NA62/P-326: $K_{e2}/K_{\mu 2}$ status report

Evgueni Goudzovski

(University of Birmingham)

for the collaboration:

Bern ITP, Birmingham, CERN, Dubna, Fairfax, Ferrara, Florence, Frascati, Louvain, Mainz, Merced, Moscow, Naples, Perugia, Pisa, Protvino, Rome I, Rome II, Saclay, San Luis Potosí, Stanford, Sofia, Triumf, Turin

Outline:

- 1) Motivation for $R_{K}=\Gamma(K_{e2})/\Gamma(K_{\mu 2})$ measurement
- 2) Beams, setup and data taking
- 3) Background and other systematic effects
- 4) Summary and prospects

Meeting with NA62 referees CERN • November 4, 2008

K_{l2} and π_{l2} in the SM

S

W⁺

Standard Model: excellent sub-permille accuracy due to cancellations of hadronic uncertainties

$$R_{M} = \frac{\Gamma(M \rightarrow ev(\gamma))}{\Gamma(M \rightarrow \mu v(\gamma))} = \left(\frac{m_{e}}{m_{\mu}}\right)^{2} \left(\frac{m_{M}^{2} - m_{e}^{2}}{m_{M}^{2} - m_{\mu}^{2}}\right)^{2} \left(1 + \delta R_{QED}\right)$$

$$(m_{e}, v_{\mu})$$
helicity suppression

Latest SM predictions: V. Cirigliano and I. Rosell, Phys. Lett. 99 (2007) 231801

 $R_{K}^{SM} = (2.477 \pm 0.001) \times 10^{-5}$ $R_{\pi}^{SM} = (1.2352 \pm 0.0002) \times 10^{-5}$

R_K experimental status:

- → PDG'08 (based on 1970s experments): $R_{K}=(2.45\pm0.11)\times10^{-5}$ ($\delta R_{K}/R_{K}=4.5\%$)
- → Including recent NA48/2 and KLOE preliminary results: $R_{K}=(2.457\pm0.032)\times10^{-5}$ ($\delta R_{K}/R_{K}=1.3\%$)

E. Goudzovski / CERN, November 4th, 2008

R_K outside the SM

A few percent effect in large (not extreme) $tan\beta$ regime with massive charged Higgs.

Example (Δ_{13} =5×10⁻⁴, tan β =40, M_H=500GeV): R_K^{LVF} = R_KSM(1+0.013). A similar SUSY effect in pion decay is suppressed by a factor $(m_{\pi}/M_{K})^{4} \approx 6 \times 10^{-3}$

NA62 goal: accuracy better than 0.5% to provide a stringent SM test

Dedicated data taking strategy + 160K K_{e2} sample with ~10% background 3 E. Goudzovski / CERN, November 4th, 2008

Data taking: 2007 and 2008

Principal subdetectors for R_K:

 Magnetic spectrometer (4 DCHs): 4 views/DCH: redundancy ⇒ efficiency; used in trigger logic; Δp/p = 0.47% + 0.020%*p [GeV/c]

• Hodoscope

fast trigger; precise time measurement (150ps).

• Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogenious; $\sigma_E/E = 3.2\%/E^{1/2} + 9\%/E + 0.42\%$ [GeV]; $\sigma_x = \sigma_y = 0.42/E^{1/2} + 0.6mm$ (1.5mm@10GeV).

Data taking:

- Four months in 2007 (23/06-22/10): ~400K spills, 300TB of raw data (90TB recorded); reprocessing mostly finished by September 2008.
- Two weeks in 2008 (11/09-24/09): special data sets to reduce systematic uncertainties.
 E. Goudzovski / CERN, November 4th, 2008

Kaon beams

<u>Kaon sign</u>

Beam halo background much higher for K⁻ (~20%) than for K⁺ (~1%). ~90% of data sample: K⁺ only. ~10% of data sample: K⁻ only. K₁₂ samples of charge not present in the beam: direct measurements of the halo background with sufficient precision.

Trigger logic

<u>Minimum bias</u> (=high efficiency, low purity) trigger configuration used

> K_{e2} condition: $Q_1 \times E_{LKr} \times 1TRK$. Purity ~10⁻⁵.

 $K_{\mu 2}$ condition: Q₁×1TRK/D, D=50 to 150. Purity ~2%.

• $K_{\mu 2}$ trigger is used to monitor the efficiency of the K_{e2} trigger.

• E_{LKr} inefficiency is below 0.1% and is directly measured.

Measurement method

 $K_{e2}/K_{\mu 2}$ candidates collected <u>simultaneously</u>:

- result does not rely on K flux measurement;
- cancellation of certain systematic effects (e.g. parts of reconstruction/trigger efficiencies)

MC simulations used to a limited extent:

1) geometric acceptance correction; 2) energetic bremsstrahlung by muon.

A counting experiment in track momentum bins:

$$\mathsf{R}_{\mathsf{K}} = \frac{\mathsf{N}(\mathsf{K}_{\mathrm{e2}}) - \mathsf{N}_{\mathsf{B}}(\mathsf{K}_{\mathrm{e2}})}{\mathsf{N}(\mathsf{K}_{\mathrm{\mu2}}) - \mathsf{N}_{\mathsf{B}}(\mathsf{K}_{\mathrm{\mu2}})} \cdot \frac{\mathsf{A}(\mathsf{K}_{\mathrm{\mu2}}) \times \mathsf{f}_{\mathrm{\mu}} \times \varepsilon(\mathsf{K}_{\mathrm{\mu2}})}{\mathsf{A}(\mathsf{K}_{\mathrm{e2}}) \times \mathsf{f}_{\mathrm{e}} \times \varepsilon(\mathsf{K}_{\mathrm{e2}})} \cdot \frac{1}{\mathsf{f}_{\mathsf{LKR}}}$$

- N(K_{e2}), N(K_{$\mu2$}): numbers of selected K₁₂ candidates;
- $N_B(K_{e2})$, $N_B(K_{\mu 2})$: numbers of background events;
- A(K_{e2}), A(K_{μ2}): MC geometric acceptances (no ID);
- $f_{e'}$ f_{μ} : measured particle ID efficiencies;
- $\epsilon(K_{e2})/\epsilon(K_{\mu 2})$ >0.999: E_{LKr} trigger condition efficiency;
- f_{LKR}≈0.998: global LKr readout efficiency.

K_{e2} and $K_{\mu 2}$ selection

Large common part for K_{e2} and $K_{\mu2}$

(due to topological similarity)

- One reconstructed charged track;
- Track in geometrical acceptance of the main subdetectors;
- Upper limit on LKr energy deposition not associated to the track;
- Decay vertex: closest approach of track & nominal kaon axis;
- CDA<2cm and (Z_{vtx}–Z_{coll})>18m;

Track momentum: 15GeV/c<p<65GeV/c.

Conditions different for K_{e2} and $K_{\mu2}$

- Kinematic identification by missing mass: $M_{miss}^{2}(I)=(P_{K}-P_{I})^{2}, |M_{miss}^{2}(I)|<0.01 (GeV/c^{2})^{2}.$
- Particle identification by LKr energy deposit: 0.95<E/p<1.10 (E/p<0.2) for electron (muon).

E. Goudzovski / CERN, November 4th, 2008

Muonic background in K_{e2} sample

Electron ID is based on LKr energy deposition: 0.95<E/p<1.10.

<u>Muon mis-identification as electron</u> due to "catastrophic" bremsstrahung: $P(\mu \rightarrow e) \sim 3 \times 10^{-6}$ (and p-dependent)

 $P(\mu \rightarrow e)/R_K \sim 10\%$: K_{µ2} decays represent a major background

Direct measurement of $P(\mu \rightarrow e)$ is necessary to validate theoretical brems. cross-section computation in the highly energetic γ region.

Pb wall inserted between the HOD planes. Tracks traversing the wall & with E/p>0.95 are pure muon samples (no electrons).

Pure muon samples collected:

- 1) From $K_{\mu 2}$ decays during main data taking with kaon beams;
- 2) Special μ runs with hadron beam absorbed (2007+2008).
- ~1,500 muons with E/p>0.95, 35 in 2007 special sample.

E. Goudzovski / CERN, November 4th, 2008

Muonic background (2)

 $P(\mu \rightarrow e)$: measurement (2007 muon sample) vs Geant4-based simulation

- The 2008 muon sample is twice as large as the 2007 one;
- Another tool: muons from $K_{\mu 2}$ decays in $K_{e 2}/K_{\mu 2}$ separation region (p<25GeV/c).

$K^{\pm} \rightarrow e^{\pm} v \gamma$ background

 $\dot{K}_{e2\gamma}$ (SD⁺) process: background by definition of R_K, rate similar to K_{e2}. Theory: BR=(1.12–1.34)×10⁻⁵ [model-dependent form-factor] Experiment: BR=(1.52±0.23)×10⁻⁵ [1970s measurements]

Beam halo background

<u>Background source in K_{e2} sample:</u> electrons produced by beam halo muons via $\mu \rightarrow e$ decay, kinematically and geometrically compatible to a genuine K_{e2} decay

Directly measured with K⁻ only sample:

B/S=(1.23±0.07)%

(uncertainty due to the limited size of control data sample) Background rate & distribution are fairly well reproduced with beam halo simulation

Prospects:

- 2008 K⁻ sample will improve precision;
- Smallness of uncertainty potentially allows expanding the analysis fiducial volume further upstream & increase the data sample.

<u>Halo background in $K_{\mu 2}$ sample</u> measured with similar technique: B/S=0.14% (negligible uncertainty) 13

Backgrounds: summary

Particle ID efficiencies

<u>Electron ID efficiency</u> f_e: directly measured by kinematic selection of electrons

- from $K^{\pm} \rightarrow \pi^0 e^{\pm} v$ decays collected during main K data taking (limited momentum range p<50GeV/c);
- from $K_L \rightarrow \pi^{\pm} e^{\pm} v$ decays collected in a special 15h K_L run (whole track momentum range, due to broad K_L momentum spectrum).

Precision of f_e measurement: better than 0.1%.

<u>Muon ID efficiency</u> f_{μ} :

- ID by energy deposit E/p<0.2;
- f_{μ} measured directly to be in the 0.996–0.999 range;
- Uncertainty is much better than $\delta f_{\mu} = 0.1\%$.

Other effects

Acceptance correction:

- p-dependent, $A(K_{\mu 2})/A(K_{e2}) \sim 1.2$;
- K_{e2} radiative corrections strongly affect the acceptance;
- Preliminary conclusion: the correction can be evaluated with a 0.1% precision.

Trigger efficiency correction:

- Efficiencies are monitored with control trigger samples;
- Q_1 efficiency mostly cancels in R_K , while E_{LKr} efficiency directly affects R_K .
- E_{LKr} nefficiency measurement: $1-\epsilon(E_{LKr}) \approx 1-\epsilon(K_{e2})/\epsilon(K_{\mu 2}) < 0.1\%$;

Other known sources of uncertainies (can be corrected for):

- Trigger afterpulses biasing the Q₁ downscaling factor;
- Global inefficiency of LKr calorimeter readout (preliminary: $f_{LKr} \approx 0.998$).

Analysis summary & prospects

Main uncertainties (40% of the data sample)

 Statistical
 0.43%

 $K_{\mu 2}$ 0.25%

 $K_{e 2\gamma}$ (SD)
 0.32%

 Beam halo
 0.10%

 Total
 0.60%

Expected total uncertainty with the 40% sample:

0.6–0.7% (breaking the 1% level for the first time)

Much room for improvement of the systematic errors

Using the whole **~160K** candidates: statistical uncertainty pushed below **0.3%**, total uncertainty of **0.4–0.5%** is within reach.

(in agreement with the proposal)

Conclusions

- NA62 has increased the world K_{e2} sample by more than an order of magnitude.
- $R=\Gamma(K_{e2})/\Gamma(K_{\mu 2})$ is sensitive, for instance, to SUSY in the large tan β scenario with broken lepton universality.
- Analysis of a partial data set is quite advanced. It is demonstrated that an overall uncertainty of 0.4% declared in the proposal is within reach.
- The NA62 is going to provide a timely result, as direct searches for New Physics at the LHC are approaching.