NA 62 – straw detector

For the straw working group

Specifications
Chamber design
FEM calculations
Prototyping
Straw straightness
Tooling
Plans

Hans Danielsson ,SPSC

Straw tracker layout

- $448 \times 16 = 7168 \text{ straws}$
- Operate in vacuum 2.1m long D_i =9.8mm
- Precise tracking (<120 μm)
- Straw rate: up to 0.5 MHz
- Non-flammable gas mixture
 - CO2 (80%)+ CF4 (16%) + Isobutene (6%) (Test beam 2008)
- For more parameters see files in EDMS:
 - <u>https://edms.cern.ch/document/837445/1</u>
 - <u>https://edms.cern.ch/document/908415/1</u>

Hans Danielsson, SPSC

Chamber design

FEM calculations of the chamber

FEM calculations of the chamber

Stress levels

- The model contains all the loading details: Pressure difference, pretension, fixation points to the vacuum tube etc.
- We have a model to study global deformations and details e.g. stress concentration around the holes.
- We are working on a model to study the deformation of individual straws.
- 25 mm thickness looks ok
- Basis for price enquiry

Prototypes of the gas manifold, straw connectivity and web

- Questions that will be addressed are:
- Type of glue
- Gluing procedure
- Tooling and access
- Leak tightness
- Electrical connection to the straws (web)

• The design of the web(16 channels) is finished and a prototype is launched in the. 4– 6 weeks for production

A set-up to measure the straw tension

This method was developed to study the straw straightness under tension and pressure An IR light sensitive sensor gives a voltage proportional to the reflected IR light from the LED

Tension $\propto w \times f^2$

where w is the weight per unit length and f the frequency

To be used in the QC of the chamber production

Hans Danielsson, SPSC

Deformation of the straw as a function of pressure for different pre-tension

Negative Poisson's ratio! which results in a loss of tension when pressurized

 $\varepsilon x = -\upsilon \times \varepsilon y$

04/11/2008

Results of the mechanical test

- Negative Poisson's ratio!
- The loss of tension with 1 bar is between 300g-400g
- 800 g of final straw pre-tension should be enough (with some safety)
- 1 kg is 1.2 mm deflection for a 1.85 m straw (≈ 1.75 mm for a 2.1m straw).
- We need 2 supports for the straws and possibly wire guides

- It is important to measure the tension after insertion
- We need experimental results of the long time mechanical behavior of the straws under realistic conditions

Straw straightness with 50 µm precision

LabVIEW program panel of edge detection

04/11/2008

To be used in the QC of the chamber production

Beam test 2008

- The goal was to compare two candidates for the FE chips and operate the chamber with the new non-flammable gas mixture
- Same straw prototype as in 2007 was equipped with two types of FE: CARIAOCA and ASDQ. Test boards were prepared in August at CERN, for these two chips
- The straw prototype was ready to take data as planned on the 2:nd of October. However, the beam was stopped on the 6:th of October.
- Nevertheless, we managed to take six points with muons (different HV and threshold): HV (kV): 2.4, 2.5, 2.6 (at two different

thresholds), 2.7

- The off-line analysis is going on.
- Since then, we have learned that:
 - Only a *maximum* of 900 chips (7200 channels) are available of the ASDQ chip (no spare!)
 - \rightarrow CARIOCA is the baseline for our FE

04/11/2008

1 Sensitivity =16mV/fC (100%) - CARIOCA

- **2** Sensitivity = 8.3mV/fC (50%) reduction due to current division
- **3** Sensitivity = 4.5 mV/fC (~30%) with termination on far-end (max R loss)
- **3** Sensitivity = 11.2mV/fC (70%) at open far-end

Future Plans

- Terminate the detailed study on the straw material and its mechanics
- Detailed FEM analysis of the structure and the straw
- Finalize layout of the mechanical structure
- Plan and build a new sector prototype:
 - Verify mechanical support of the straws (and wire). Measure final straw deformation and wire off-set

- New straw layout
- New connectivity
- Final electronics CARIOCA
- Build a full-scale engineering prototype
- Aging component validation

Spares

FEM calculations of the chamber

Chamber design (detail)

Hans Danielsson ,SPSC

Two wire guides in the straw do limit wire off-set

• Yes, it is possible in terms of added wire sag

Straw deformation and wire position

Wire off-set with two supports

We have to see if this is necessary. It complicates the wire stringing, but reduces significantly the risk of wireoff -set in case of bent straws

Example of test of the CARIOCA chip in the lab

Theoretical

Assembly of web connection and gas manifolds

Hans Danielsson ,SPSC

Plan

ID	Task Name						2008				2009			2010					2011		
		uarter	2nd Quarter	3rd Quarter	4th Qua	rter	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	1st Quarter	2nd Qu	
		TT	SMW	FST	TS	M	WFS	TTS	MVF	STT	<u> S M W </u>	FST	TSM	WFS	<u>T T S </u>	<u>M VV F </u>	<u>S T T</u>	<u>s m w </u>	<u> S T '</u>	<u>r s</u>	
1	Prototype testing (2007-2008)																				
2	Full length 48 straws		:	:																	
3	Tested in the actual vacuum tank (under test October 2007) under realist																				
4	Gas studies																				
5	Performance studies with new electronics and 2008 test beam																				
6																					
7	Engineering design																				
8	Chamber design				_ 																
9	Validation of the (FEM calculations, prototypes)																				
10	Detailed design of the parts				• •						<u> </u>										
11	Engineering review										2/2										
12	Freeze detector design										2/2										
13																					
14	Electronics							-	1	-	1										
15	Study FE electronics used in other experiments												_								
16	Test of new electronics in the 2008 test beam																				
17	Electronics review												→_7/1								
18	Freeze design												8	26							
19																					
20	Assembly and testing of a module 0 (one full view) (2008 – 2009)											-									
21	Procurement																				
22	Construction										<u> </u>										
23	Testing											È.									
24	Freeze detector parameters											i 4/13									
25																					
26	Chamber production													-	-	1	-	-	-	—	
27	Call for tender, mass production of parts												1	<u> </u>							
28	Chamber assembly											+ +		1		1	h				
29	Installation																				
30	Integration and commissioning																5			<u> </u>	