NA62/P-326: K_{e2}/K_{µ2} status report

Evgueni Goudzovski

(University of Birmingham) for the collaboration:

Bern ITP, Birmingham, CERN, Dubna, Fairfax, Ferrara, Florence, Frascati, Louvain, Mainz, Merced, Moscow, Naples, Perugia, Pisa, Protvino, Rome I, Rome II, Saclay, San Luis Potosí, Stanford, Sofia, Triumf, Turin

Outline:

- 1) Motivation for R_K=T(K_{e2})/T(K_{µ2}) measurement
- 2) Beams, setup and data taking
- 3) Background and other systematic effects
- 4) Summary and prospects

Meeting with NA62 referees • November 4, 2008

K_{I2} and π_{I2} in the SM ^μ*⁺ ^e+, ^s*

+

u

 $W⁺$

Standard Model: excellent sub-permille accuracy due to cancellations of hadronic uncertainties

$$
R_{M} = \frac{\Gamma(M \rightarrow ev(\gamma))}{\Gamma(M \rightarrow \mu v(\gamma))} = \left(\frac{m_{e}}{m_{\mu}}\right)^{2} \left(\frac{m_{M}^{2} - m_{e}^{2}}{m_{\mu}^{2} - m_{\mu}^{2}}\right)^{2} \left(1 + \delta R_{QED}\right)
$$
\n
$$
V_{e}, V_{\mu}
$$
\n
$$
V_{\text{helicity suppression}}
$$
\n
$$
V_{\text{radiative correction}}
$$

V. Cirigliano and I. Rosell,
Latest SM predictions: Phys. Lett. 99 (2007) 231801

 $R_{k}^{SM} = (2.477 \pm 0.001) \times 10^{-5}$

<u>R_k experimental status:</u>

- \rightarrow PDG'08 (based on 1970s experments): $R_k=(2.45\pm0.11)\times10^{-5}$ ($\delta R_k/R_k=4.5\%$)
- \rightarrow Including recent NA48/2 and KLOE preliminary results: $R_{K}=(2.457\pm0.032)\times10^{-5}$ ($\delta R_{K}/R_{K}=1.3\%$)

E. Goudzovski / CERN, November 4th, 2008

R_K outside the SM

A few percent effect in large (not extreme) tanβ regime with massive charged Higgs.

Example $(\Delta_{13}=5\times10^{-4}$, tan $\beta=40$, M_H=500GeV): R_{k} ^{LVF} = R_{k} SM(1+0.013).

A similar SUSY effect in pion decay is suppressed by a factor $(m_{\pi}/M_{\kappa})^4 \approx 6 \times 10^{-3}$

NA62 goal: accuracy better than 0.5% to provide a stringent SM test

3Dedicated data taking strategy + 160K K $_{\rm e2}$ sample with \sim 10% background *E. Goudzovski / CERN, November 4th, 2008*

Data taking: 2007 and 2008

Principal subdetectors for R K:

• Magnetic spectrometer (4 DCHs): 4 views/DCH: redundancy ⇒ efficiency; used in trigger logic; ∆p/p = 0.47% + 0.020%*p [p/p = 0.47% + 0.020%*p [GeV/c]

• Hodoscope

fast trigger; precise time measurement (150ps).

• Liquid Krypton EM calorimeter (LKr) High granularity, quasi-homogenious; σ_E/E = 3.2%/E^{1/2} + 9%/E + 0.42% [GeV]; $\sigma_{\sf x}$ =σ_y=0.42/E^{1/2} + 0.6mm (1.5mm@10GeV).

Data taking:

- Four months in 2007 (23/06-22/10): ~400K spills, 300TB of raw data (90TB recorded); reprocessing mostly finished by September 2008.
- Two weeks in 2008 (11/09-24/09): special data sets to reduce systematic uncertainties. *E. Goudzovski / CERN, November 4th, 2008*

Kaon beams

Kaon sign

Beam halo background much higher for K⁻ (\sim 20%) than for K⁺ (\sim 1%). \sim 90% of data sample: K+ only. $\sim\hspace{-0.1cm}10\%$ of data sample: K[–] only. K_{I2} samples of charge not present in the beam: direct measurements of the halo background with sufficient precision.

Trigger logic

Minimum bias (=high efficiency, low purity) trigger configuration used

> K_{e2} condition: $Q_1 \times E_{LKT} \times 1$ TRK. Purity \sim 10⁻⁵.

 K_{12} condition: $Q_1 \times 1$ TRK/D, D=50 to 150. Purity \sim 2%.

 \bullet K $_{\mu2}$ trigger is used to monitor the efficiency of the $\mathsf{K}_{\scriptscriptstyle\mathsf{e2}}$ trigger.

 \bullet E_{LKr} inefficiency is below 0.1% and is directly measured.

Measurement method

 K_{e2}/K_{u2} candidates collected simultaneously:

- •result does not rely on K flux measurement;
- • cancellation of certain systematic effects (e.g. parts of reconstruction/trigger efficiencies)

MC simulations used to a limited extent:

1) geometric acceptance correction; 2) energetic bremsstrahlung by muon.

A counting experiment in track momentum bins:

$$
R_K = \frac{N(K_{e2}) - N_B(K_{e2})}{N(K_{\mu2}) - N_B(K_{\mu2})} \cdot \frac{A(K_{\mu2}) \times f_{\mu} \times \epsilon(K_{\mu2})}{A(K_{e2}) \times f_{e} \times \epsilon(K_{e2})} \cdot \frac{1}{f_{LKR}}
$$

- N(K_{e2}), N(K_{µ2}): numbers of selected K_{I2} candidates;
- $N_B(K_{e2})$, $N_B(K_{\mu2})$: numbers of background events;
- A(K_{e2}), A(K_{µ2}): MC geometric acceptances (no ID);
- f_{e} , f_{μ} : measured particle ID efficiencies;
- $\varepsilon({\sf K}_{\rm e2})/\varepsilon({\sf K}_{\mu2})$ >0.999: ${\sf E}_{\sf LKr}$ trigger condition efficiency;
- f_{LKR}≈0.998: global LKr readout efficiency.

K_{e2} and $\mathsf{K}_{\mathsf{\mu2}}$ selection Large common part for $\mathbf{K}_{\mathsf{e}2}$ and $\mathbf{K}_{\mu 2}$ (due to topological similarity) • One reconstructed charged track; • Track in geometrical acceptance **80010003**×**10** $\mathsf{K}_{\mu2}$ decay vertex Beam line final collimator

- of the main subdetectors; • Upper limit on LKr energy deposition not associated to the track;
- Decay vertex: closest approach of track & nominal kaon axis;
- CDA<2cm and $(Z_{\text{vtx}}$ - $Z_{\text{coll}})$ >18m;
- Track momentum: 15GeV/c<p<65GeV/c. **-20 ⁰ ²⁰ ⁴⁰ ⁶⁰ ⁸⁰**

Conditions different for $\mathbf{K}_{\mathsf{e}2}$ **and** $\mathbf{K}_{\mu\mathsf{2}}$

- $M_{\rm miss}^2(I)$ =(P_K-P_I)², |M_{miss}²(l)|<0.01 (GeV/c²)². • Kinematic identification by missing mass:) 2.
- **10** 0.95<E/p<1.10 (E/p<0.2) for electron (muon). **10** • Particle identification by LKr energy deposit:

E. Goudzovski / CERN, November 4th, 2008

Muonic background in K_{e2} sample

Electron ID is based on LKr energy deposition: 0.95<E/p<1.10.

Muon mis-identification as electron due to "catastrophic" bremsstrahung: $P(\mu\rightarrow e) \sim 3 \times 10^{-6}$ (and p-dependent)

 $\rm P(\mu\!\!\rightarrow\!\!e)/R_{K} \sim 10\%$: $K_{1/2}$ decays represent a major background

<u>Direct measurement</u> of P(μ →e) is necessary to validate theoretical brems. cross-sectioncomputation in the highly energetic γ region.

Pb wall inserted between the HOD planes. Tracks traversing the wall & with E/p>0.95 are pure muon samples (no electrons).

Pure muon samples collected:

- 1) From K_{12} decays during main data taking with kaon beams;
- 2) Special μ runs with hadron beam absorbed (2007+2008).
- \sim 1,500 muons with E/p>0.95, 35<p<65(GeV/c) in 2007 special sample.

Muonic background (2)

 $P(\mu\rightarrow e)$: measurement (2007 muon sample) vs Geant4-based simulation

- The 2008 muon sample is twice as large as the 2007 one;
- Another tool: muons from K_{μ 2} decays in K_{e2}/K_{μ 2} separation region (p<25GeV/c). $_{\textbf{11}}$

K[±]→e[±]νγ background

 $\mathsf{K}_{\mathsf{e}2\gamma}$ (SD+) process: background by definition of R_{K} , rate similar to $\mathsf{K}_{\mathsf{e}2}$. Theory: BR=(1.12–1.34) $\times 10^{-5}$ [model-dependent form-factor] Experiment: $BR=(1.52\pm0.23)\times10^{-5}$ [1970s measurements]

Beam halo background

electrons produced by beam halo muons via μ→e decay, kinematically and geometrically compatible to a genuine $\mathsf{K}_{\scriptstyle{\mathsf{e2}}}$ decay

Directly measured with K⁻ only sample:

B/S=(1.23 [±]0.07)%

(uncertainty due to the limited size of control data sample) Background rate & distribution are fairly well reproduced with beam halo simulation

Prospects:

- 2008 K– sample will improve precision;
- Smallness of uncertainty potentially allows expanding the analysis fiducial volume further upstream & increase the data sample.

13Halo background in K_{µ2} sample measured with similar technique: B/S=0.14% (negligible uncertainty)

Backgrounds: summary

Particle ID efficiencies Particle ID efficiencies

Electron ID efficiency f_e: directly measured by kinematic selection of electrons

- from K \pm \rightarrow π^0 e \pm v decays collected during main K data taking (limited momentum range p<50GeV/c);
- from $\mathsf{K}_{\mathsf{L}}{\rightarrow} \pi^{\pm}$ e $^{\pm}{\mathsf{v}}$ decays collected in a special 15h K_{L} run (whole track momentum range, due to broad K L momentum spectrum).

Precision of f_e measurement: better than 0.1%.

Muon ID efficiency f_μ

- ID by energy deposit E/p<0.2;
- \bullet ${\sf f}_\mu$ measured directly to be in the 0.996–0.999 range;
- Uncertainty is much better than $\delta {\sf f}_{\mu}^{}\!\!=\!{\sf 0.1\%}.$

E. Goudzovski / CERN, November 4th, 2008

Other effects

Acceptance correction:

- \bullet p-dependent, A(K $_{\mu2}$)/A(K $_{\rm e2}$)~1.2;
- K_{e2} radiative corrections strongly affect the acceptance;
- Preliminary conclusion: the correction can be evaluated with a 0.1% precision.

Trigger efficiency correction:

- Efficiencies are monitored with control trigger samples;
- Q_1 efficiency mostly cancels in R_{K} , while $\mathsf{E}_{\mathsf{L}\mathsf{K}\mathsf{r}}$ efficiency directly affects R_{K} .
- $\mathsf{E}_{\mathsf{LKr}}$ nefficiency measurement: $1\text{--}\varepsilon(\mathsf{E}_{\mathsf{LKr}})\approx 1\text{--}\varepsilon(\mathsf{K}_{\mathsf{e}2})/\varepsilon(\mathsf{K}_{\mathsf{\mu}2}) < 0.1\%$;

Other known sources of uncertainies (can be corrected for):

- \bullet Trigger afterpulses biasing the Q_1 downscaling factor;
- Global inefficiency of LKr calorimeter readout (preliminary: f_{LKr}≈0.998).

Analysis summary & prospects Analysis summary & prospects

Main uncertainties(40% of the data sample)

Statistical 0.43% $\mathsf{K}_{\mu2}^{\vphantom{\dagger}}$ 0.25% $\mathsf{K}_{\mathrm{e2y}}^{\mathstrut} \left(\mathsf{SD} \right) \qquad 0.32\%$ Beam halo 0.10%Total 0.60%

Expected tot al uncertainty with t he 40% sample:

0.6–0.7%(breaking the 1% level for the first time)

Much room for improvement of the systematic errors

Using the whole **~160K** candidates: statistical uncertainty pushed below **0.3%**, total uncertainty of **0.4–0.5%** is within reach.

(in agreement with the proposal)

Conclusions

- NA62 has increased the world K_{e2} sample by more than an order of magnitude.
- R= Γ (K_{e2})/ Γ (K_{µ2}) is sensitive, for instance, to SUSY in the large tanβ scenario with broken lepton universality.
- Analysis of a partial data set is quite advanced. It is demonstrated that an overall uncertainty of 0.4% declared in the proposal is within reach.
- The NA62 is going to provide a timely result, as direct searches for New Physics at the LHC are approaching.