

Status of the NA62 Experiment

Giuseppe Ruggiero (University of Liverpool) Kaon 2016 Birmingham, 15/09/2016

Introduction

- ★ NA62: kaon experiment at CERN SPS
 - ★ Main goal: precise measurement of BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$)
 - ***** Broader physics program: LFV / LNV in *K*⁺ decays, hidden sector particles searches.

Accelerator schedule	2015 2016 2017 2018	2019 2020	2021 2022 2023	2024 2025 2026	2027
LHC	Run 2	LS2	Run 3	LS3	Run 4
SPS				NA stop SPS stop	

- × NA62 is taking data. Approved until LS2
- ★ Proposed runs after LS2 under discussion*

*see P.Petrov and M. Moulson talks on Saturday

VA62 A

Kaon @ CERN - SPS

'97-'01 NA48: ε'/ε

NA62 👌

- '02 NA48/1: K_S rare decays
- '03-'04 NA48/2: K[±] CP violation, semileptonic, low energy QCD
- '07-'08 NA62: Lepton universality (using the NA48 apparatus)
- '14 NA62: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
 - Installation complete
 - Runs from 2014
 - Detector commissioning
 - Data quality studies

The $K \to \pi \nu \overline{\nu}$ decays: a theoretical clean environment

• FCNC loop processes: $s \rightarrow d$ coupling and highest CKM suppression

- Very clean theoretically: Short distance contribution. No hadronic uncertainties.
- SM predictions [Buras et al. JHEP 1511 (2015) 33]

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^{\circ}}\right)^{0.74} = (8.4 \pm 1.0) \cdot 10^{-11}$$
$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \left(\frac{|V_{ub}|}{0.00388}\right)^{2} \left(\frac{|V_{cb}|}{0.0407}\right)^{2} \left(\frac{\sin \gamma}{\sin 73.2}\right)^{2} = (3.4 \pm 0.6) \cdot 10^{-11}$$

• Experiments:

NA62 🖉

 $BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$ Phys. Rev. D 77, 052003 (2008), Phys. Rev. D 79, 092004 (2009) BR(K_L $\to \pi^{0} \nu \bar{\nu}) < 2.6 \times 10^{-8} (90\% \text{ C. L.})$ Phys. Rev. D 81, 072004 (2010)

$K \rightarrow \pi \nu \overline{\nu}$ NP Sensitivity

- Simplified Z, Z' models [Buras, Buttazzo, Knegjens, JHEP 1511 (2015) 166]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, EPJ C76 (2016) no.4 182]
- Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM non-MFV [Tanimoto, Yamamoto arXiv:1603.0796, Isidori et al. JHEP 0608 (2006) 064]
- Constraints from existing measurements (correlations model dependent):
 - Kaon mixing and CPV, CKM fit, K,B rare meson decays, NP limits from direct searches

NAGZ A

The NA62 Experiment for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Liverpool, Louvain-la-Neuve, Mainz, Merced, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, SLAC, Sofia, TRIUMF, Turin, Vancouver (UBC)

- Primary goal: 10% precision $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$
- Requirements:

NA62 💦

- Statistics: O(100) events
- K decays 10¹³, Signal acceptance ~ 10%
- Systematics: <10% precision background measurement
- >10¹² background rejection (<20% background)
- Technique:
 - K Decay in flight

The Apparatus

NA62 👌

NA62 👌

Present Status

• Beam line, detectors, trigger and DAQ fully commissioned

• NA62 data taking periods

- 2014: detector commissioning
- 2015: trigger commissioning, detector quality studies, beam line commissioning up to nominal intensity
- 2016: high level trigger commissioning (done), full beam tracker commissioning (done), physics (on going)
- Data samples for analysis:
 - 2015:
 - Low intensity data with minimum bias trigger for detector quality studies (this talk)
 - 2016:
 - $\pi v v$ data (up to 30% of nominal intensity)
 - not $\pi v v$ data (up to 30% of nominal intensity)

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Analysis Principles

• Signal

NA6Z

- Experimental principles:
 - 1) Precise kinematic reconstruction
 - 2) PID: K upstream, $e/\mu/\pi$ downstream
 - 3) Hermetic γ detection
 - 4) Sub-ns timing

- Background: K⁺ decay modes; beam activity
- Kinematics: $m_{miss}^2 = (P_K P_{\pi^+})^2$

- Key analysis requirements
 - 2 signal regions in m_{miss}^2
 - $15 < P_{\pi} < 35 \text{ GeV/c}$
 - 65 m long decay region

NA62 Expected Performances and Sensitivity

Required backgroun	d suppression
Kinematics	O(10 ⁴ -10 ⁵)
Charged Particle ID	O(10 ⁷)
γ detection	$O(10^8)$
Timing	$O(10^2)$

• Sensitivity

Decay	ev/year
K ⁺ → π^+ νν [SM] (flux 4.5×10 ¹²)	45
$K^+ \rightarrow \pi^+ \pi^0$	5
$K^+ \rightarrow \mu^+ \nu$	1
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	<1
3 tracks decays	< 1
$K^+ \rightarrow \pi^+ \pi^0 \gamma(IB)$	1.5
$K^+ \rightarrow \mu^+ \nu \gamma (IB)$	0.5
$K^+ \rightarrow \pi^0 e^+(\mu^+) \nu$, others	<1
Total background	< 10

٩

One – track selection (OTS)

- Single downstream track topology ٩
- Downstream track matching energy in calorimeters ٩
- Beam track matching the downstream track ٩ Kaon ID
- Beam track matching a K signal in Kaon ID
- Decay vertex in the fiducial region (65 m). ٩

Time resolutions:

- Kaon ID < 100 ps0
- Beam track < 200 ps ٩
- Downstream track < 200 ps ٩
- Calorimeters 1-2 ns

- **×** Tracking Techniques: Si pixel tracker (beam); Straw tube tracker in vacuum (downstream)
- ***** Goal: $O(10^4 \div 10^5)$ suppression factor of the main kaon decay modes
- × P_{π^+} < 35 GeV/c: best K^+ → $\mu^+\nu$ suppression.
- **×** Kinematics studied on $K^+ \rightarrow \pi^+ \pi^0$ selected using LKr calorimeter.
- **×** Resolutions close to the design.
- \times O(10³) kinematic suppression factor measured.

Beam Tracker (GigaTracker)

- × 3 Si pixel stations on the beam
- ***** $300 \times 300 \ \mu m^2$ pixels, ~54000 pixels
- Cooling using microchannel technique
- On-sensor TDC readout chip
- **x** $X/X_0 < 0.5\%$ / station
- × Commissioned in 2015-2016
- **x** Measured performances match the design
 - ***** $\sigma(t_{beam\ track}) \leq 200 \text{ ps}$

NA62

Downstream Particle Identification

- Technique: RICH and calorimeters
- Goal: O(10⁷) μ/π separation to suppress mainly $K^+ \rightarrow \mu^+ \nu$
- $15 < P_{\pi^+} < 35$ GeV/c: best μ/π separation in RICH
- Pure samples of pions and muons selected using kinematics
- RICH: O(10²) π/μ separation, 80% (90%) π^+ efficiency in 2015 (2016)
- Calorimeters: $(10^4 \div 10^6) \mu$ suppression, $(90\% \div 40\%) \pi^+$ efficiency in 2015 using a cut analysis. Room for improvements.

Summary from data quality studies

- 1) Time resolution
 - × Close to the design
- 2) Kinematics

IA62

- **x** Resolution close to the design.
- Prospects to reach the designed signal background separation.
- 3) Pion muon ID
 - **x** Separation with RICH close to expectations.
 - Study of the separation with calorimeters on going. Results from simple cut analysis promising.
- 4) Photon veto:
 - × $O(10^6) \pi^0$ rejection already obtained. Statistically limited. 2016 already enough to address the 10⁸ rejection level (analysis on going).

Broader NA62 Physics Program

- LFV with Kaons:
 - $K^+ \to \pi^+ \mu^\pm e^\mp, K^+ \to \pi^- \mu^+ e^+, K^+ \to \pi^- l^+ l^+$
- π^0 decays rare and forbidden/LFV, dark photon production:
 - $\pi^0 \rightarrow \text{invisible}, \pi^0 \rightarrow 3/4\gamma, \pi^0 \rightarrow ee, eee, \pi^0 \rightarrow \mu e, \pi^0 \rightarrow U\gamma$
- Heavy neutral lepton production searches in K decays:
 - $K^+ \rightarrow l^+ v_h$ (already under analysis with 2015 data), $K^+ \rightarrow l^+ X$
- Dark sector particles searches:
 - Long living dark photon decaying in l^+l^- and produced by $\pi^0/\eta/\eta'/\Phi/\varrho/\omega$ decays
 - Long living heavy neutral lepton decaying in πe , $\pi \mu$
 - Long living axion-like decaying in *γγ* produced in a beam-dump configuration

A glance to the on-going 2016 run

- Stable data taking since beginning of August at 20 30 % of nominal intensity
- L0 πνν trigger: hits in RICH & CHOD, !muons, E(LKr) < 20 GeV
- L1 πνν trigger: KTAG, LAV, Straw (P < 50 GeV/c)
- Data type (simultaneously): $\pi v v$ (no downscaling), di-lepton, minimum bias
- Average rate at L0 (25% of nominal beam intensity): 500 KHz
- Average rate after L1 (25% of nominal beam intensity): 60 KHz
- On line $\pi^+\pi^0$ reduction factor ($\pi\nu\nu$ trigger): 6 (room for improvements ×2 at least)
- On line muon reduction factor ($\pi v v$ trigger): O(100)
- Data collected so far: $\pi v v$ sensitivity below 10^{-9} (assuming O(10%) signal acceptance)

NA62 A

NA62 👌

Timescale

- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ program until LS2
- End 2016: reach the SM sensitivity for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
- End 2017: improve (by much) the present status of the art (BNL measurement).
- End 2018: reach the 10% precision.
- Broader physics program until LS2 (see P.Petrov talk on Saturday)
- LFV / LNV decays, heavy neutrinos, π^0 rare decays, ...
- as many decay modes as possible to take simultaneously with $\pi v v$
- Broader physics program beyond LS2 (see P.Petrov talk on Saturday)
- LFV / LNV decays, heavy neutrinos, π^0 rare decays, hidden sector particles searches

Conclusions

- ***** The NA62 experiment is running in stable conditions.
- **×** Data quality studies:
 - × Physics sensitivity for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ measurement in line with the design.
- ✗ Analysis of the 2016 data on − going.
- × K^+ → $\pi^+ \nu \bar{\nu}$ program to get the 10% design precision under way.
- **×** Broader physics program for short/medium term plan established.