solid red line denotes the central value of the
experimental data, and the dashed ones de-
note the experimental bounds with 3σ for
ϵ′K/ϵK . The pink denotes the SM prediction.

Figure 6: The predicted region for BR(KL →
π0νν̄) versus BR(K+ → π+νν̄), where
the Zsd coupling satisfies the condition of
eq.(18). Notations are same as in Figure 1.

can be enhanced simultaneously once the condition Eq.(18) is imposed. In fig.5, we show the
correlation between BR(KL → π0νν̄) and ϵ′K/ϵK , where Zsd coupling satisfies the condition of
eq.(18). The constraint from ϵK is also imposed. It is remarkable that the Z-penguin mediated
by the gluino enhances simultaneously ϵ′K/ϵK and the branching ratio for KL → π0νν̄. While
the estimated ϵ′K/ϵK fits the observed value, the branching ratio of KL → π0νν̄ increases
up to 1.0 × 10−10. In this region, the phase of Im∆sd

L and Im∆sd
R becomes opposite, so the

enhanced region of BR(KL → π0νν̄) is somewhat reduced by the cancellation between the
left-handed coupling of Z and the right-handed one partially, compared with the result in
fig.4.

The real part of ∆sd
L and ∆sd

R are small sufficiently since φdL,dR
13 − φdL,dR

23 ≃ ±π/2 are
taken. Therefore, the SUSY contribution does not spoil the agreement of the real part of the
K → ππ amplitude in the SM with the experimental data.

In fig.6, we show the correlation between BR(KL → π0νν̄) and BR(K+ → π+νν̄). In the
parameter region where BR(KL → π0νν̄) and ϵ′K/ϵK are enhanced, the branching ratio of
K+ → π+νν̄ is not deviated from the SM. It is understandable because φdL,dR

13 − φdL,dR
23 ≃

±π/2 is taken in order to enhance BR(KL → π0νν̄) with the ϵK constraint. On the other
hand, BR(K+ → π+νν̄) is dominated by the considerably sizable real part of the SM. The
addition of the imaginary part of the SUSY contribution does not change the SM prediction
significantly.

The Z-penguin process also contributes to another kaon rare decay KL → µ+µ−, and
the B meson rare decays, B0 → µ+µ− and Bs → µ+µ−. Therefore, we expect them to
correlate with the K → πνν̄ decays. In the KL → µ+µ− process, the long-distance effect
is estimated to be large in ref. [65]. Therefore, we only discuss the short-distance effect,
which is dominated by the Z-penguin. We show BR(KL → π0νν̄) versus BR(KL → µ+µ−) in
fig.7, where the constraint from ϵK is imposed. It is noticed that the predicted value almost
satisfies the bound for the short-distance contribution in Eq.(23), presented as the red line.
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�I = 1/2 rule has been considered, the diagonal couplings could be fixed by requiring
the maximal contribution of Z

0 to the A0(K ! ⇡⇡) amplitude. In this case the operator
Q6 turned out to be most important. As we will see below, a variant of this model turns
out to be interesting in view of the recent lattice result on "

0
/" in [41] and recent analyses

in [40, 42].

4.6 Can "0/" and K ! ⇡⌫⌫̄ be simultaneously enhanced?

In most extensions of the SM the enhancement of the branching ratios for K

+ ! ⇡

+
⌫⌫̄

and KL ! ⇡

0
⌫⌫̄ through NP usually imply the suppression of "

0
/" and enhancement of

"

0
/" implies suppression of KL ! ⇡

0
⌫⌫̄. We have already mentioned this feature in the

context of our analysis of Z models with MFV after (43). This is related to the fact that
there is a strong correlation between negative electroweak penguin contribution to "

0
/"

and the branching ratios for K

+ ! ⇡

+
⌫⌫̄ and KL ! ⇡

0
⌫⌫̄. Here we would like to present

two simplified models in which in fact "

0
/" and the branching ratios for K

+ ! ⇡

+
⌫⌫̄ and

KL ! ⇡

0
⌫⌫̄ can be simultaneously enhanced with respect to their SM values. This case

is of interest in view of the recent result from the RCB-UKQCD lattice collaboration
which indicates that "

0
/" in the SM could be significantly below the data. Indeed, they

find in the SM [41]
("0/")SM = (1.4 ± 7.0) · 10�4

, (52)

which is by 2.1� below the experimental world average from the NA48 [61] and KTeV
[62,63] collaborations,

("0/")exp = (16.6 ± 2.3) · 10�4
. (53)

One should note that lattice calculations were not able until now to establish the sign of
"

0
/" within the SM.

A recent detailed anatomy of "

0
/" in the SM in [40] shows that indeed "

0
/" in the

SM could be significantly below the data, although the size of this suppression depends

sensitively on the value of B

(1/2)
6 , the dominant source of uncertainty in the prediction

of "

0
/" in the SM. Motivated by these finding we looked for models in which "

0
/" and

KL ! ⇡

0
⌫⌫̄ could be simultaneously enhanced.

4.6.1 Simplified Z model

We consider a model in which Z has both LH and RH couplings, but not equal to each
other, and not di↵ering only by a sign. As seen in (48), in order to obtain a positive
contribution to "

0
/" we need Im �sd

R (Z) < 0. But this alone would suppress the rare decay
branching ratios. The solution to this problem is the contribution of the Q8 operator to
"

0
/" given in (45). While this is not evident from this formula, as shown in [39], for equal

LH and RH Z couplings this contribution is by a factor of three smaller than the one
in (48). On the other hand, the branching ratios for K

+ ! ⇡

+
⌫⌫̄ and KL ! ⇡

0
⌫⌫̄ are

sensitive to the sum of LH and RH couplings. Therefore choosing Im�sd
L (Z) > 0 with

|Im�sd
R (Z)| < Im�sd

L (Z) < 3|Im�sd
R (Z)| (54)

one can enhance simultaneously "

0
/" and the branching ratios for K

+ ! ⇡

+
⌫⌫̄ and

KL ! ⇡

0
⌫⌫̄. In doing this, Re �sd

L,R(Z) have to be kept su�ciently small in order not
to spoil the agreement of ReA0 in the SM with the data. Moreover, the �MK and "K

constraints have to be satisfied.
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Figure 2: Vacuum stability constraint on |(TU)i3| (left) and |(δuLR)i3| (right) for i = 1, 2 as a
function of mq̃. Here, mq̃ ≡ mQ̃i

= mŨ3
and tan β = 50. It is assumed that the heavy Higgs

bosons are decoupled and the stop left-right mixing is neglected.

coupling [11] are weaker. A weaker bound is obtained from ∆md. It changes mainly through
box diagrams with (δuLR)13 [15], which decouple as SUSY particles become heavier. The MI
parameter (δuLR)23 generates contributions to B(b → sγ). Since the dominant contribution
is from Higgsino-like chargino diagrams, its effect is sufficiently small if Higgsinos are heavy
without suppressing the contribution to ϵ′/ϵ. Electric dipole moments are sensitive probes
of the CP violations. However, contributions with (TU)13 or (TU)23 (see e.g., Ref. [33]) are
smaller than the current experimental limits if the squarks are heavier than 1TeV. Finally,
one might obtain a stringent constraint from RG analyses [16]. However, they depend on
models, and we simply neglect them to keep the discussion as model-independent as possible.

4 Conclusion

The recent analyses of the SM prediction of ϵ′/ϵ have reported a discrepancy from the
experimental value. The significance is about the 2.9σ level. We studied whether it is
explained by the chargino Z-penguin contributions. They are constrained by the vacuum
stability condition, and it is found that the SUSY contributions can bridge the discrepancy
if the SUSY masses are smaller than 4–6TeV.

The chargino Z penguin also contributes to B(KL → π0νν̄). The current discrepancy of
ϵ′/ϵ implies that B(KL → π0νν̄) is about less than 60% of the SM prediction. In future, the
KOTO experiment may measure the branching ratio at the 10% level of the SM value [31,32].
On the other hand, other experimental constraints exclude models only when the SUSY
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In this letter, SE is estimated at the semi-classical level, which is called the bounce action [27]
and calculated by CosmoTransition 2.0a2 [28]. The prefactor A is not determined at this
level; higher-order calculations are needed for determining A [29]. We adopt an order-
of-estimation analysis. Since typical energy scales are the EW and SUSY ones, we take
A ∼ (100GeV)4 or (10TeV)4. The lifetime of the EW vacuum is longer than the age of the
universe if the bounce action satisfies

SE ! 400. (2.24)

Thermal effects are neglected in this letter.
The bounce action potentially involves O(10%) uncertainties due to renormalization scale

dependences of the model parameters. They are improved by taking radiative corrections
into account [30]. However, they are neglected in this letter for simplicity; calculations of
the radiative corrections are complicated and will be studied elsewhere.

The bounce action is calculated once the scalar potential is given. In the superCKM
basis, the relevant part of the potential is given by

V =
1

2
m2

11 h
2
d +

1

2
m2

22 h
2
u −m2

12 hdhu +
1

2
m2

Q̃i
ũ2
iL +

1

2
m2

Q̃3
t̃2L +

1

2
m2

Ũ3
t̃2R

+
1√
2
[(TU)33hu − ytµhd] t̃Lt̃R +

1√
2
(TU)i3huũiLt̃R +

1

4
y2t (t̃

2
Lt̃

2
R + t̃2Lh

2
u + t̃2Rh

2
u)

+
1

24
g23(ũ

2
iL + t̃2L − t̃2R)

2 +
1

32
g2(h2

u − h2
d − ũ2

iL − t̃2L)
2

+
1

32
g2Y

(
h2
u − h2

d +
1

3
ũ2
iL +

1

3
t̃2L −

4

3
t̃2R

)2

, (2.25)

where hu, hd, ũiL, t̃R and t̃L are real scalar fields. Here, ũiL denotes the left-handed sup or
scharm (i = 1, 2). Terms including yu or yc are neglected, while mixings of hu–hd or t̃R–t̃L
are kept included. The coefficients in the Higgs sector are expressed as

m2
11 = m2

A sin2 β − 1

2
m2

Z cos 2β, m2
22 = m2

A cos2 β +
1

2
m2

Z cos 2β, m2
12 =

1

2
m2

A sin 2β. (2.26)

In general, (TU)13 and (TU)23 have complex phases. They can be rephased out in the
potential (2.25) before taking real parts of the fields, and the model parameters are set to
be real. Thus, the vacuum stability conditions provide upper bounds on the magnitude of
(TU)ij.

Two trilinear couplings (TU)13 and (TU)23 generate two CCB vacua. In the calculation
of SE, one CCB vacuum does not affect another. The bounce action is a solution of the
Euclidean equation of motion. A semi-classical path belonging to one CCB vacuum is hardly
affected by another. Therefore, the bounce actions are calculated for (TU)13 and (TU)23,
separately.

The trilinear coupling is composed by hu, ũiL and t̃R. In the limit when heavy Higgs
bosons are decoupled and the stop left-right mixing is negligible, hu becomes close to the
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�!CKM!elements�

diagram function S(v), with v collectively denoting the parameters of a given CMFVmodel.
This function enters universally "K , �Ms and �Md and cancels out in the ratio in (7).
Therefore the resulting UUT is the same in all CMFV models. Moreover it can be shown
that in these models S(v) is bounded from below by its SM value [26]

S(v) � S

0

(xt) = 2.32 (8)

with S

0

(xt) given in (11).

The recent results in (3) and (4) have a profound impact on the determination of the UUT.
The UUT can be determined very precisely from the measured values of �Md/�Ms and
S KS . This in turn implies a precise knowledge of the ratio |Vub|/|Vcb| and the angle �,
both to be compared with their tree-level determinations. Also the side Rt of the UUT
can be determined precisely in view of the result for ⇠ in (4).

In order to complete the determination of the full CKM matrix without the use of any
tree-level determinations, except for |Vus|, we will use two strategies:

S1: �Ms strategy in which the experimental value of �Ms is used to determine |Vcb|
as a function of S(v), and "K is then a derived quantity.

S2: "K strategy in which the experimental value of "K is used, while �Ms is then a
derived quantity and �Md follows from the determined UUT.

Both strategies use the determination of the UUT by means of (7) and allow to determine
the whole CKM matrix, in particular |Vts|, |Vtd|, |Vub| and |Vcb| as functions of S(v). Yet
their outcome is very di↵erent, which signals the tension between �Ms,d and "K in this
framework. As we will demonstrate below, this tension, known already from previous
studies [27,28], has been sharpened significantly through the results in (3) and (4). Using
these two strategies separately allows to exhibit this tension transparently. Indeed

• The lower bound in (8) implies in S

1

upper bounds on |Vts|, |Vtd|, |Vub| and |Vcb| which
are saturated in the SM, and in turn allows to derive an upper bound on "K in CMFV
models that is saturated in the SM but turns out to be significantly below the data.

• The lower bound in (8) implies in S

2

also upper bounds on |Vts|, |Vtd|, |Vub| and
|Vcb| which are saturated in the SM. However the S(v) dependence of these elements
determined in this manner di↵ers from the one obtained in S

1

, which in turn allows
to derive lower bounds on �Ms,d in CMFV models that are reached in the SM but
turn out to be significantly above the data.

It has been known since 2008 that the SM experiences some tension in the correlation
between S KS and "K [29–33]. It should be emphasized that in CMFV models only the
version of this tension in [30], i. e. NP in "K , is possible as in these models there are no new
CP-violating phases. Therefore S KS has to be used to determine the sole phase in these

3

Si |Vts| |Vtd| |Vcb| |Vub| Im�t Re�t

S

1

39.0(13) 8.00(29) 39.7(13) 3.43(15) 1.21(8) �2.88(19)
S

2

42.6(11) 8.73(26) 43.3(11) 3.74(14) 1.44(7) �3.42(18)

Table 2: Upper bounds on CKM elements in units of 10�3 and of �t in units of 10�4

obtained using strategies S

1

and S

2

as explained in the text. We set S(v) = S

0

(xt).

We conclude that the imposition of the �Ms,d constraints within CMFV models implies
an upper bound on "K , saturated in the SM, which is significantly below its experimental
value given in Table 1. Therefore a non-CMFV contribution

|"K |non-CMFV

� (0.59± 0.25) · 10�3 (35)

is required, implying a discrepancy of the SM and CMFV value of "K with the data by
2.3 �. Once more we stress that this shift cannot be obtained within CMFV models without
violating the constraints from �Ms,d.

In Table 2 we collect the values of the most relevant CKM parameters as well as the real
and imaginary parts of �t = VtdV

⇤
ts. In particular the value of Im�t is important for the ratio

"

0
/". Its value found in S

1

is lower than what has been used in the recent papers [51–54],
thereby further decreasing the value of "0/" in the SM.

2.3 S2: Lower Bounds on �Ms,d

The strategy S

2

uses the construction of the UUT as outlined above, but then instead of
using �Ms for the complete extraction of the CKM elements, the experimental value of "K
is used as input. Taking the lower bound in (8) into account, this strategy again implies
upper bounds on |Vts|, |Vtd|, |Vcb| and |Vub|. However this time their S(v) dependence di↵ers
from the one in (28), as seen in the case of |Vcb| in Fig. 4, where S

2

is represented by the
blue band. The weaker S(v) dependence in S

2

, together with the higher |Vcb| values, is
another proof that the tension between "K and�Ms,d cannot be removed within the CMFV
framework and is in fact smallest in the SM limit.

In order to understand this weaker dependence of |Vcb| on S(v) we use the formula for |Vcb|
extracted from "K that has been derived in [34]. We recall it here for convenience2

|Vcb| = ṽ(⌘cc, ⌘ct)p
⇠S(v)

qp
1 + h(⌘cc, ⌘ct)S(v)� 1 ⇡ ṽ(⌘cc, ⌘ct)p

⇠


h(⌘cc, ⌘ct)

S(v)

�
1/4

, (36)

where for the central values of the QCD corrections ⌘cc and ⌘ct in Table 1 one finds

ṽ(⌘cc, ⌘ct) = 0.0282, h(⌘cc, ⌘ct) = 24.83 . (37)

2
We replaced v(⌘cc, ⌘ct) by ṽ(⌘cc, ⌘ct) in order to distinguish it from the argument in S(v).
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Appendix A : Squark flavor mixing matrix

The flavor mixing and CP violation are induced through the quark-squark-gaugino and the
lepton-slepton-gaugino couplings. The Lagrangian of the gaugino-quark-squark interaction
is written as

Lint(G̃qq̃) = −i
√
2g1,2,3

∑

{q}

q̃∗i (T
a)G̃a

[
(Γ(q)

L )ijL+ (Γ(q)
R )ijR

]
qj +H.c. , (31)

where G̃a is the gaugino field, T a is the generator of the gauge group, and L, R are projection
operators. The left-handed and right-handed mixing matrixes Γ(q)

L and Γ(q)
R diagonalizes the

6×6 squark mass matrix M2
q̃ in the super-CKM basis to the mass eigenstate basis as follows:

M2
q̃ = Γ(q)† diag(m2

q̃)Γ
(q) =

(
M2

LL M2
LR

M2
RL M2

RR

)
, (32)

where Γ(q) is the 6 × 6 unitary matrix, and it is decomposed into the 3 × 6 matrices as
Γ(q) = (Γ(q)

L , Γ(q))
R ). The squark mass matrix M2

q̃ in the super-CKM basis is the same as that

in the SLHA notation [77]. We write Γ(q)
L,R as follows:

Γ(q)
L =

⎛

⎜⎝
cqL13 0 sqL13 e

−iφqL
13 cθqLR

0 0 −sqL13 e
−iφqL

13 sθqLR
eiφ

q
LR

−sqL23 s
qL
13 e

i(φqL
13 −φqL

23 ) cqL23 sqL23 c
qL
13 e

−iφqL
23 cθqLR

0 0 −sqL23 c
qL
13 e

−iφqL
23 sθqLR

eiφ
q
LR

−sqL13 c
qL
23 e

iφqL
13 −sqL23 e

iφqL
23 cqL13 c

qL
23 cθqLR

0 0 −cqL13 c
qL
23 sθqLR

eiφ
q
LR

⎞

⎟⎠

T

,

Γ(q)
R =

⎛

⎜⎝
0 0 sqR13 sθqLR

e−iφqR
13 e−iφq

LR cqR13 0 sqR13 e
−iφqR

13 cθqLR

0 0 sqR23 c
qR
13 sθqLR

e−iφqR
23 e−iφq

LR −sqR13 s
qR
23 e

i(φqR
13 −φqR

23 ) cqR23 sqR23 c
qR
13 e

−iφqR
23 cθqLR

0 0 cqR13 c
qR
23 sθqLR

e−iφq
LR −sqR13 c

qR
23 e

iφqR
13 −sqR23 e

iφqR
23 cqR13 c

qR
23 cθqLR

⎞

⎟⎠

T

,

(33)

where we use abbreviations cqL,qRij = cos θqL,qRij , sqL,qRij = sin θqL,qRij , cθq = cos θq and sθq = sin θq

with θqL,qRij being the mixing angles between i th and j th familes of squarks. In these mixing

matrices, we take sqL,qR12 = 0.
The 3 × 3 submatrix M2

LR is given as follows:

M2
LR = (m2

q̃3,1 −m2
q̃3,2) cos θ

q3
LR sin θq3LRe

iφq
LR

×

⎛

⎜⎝
sqL13 s

qR
13 e

i(φqL
13 −φqR

13 ) cqR13 s
qL
13 s

qR
13 e

i(φqL
13 −φqR

13 ) cqR13 c
qR
23 s

qL
13 e

iφqL
13

cqL13 s
qR
13 s

qL
23 e

i(φqL
23 −φqR

13 ) cqL13 c
qR
13 s

qL
23 s

qR
23 e

i(φqL
23 −φqR

23 ) cqL13 c
qR
13 s

qL
23 c

qR
23 e

iφqL
23

cqL13 s
qR
13 c

qL
23 e

−iφqR
13 cqL13 c

qR
13 c

qL
23 s

qR
23 e

−iφqR
23 cqL13 c

qR
13 c

qL
23 c

qR
23

⎞

⎟⎠ . (34)

The left-right mixing angles θqLR are given approximately as

θbLR ≃ mb(A
d,∗
33 − µ tan β)

m2
b̃L

−m2
b̃R

, θtLR ≃ mt(A
u,∗
33 − µ cot β)

m2
t̃L
−m2

t̃R

. (35)
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Figure 2: 95% C.L. allowed regions for "0/" and KL ! ⇡0⌫⌫̄. Left: model with flavour-
changing Z boson couplings �sd

R = �0.5�sd
L . Center: modified Z, LH scenario �sd

R = 0. Right:
5 TeV Z’ with �qq

R = 1 and �⌫⌫
L = 0.5. The plots are for B6 = 1 (blue), B6 = 0.76 (green),

and B6 = 0.57 (red). The hatched regions are the SM predictions at 2�. The gray band shows
the experimental result for "0/".

In the left panel of figure 2 we show the correlation between "

0
/" and KL ! ⇡

0
⌫⌫̄

in the case of �sd
L (Z) = �2�sd

R (Z), and compare it with the opposite correlation that is
present in the LH scenario (central panel). The di↵erent colours correspond to di↵erent

choices of the parameters B

(1/2)
6 and B

(3/2)
8 :

B

(1/2)
6 = 1.0, B

(3/2)
8 = 1.0 (blue), (55)

B

(1/2)
6 = 0.76, B

(3/2)
8 = 0.76 (green), (56)

B

(1/2)
6 = 0.55, B

(3/2)
8 = 0.76 (red) . (57)

The first choice is motivated by the upper bound from large N approach [42], B

(1/2)
6 

B

(3/2)
8 < 1. The second choice uses the central value for B

(3/2)
8 from the RBC-UKQCD

collaboration [60] extracted in [18], and assumes that B

(1/2)
6 = B

(3/2)
8 saturating the

previous bound. Finally, the third choice uses the central values for both B

(1/2)
6 and

B

(3/2)
8 from the RBC-UKQCD collaboration, with B

(1/2)
6 extracted in [40] from the lattice

results in [41].
As expected, in our simple model the requirement of satisfying the data on "

0
/" auto-

matically implies enhanced values of B(KL ! ⇡

0
⌫⌫̄), while in the LH model suppressed

B(KL ! ⇡

0
⌫⌫̄) is predicted.

4.6.2 Simplified Z0 model

Another example of a model in which B(KL ! ⇡

0
⌫⌫̄) and "

0
/" can be simultaneously

enhanced has been already considered in [39]. In this model, not the electroweak penguin
operator Q8, but the QCD penguin operator Q6 is a↵ected by NP. A tree-level exchange
of Z

0 with left-handed flavour violating quark couplings and flavour universal structure
of diagonal RH quark couplings generates the Q5 operator, and through renormalisation

�The!correlaIon!between!ε’!and!K!S>!πνν!depends!on!the!relaIve!size!of!ImΔL!and!ImΔR�

4 "0/" 16

�I = 1/2 rule has been considered, the diagonal couplings could be fixed by requiring
the maximal contribution of Z

0 to the A0(K ! ⇡⇡) amplitude. In this case the operator
Q6 turned out to be most important. As we will see below, a variant of this model turns
out to be interesting in view of the recent lattice result on "

0
/" in [41] and recent analyses

in [40, 42].

4.6 Can "0/" and K ! ⇡⌫⌫̄ be simultaneously enhanced?

In most extensions of the SM the enhancement of the branching ratios for K

+ ! ⇡

+
⌫⌫̄

and KL ! ⇡

0
⌫⌫̄ through NP usually imply the suppression of "

0
/" and enhancement of

"

0
/" implies suppression of KL ! ⇡

0
⌫⌫̄. We have already mentioned this feature in the

context of our analysis of Z models with MFV after (43). This is related to the fact that
there is a strong correlation between negative electroweak penguin contribution to "

0
/"

and the branching ratios for K

+ ! ⇡

+
⌫⌫̄ and KL ! ⇡

0
⌫⌫̄. Here we would like to present

two simplified models in which in fact "

0
/" and the branching ratios for K

+ ! ⇡

+
⌫⌫̄ and

KL ! ⇡

0
⌫⌫̄ can be simultaneously enhanced with respect to their SM values. This case

is of interest in view of the recent result from the RCB-UKQCD lattice collaboration
which indicates that "

0
/" in the SM could be significantly below the data. Indeed, they

find in the SM [41]
("0/")SM = (1.4 ± 7.0) · 10�4

, (52)

which is by 2.1� below the experimental world average from the NA48 [61] and KTeV
[62,63] collaborations,

("0/")exp = (16.6 ± 2.3) · 10�4
. (53)

One should note that lattice calculations were not able until now to establish the sign of
"

0
/" within the SM.

A recent detailed anatomy of "

0
/" in the SM in [40] shows that indeed "

0
/" in the

SM could be significantly below the data, although the size of this suppression depends

sensitively on the value of B

(1/2)
6 , the dominant source of uncertainty in the prediction

of "

0
/" in the SM. Motivated by these finding we looked for models in which "

0
/" and

KL ! ⇡

0
⌫⌫̄ could be simultaneously enhanced.

4.6.1 Simplified Z model

We consider a model in which Z has both LH and RH couplings, but not equal to each
other, and not di↵ering only by a sign. As seen in (48), in order to obtain a positive
contribution to "

0
/" we need Im �sd

R (Z) < 0. But this alone would suppress the rare decay
branching ratios. The solution to this problem is the contribution of the Q8 operator to
"

0
/" given in (45). While this is not evident from this formula, as shown in [39], for equal

LH and RH Z couplings this contribution is by a factor of three smaller than the one
in (48). On the other hand, the branching ratios for K

+ ! ⇡

+
⌫⌫̄ and KL ! ⇡

0
⌫⌫̄ are

sensitive to the sum of LH and RH couplings. Therefore choosing Im�sd
L (Z) > 0 with

|Im�sd
R (Z)| < Im�sd

L (Z) < 3|Im�sd
R (Z)| (54)

one can enhance simultaneously "

0
/" and the branching ratios for K

+ ! ⇡

+
⌫⌫̄ and

KL ! ⇡

0
⌫⌫̄. In doing this, Re �sd

L,R(Z) have to be kept su�ciently small in order not
to spoil the agreement of ReA0 in the SM with the data. Moreover, the �MK and "K

constraints have to be satisfied.

!  mZ,!mass!scale!
!!!!!!!presicion!test�7/[�!
��MGP/vp�Z!prime!
modelS��Z!prime!model!!KK!

!mass~�")�presision!
measurement![�z:9!
�FOR*y $9�!
Z!prime!mass!/S�tw19�

Z,!SM!Z!�7�-8a!�FV;
d')�9+��MGP�F
OR*y $9��

�To!get!same!sign!for!ε’/ε!and!K!S>πνν,!! � ex.)�

!  Due!to!the!difference!of!the!dependence!to!!ImΔL!and!ImΔR,!!!
!        !the!correlaIon!between!ε’!and!K!S>!πνν!become!different �

gluino!contribuIon!can!realize!.his!condiIon!�

s � d

Z

SM!+!ΔL,R �

CorrelaIon!between!!ε’/ε!!and!!K!→!πνν!in!modified!Z!model!

where c2w = cos2 θW and s2w = sin2 θW with the Weinberg angle θW , and the Z-penguin
amplitudes P sd

ZL(R)(χ
±) and P sd

ZL(R)(g̃) are given in Eqs. (36) and (39) in Appendix B.
The box diagram effect is suppressed compared with the penguin diagram if the SUSY-

breaking scale MS satisfies MS ≫ mW [53]. Thus, the dominant SUSY contribution to ϵ′K/ϵK
is given by the Z-penguin mediated by the chargino and gluino. Therefore, we should consider
the correlation between ϵ′K/ϵK and the branching ratio of KL → π0νν̄.

Let us write ϵ′K/ϵK as

(
ϵ′K
ϵK

)
=

(
ϵ′K
ϵK

)

SM

+

(
ϵ′K
ϵK

)L

Z

+

(
ϵ′K
ϵK

)R

Z

, (14)

where the second and the third terms denote the Z-penguin induced by the left-handed
and right-handed interactions of SUSY, respectively. The both contributions are written as
follows [24] :

(
ϵ′K
ϵK

)L

Z

+

(
ϵ′K
ϵK

)R

Z

= −2.64× 103B(3/2)
8

[
Im∆sd

L (Z) +
c2w
s2w

Im∆sd
R (Z)

]
, (15)

where

∆sd
L(R)(Z) =

g2
8π2cw

m2
W

2
P sd
ZL(R) . (16)

In order to see the correlation between ϵ′K/ϵK and the KL → π0νν̄ decay, it is helpful
to write down the KL → π0νν̄ amplitude induced by the chargino and gluino mediated
Z-penguin in terms of ∆sd

L(R)(Z) as follows:

A(KL → π0νν̄)Z ∼
[
Im∆sd

L (Z) + Im∆sd
R (Z)

]
, (17)

as seen in Appendix C1.
The Z-penguin amplitude mediated by the chargino dominates the left-handed coupling

of the Z boson. Therefore, the chargino contribution to ϵ′K/ϵK is opposite to KL → π0νν̄. If
the Z-penguin mediated by the chargino enhances ϵ′K/ϵK , the KL → π0νν̄ decay is suppressed
considerably. On the other hand, the Z-penguin amplitude mediated by the gluino gives the
equal left-handed and right-handed Z couplings. Then, the right-handed Z coupling of the Z-
penguin amplitude is by a factor of c2w/s

2
w ≃ 3.3 larger than the left-handed one. Therefore,

we can obtain the SUSY contribution which can enhance simultaneously ϵ′K/ϵK and the
branching ratio for KL → π0νν̄. Actually, by choosing Im∆sd

L (Z) > 0 and Im∆sd
R (Z) < 0,

the region of
|Im∆sd

R (Z)| < Im∆sd
L (Z) < 3.3|Im∆sd

R (Z)| , (18)

can enhance both ϵ′K/ϵK and the branching ratio for KL → π0νν̄. We discuss this case in
our numerical results.

2.4 KL → µ+µ−, B0 → µ+µ− and Bs → µ+µ− decays

The Z penguin also contributes KL → µ+µ−, B0 → µ+µ− and Bs → µ+µ− decays. These
decay amplitudes are governed by the axial semileptonic operator O10, which is occurred

6

where c2w = cos2 θW and s2w = sin2 θW with the Weinberg angle θW , and the Z-penguin
amplitudes P sd

ZL(R)(χ
±) and P sd

ZL(R)(g̃) are given in Eqs. (36) and (39) in Appendix B.
The box diagram effect is suppressed compared with the penguin diagram if the SUSY-

breaking scale MS satisfies MS ≫ mW [53]. Thus, the dominant SUSY contribution to ϵ′K/ϵK
is given by the Z-penguin mediated by the chargino and gluino. Therefore, we should consider
the correlation between ϵ′K/ϵK and the branching ratio of KL → π0νν̄.

Let us write ϵ′K/ϵK as

(
ϵ′K
ϵK

)
=

(
ϵ′K
ϵK

)

SM

+

(
ϵ′K
ϵK

)L

Z

+

(
ϵ′K
ϵK

)R

Z

, (14)

where the second and the third terms denote the Z-penguin induced by the left-handed
and right-handed interactions of SUSY, respectively. The both contributions are written as
follows [24] :

(
ϵ′K
ϵK

)L

Z

+

(
ϵ′K
ϵK

)R

Z

= −2.64× 103B(3/2)
8

[
Im∆sd

L (Z) +
c2w
s2w

Im∆sd
R (Z)

]
, (15)

where

∆sd
L(R)(Z) =

g2
8π2cw

m2
W

2
P sd
ZL(R) . (16)

In order to see the correlation between ϵ′K/ϵK and the KL → π0νν̄ decay, it is helpful
to write down the KL → π0νν̄ amplitude induced by the chargino and gluino mediated
Z-penguin in terms of ∆sd

L(R)(Z) as follows:
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, (17)

as seen in Appendix C1.
The Z-penguin amplitude mediated by the chargino dominates the left-handed coupling

of the Z boson. Therefore, the chargino contribution to ϵ′K/ϵK is opposite to KL → π0νν̄. If
the Z-penguin mediated by the chargino enhances ϵ′K/ϵK , the KL → π0νν̄ decay is suppressed
considerably. On the other hand, the Z-penguin amplitude mediated by the gluino gives the
equal left-handed and right-handed Z couplings. Then, the right-handed Z coupling of the Z-
penguin amplitude is by a factor of c2w/s

2
w ≃ 3.3 larger than the left-handed one. Therefore,

we can obtain the SUSY contribution which can enhance simultaneously ϵ′K/ϵK and the
branching ratio for KL → π0νν̄. Actually, by choosing Im∆sd
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can enhance both ϵ′K/ϵK and the branching ratio for KL → π0νν̄. We discuss this case in
our numerical results.

2.4 KL → µ+µ−, B0 → µ+µ− and Bs → µ+µ− decays

The Z penguin also contributes KL → µ+µ−, B0 → µ+µ− and Bs → µ+µ− decays. These
decay amplitudes are governed by the axial semileptonic operator O10, which is occurred
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Here, PX , PY and PZ assemble the information below the weak scale such as hadron matrix
elements and QCD corrections. Their numerical results are [2],

PX + PY + PZ = 1.52 + 0.12R6 − 13.65R8, (2.19)

where R6 and R8 are defined as

R6 = B(1/2)
6 (mc)

[
114.54MeV

ms(mc) +md(mc)

]2
, R8 = B(3/2)

8 (mc)

[
114.54MeV

ms(mc) +md(mc)

]2
, (2.20)

and hadron matrix elements are [1, 2]

B(1/2)
6 (mc) = 0.57± 0.19, B(3/2)

8 (mc) = 0.76± 0.05. (2.21)

Therefore, PX + PY + PZ is negative.
The SUSY contribution (2.9) is evaluated at the SUSY scale, which is higher than the

weak scale. Renormalization group (RG) corrections between the SUSY and weak scales
are subleading. Those below the weak scale are included in Pi. Above the weak scale, the
SU(2)L symmetry is restored, and the effective Z-boson vertex is described by the dimension-

6 operators, (H†i
←→
D µH)(q̄′γµq) and (H†i

←→
D I

µH)(q̄′τ Iγµq). Anomalous dimensions of their
RG equations are not large [23–25]. This is not the case of Ref. [3], where the effective
operators of s→ dqq̄ are generated at the SUSY scale.

The flavor-changing Z-boson coupling also contributes to KL → π0νν̄. The branching
ratio is expressed as [9, 15]

B(KL → π0νν̄) = κL

[
Im
(
λtX(SM) + Z(SUSY)

ds

)

λ5

]2
, (2.22)

where κL = (2.231±0.013) ·10−10(λ/0.225)8, X(SM) = 1.481±0.009 and λ is the Wolfenstein
parameter. The SM prediction is about 2.8 × 10−11 [11]. Compared with Eq. (2.18), it is
noticed that the SUSY contribution to B(KL → π0νν̄) has a negative correlation with that
to ϵ′/ϵ as long as it is dominated by the chargino Z-penguin contribution (c.f., Ref. [9]).
Although K+ → π+νν̄ includes a similar contribution, its effect is weak.

2.3 Vacuum stability

According to Eq. (2.13), large ϵ′/ϵ is achieved when ũL and c̃L have a large mixing with t̃R.
The left-right mixing is proportional to the scalar trilinear coupling (TU)ij. Large flavor-
violating trilinear couplings may generate instabilities of the EW vacuum [26]. Requiring
that the lifetime of the EW vacuum is longer than the present age of the universe, the
trilinear couplings, or equivalently (δuLR)13 and (δuLR)23, are constrained.

The vacuum decay rate per unit volume is expressed as

Γ/V = A exp(−SE). (2.23)
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The second line in C2 is from a regularization. It is noticed that Z(SUSY)
ds is independent of

its constant because of the unitarity of the mixing matrix of squarks.
It is instructive to represent the SUSY contribution in terms of the MI approximation.

This is achieved by expanding Eq. (2.9) in terms of O(m2
W/m2

q̃) and (δuLR)ij. Focusing on
the MI parameters, (δuLR)13 and (δuLR)23, one obtains

Z(SUSY)
ds ≃ (δuLR)

∗
13(δ

u
LR)23H0(xq̃W̃ ), (2.13)

which reproduces the result in Ref. [15, 16]. The loop function is defined as

H0(x) = −
x(x3 − 6x2 + 3x+ 2 + 6x ln x)

48(1− x)4
, (2.14)

with xq̃W̃ = m2
q̃/m

2
W̃
. The squark masses are supposed to be degenerate, mQ̃ = mŨ ≡ mq̃.

Since it depends on a ratio of the SUSY masses, Z(SUSY)
ds is not suppressed by heavy SUSY

particles as long as (δuLR)
∗
13(δ

u
LR)23 is fixed. It also does not vanish at q2 = 0, where q2 is the

momentum transfer of the Z boson. These features are guaranteed by the SU(2)L breaking,
which is provided by (δuLR)13 and (δuLR)23 in Eq. (2.13). SUSY contributions including other
MI parameters are suppressed e.g., by higher orders of O(m2

W/m2
q̃). On the other hand,

Eq. (2.13) corresponds to diagrams involving the left-handed sup and scharm, the right-
handed stop, and the Wino in the loop (right in Fig. 1). Hence, the loop function depends

only on their masses, and the model parameters relevant for Z(SUSY)
ds are

mũL , mc̃L , mt̃R , mW̃ , (δuLR)13, (δuLR)23. (2.15)

In addition, mt̃L and At could contribute if the left-right mixing of the stop is necessary.
Also, tan β is irrelevant unless it is small. Higgsino contributions are suppressed by tiny
Yukawa couplings. In this letter, the gluino mass is assumed to be very large so that gluino
contributions to ϵ′/ϵ are suppressed. SUSY box contributions to ϵ′/ϵ are neglected because
they are small.

The theoretical value of ϵ′/ϵ is composed by the SM and SUSY contributions,

(ϵ′/ϵ) = (ϵ′/ϵ)SM + (ϵ′/ϵ)SUSY . (2.16)

As mentioned in Sec. 1, the SM one has been improved recently [1–3]. The discrepancy is
estimated as

∆ (ϵ′/ϵ) =

⎧
⎨

⎩

(15.2± 7.3)× 10−4, (2.1σ) [RBC-UKQCD]
(14.7± 5.1)× 10−4, (2.9σ) [Buras et al.]
(15.6± 5.5)× 10−4, (2.9σ) [Kitahara et al.]

(2.17)

where ∆ (ϵ′/ϵ) ≡ (ϵ′/ϵ)exp− (ϵ′/ϵ)SM, and the errors are summed in quadrature. We examine
whether (ϵ′/ϵ)SUSY saturates these gaps. The Z penguin contribution is expressed as [16,22],

(ϵ′/ϵ)Z = (PX + PY + PZ) ImZds . (2.18)
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where ∆ (ϵ′/ϵ) ≡ (ϵ′/ϵ)exp− (ϵ′/ϵ)SM, and the errors are summed in quadrature. We examine
whether (ϵ′/ϵ)SUSY saturates these gaps. The Z penguin contribution is expressed as [16,22],

(ϵ′/ϵ)Z = (PX + PY + PZ) ImZds . (2.18)
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Here, PX , PY and PZ assemble the information below the weak scale such as hadron matrix
elements and QCD corrections. Their numerical results are [2],

PX + PY + PZ = 1.52 + 0.12R6 − 13.65R8, (2.19)

where R6 and R8 are defined as

R6 = B(1/2)
6 (mc)

[
114.54MeV

ms(mc) +md(mc)

]2
, R8 = B(3/2)

8 (mc)

[
114.54MeV

ms(mc) +md(mc)

]2
, (2.20)

and hadron matrix elements are [1, 2]

B(1/2)
6 (mc) = 0.57± 0.19, B(3/2)

8 (mc) = 0.76± 0.05. (2.21)

Therefore, PX + PY + PZ is negative.
The SUSY contribution (2.9) is evaluated at the SUSY scale, which is higher than the

weak scale. Renormalization group (RG) corrections between the SUSY and weak scales
are subleading. Those below the weak scale are included in Pi. Above the weak scale, the
SU(2)L symmetry is restored, and the effective Z-boson vertex is described by the dimension-

6 operators, (H†i
←→
D µH)(q̄′γµq) and (H†i

←→
D I

µH)(q̄′τ Iγµq). Anomalous dimensions of their
RG equations are not large [23–25]. This is not the case of Ref. [3], where the effective
operators of s→ dqq̄ are generated at the SUSY scale.

The flavor-changing Z-boson coupling also contributes to KL → π0νν̄. The branching
ratio is expressed as [9, 15]

B(KL → π0νν̄) = κL

[
Im
(
λtX(SM) + Z(SUSY)

ds

)

λ5

]2
, (2.22)

where κL = (2.231±0.013) ·10−10(λ/0.225)8, X(SM) = 1.481±0.009 and λ is the Wolfenstein
parameter. The SM prediction is about 2.8 × 10−11 [11]. Compared with Eq. (2.18), it is
noticed that the SUSY contribution to B(KL → π0νν̄) has a negative correlation with that
to ϵ′/ϵ as long as it is dominated by the chargino Z-penguin contribution (c.f., Ref. [9]).
Although K+ → π+νν̄ includes a similar contribution, its effect is weak.

2.3 Vacuum stability

According to Eq. (2.13), large ϵ′/ϵ is achieved when ũL and c̃L have a large mixing with t̃R.
The left-right mixing is proportional to the scalar trilinear coupling (TU)ij. Large flavor-
violating trilinear couplings may generate instabilities of the EW vacuum [26]. Requiring
that the lifetime of the EW vacuum is longer than the present age of the universe, the
trilinear couplings, or equivalently (δuLR)13 and (δuLR)23, are constrained.

The vacuum decay rate per unit volume is expressed as

Γ/V = A exp(−SE). (2.23)
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