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Scope of the Lesson

@ AC losses — general classification

1. Hysteresis losses
2. Coupling and eddy current losses
3. Self-field losses
- Role of transport current in loss terms
- Impact of AC losses on cryogenics
- Specifying conductors based on the application

Following closely the presentation of Wilson “Superconducting magnets”

Also thanks to:

Mess, Schimueser, Wolff, “Superconducting Accelerator Magnets”

Marijn Oomen Thesis “AC Loss in Superconducting Tapes and Cables”
M.N. Wilson/ Cryogenics 48 (2008) 381-395

T. M. Mower and Y. Iwasa, Cryogenics, vol. 26, no. 5, pp. 281-292, May 1986.
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Introduction

@ Superconductors subjected to varying magnetic fields see
multiple heat sources that can impact conductor
performance and stability

@ All of the energy loss terms can be understood as emanating
from the voltage induced in the conductor:

@ The hysteretic nature of magnetization in type II superconductors, i.e.
flux flow combined with flux pinning, results in a net energy loss
when subjected to a field cycle

@ The combination of individual superconducting filaments and a
separating normal-metal matrix results in a coupling Joule loss

@ Similarly, the normal-metal stabilizer sees traditional eddy currents
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Magnetization losses

@ The superconductor B-H cycle defines losses associated with
magnetization: the area enclosed in a loop is lost as heat
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Hysteresis lossis () = /]—_j . dM = /M .dH

Problem: how do we quantify this?

-Note that magnetic moment generated by a current

loop I enclosing an area A is defined as OB
Y

m=w,Al oz Mo

The magnetization M is the sum of the magnetic
moments/volume.
Assume j=j. in the region of flux penetration in the

superconductor (Bean Model), then

a
¢=u, f jcxdx e Below H_, the superconductor is in the Meissner state and the
a-p

magnetization from dH/dt corresponds to pure energy storage,
: i.e. there is no energy lost in heat;
= Ho/c [ 2ap - p2 ] e Beyond H_, flux pinning generates hysteretic B(H) behavior;
2 the area enclosed by the B(H) curve through a dB/dt cycle

represents thermal loss
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Some basic definitions:

B, = Penetration field (to center) ” T’* /“‘N\
B_ = Field modulation — ;

B =2u,J_pfor p<a, pis the field penetration distance y -oi ‘e
The power generated by the penetrating field is

PoEog =g
C Cat
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Fig.84. (a) Field pattern within a superconducting slab subjected to large field change; (b} as the

field is reduced: (c) when the field change penetrates to centre of slab; (d) when the field reaches a
minimum value before rising again,
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@ The total heat generated for a half-cycle is then
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@ Note that this calculation assumed p<a; a similar
analysis can be applied for the more generally case in
which the sample is fully penetrated.
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Slide taken from Lance

Cooley, USPAS The Critical State
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Understanding AC losses via magnetization i
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Figure 2.3 Magnetisaiion loops calculated for an infinite siab parallel to the magnetic field.
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Hysteresis losses - general

@ The hysteresis model can be developed in terms of:

[3 _ Bm _ Bm
B, 2awJ,
The total cycle loss (for the whole slab) is then:
B,’ . .
0= 5 “—T'(B); The function I' (geometry dependent) has a maximum near 1.
MO 1.0 3 T =TT TTT — T
SERPENDICULAR 0
To reduce losses, we want QLD
B<<1 (little field penetration, so a"! E
loss/volume is small) or : ]
B>>1 ( full flux penetration, but 8 EIRREER FARALLEL 10 Pt
little overall flux movement) o0
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Fig. 8.5. Loss fuctor T'(f} for hysteresis loss per cycle in different shapes of superconductor.
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Hysteresis losses

@ The addition of transport current enhances the losses; this can be
viewed as stemming from power supply voltage compensating the
system inductance voltage generated by the varying background field.
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Fig. 8.12. Hysteresis loss in superconducting slab carrying fixed transport current J, = il and
subjected 1o a changing external field, calculaled from eqns (8.28) and (8.7).
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Coupling losses

an electric field generated between filaments of amplitude:

[
E= %; L is the twist-pitch of the filaments TR

21 /L
The metal matrix then sees a current (parallel to the applied field) of
amplitude:
J= Bt
27p,

Similarly, the filaments couple via the periphery to yield a current:
Bl cos(0)
2mp

J (0)=

There are also eddy currents of amplitude: 3
Bacos(0) T .. T
J (0)= Y

Figure 2.4 Schematic of coupling currents between two filaments in a wire or tape.
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@ The combined Cos(0) coupling current distribution leads to a natural
time constant (coupling time constant):

2
T = o L
2peﬁ 27T

@ The time constant T corresponds to the natural decay time of the eddy
currents when the varying field becomes stationary.

@ The losses associated with these currents (per unit volume) are:

B’ 8 . .
Q, =—"——, where T 1s the half-time of a full cycle
2”“0 Tm

Here B, is the maximum field during the cycle.
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Fig. 19. Coupling currents flowing via crossover resistance R, in transverse field (upper wires shown light grey).
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Add core to dramatically reduce transverse coupling,
while maintaining decent Ra for current sharing
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Other loss terms

@ In the previous analysis, we assumed the cos(0)
longitudinal current flowed on the outer filament
shell of the conductor. Depending on dB/dt, p,
and L, the outer filaments may saturate (i.e. reach
Jc), resulting in a larger zone of field penetration.
The field penetration results in an additional loss
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@ Self-field losses: as the transport current is variedpie s2¢. seirfeid in a superconducting cylinder or flamentary composite carrying transport
. . . . . current.(a), (b), and {c) show profiles of B within the cylinder when transport current is reversed;
the Self_fleld hnes Change, penetratlng and eXItlng)‘ {e). and () show efect of unidirectional current oscillations.
the conductor surface. The effect is independent

of frequency, yielding a hysteresis-like energy

loss: 2
B B I
= (B); p=—=s = —
g;zsf :lew) (:ts ) ﬁ} :EBI) Jrc
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First estimate of AC losses: Hysteresis losses

4
: Desr)dB
cyc — c B dt 3,
Qey /O J.(B) 5" [J/m3, per cycle]

thst—tot — Qcyc * Ve [J, per CYC|6]

This has motivated the
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Hysteresis loss reduction:
- minimMize Def




First estimate of AC losses: Coupling losses

_ o (@)  (dB/dt)? 3
T = 2/075 (27_‘_ coupling — 2T [W/m ]

HO

Qcoupling—tot — Qcouplz'ng x Vcond

Coupling loss reduction:
- minimize twist pitch




Use of the AC-loss models

@ It is common (but not necessarily correct) to add the different
AC loss terms together to determine the loss budget for an
conductor design and operational mode.

@ AC loss calculations are “imperfect”:

@ Uncertainties in effective resistivities (e.g. matrix resistivity may vary
locally, e.g. based on alloy properties associated with fabrication;
contact resistances between metals may vary, etc)

@ Calculations invariably assume “ideal” behavior, e.g. Bean model,
homogeneous external field, etc.

@ For real applications, these models usually suffice to provide
grounds for conductor specifications and/or cryogenic
budgeting

@ For critical applications, AC-loss measurements (non-trivial!) should
be undertaken to quantify key parameters
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Special cases: HTS tapes

@ HTS tapes have anisotropic Jc properties that impact AC losses.

@ The same general AC loss analysis techniques apply, but typical
operating conditions impact AC loss conclusions:

@ the increased specific heat at higher temperatures has significant
ramifications - enhances stability

@ Cryogenic heat extraction increases with temperature, so higher
losses may be tolerated
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Figure 2.11 Screening currents in a slab with anisotropic critical-current density.
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AC losses and cryogenics

@ The AC loss budget must be accounted for in the cryogenic
system

@ Design must account for thermal gradients - e.g. from strand to
cable, through insulation, etc. and provide sufficient temperature
margin for operation

@ Typically the temperature margin needed will also depend on the
cycle frequency; the ratios of the characteristic cycle time (t,) and

characteristic diffusion time (t,) separates two regimes:
. T,<<14:Margin determined by single cycle enthalpy

2. T,>> 1, : Margin determined by thermal gradients

@ The AC loss budget is critical for applications requiring
controlled current rundown,; if the AC losses are too large,
the system may quench and the user loses control of the
decay rate
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@ As a designer, you have some control over the ac losses:

@ Control by conductor specification
@ Filament size

@ Contact resistances

@ Twist pitch

@ Sufficient temperature margin (e.g. material T, fraction of critical current,
etc)

@ Control by cryogenics/cooling
@ Appropriate selection of materials for good thermal conductivity
@ Localization of cryogens near thermal loads to minimize AT

@ Remember: loss calculations are imperfect! For critical
applications, AC loss measurements may be required, and
some margin provided in the thermal design to
accommodate uncertainties
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