

Uta Bilow, TU Dresden Ken Cecire, Notre Dame

10th IPPOG meeting, CERN 05.11.2015

hands on particle physics

What is a Masterclass?

Countries in IMC

Possible candidates

- Madeira
- Russia
- India
- Venezuela

- Mozambique Bangladesh
 - Mongolia
 - Korea
 - Albania

What is a Masterclass like? What do students do?

News from W-Path

- W-path had a major update last year:
 - more events (then 6000 now 12000 data events)
 - overhauled selection, better comprehensible information
 - we used the year to test the outcome

Result:

- more consistent results
- more satisfactory for students
- Future Plans:
 - better web-hosting for W-path files
 - only minor improvements foreseen for this year

ATLAS Z path http://atlas.physicsmasterclasses.org/en/zpath.htm

1) Identify events: II, 4I, $\gamma\gamma$

2) Calculate invariant mass

4) Combine results, discuss, interpret

Z-path world wide

• 86 different institutes, in total 100 Z-path events

2015 Zpath

- in 24 countries
- on 5 different continents
- distributed on 19 days (between February 25th and April 1st)

- II \rightarrow Measure mass and width of known particles: $Z^0,J/\psi,Y$
 - → Search for new force / new gauge boson Z'
- 4I, $\gamma\gamma \rightarrow$ Provide insight into the process of discovering the Higgs at CERN
 - → Explain concepts of statistics, modeling, signal significance

CMS WZH measurement

- Students characterize W,
 Z, and Higgs candidates
- Create mass plot of standard model particles that decay into 2 leptons, plus Higgs
- Ratios W+/W-, e/μ
- 3000 events with misfits, surprises, interpretation
- New: WebGL event display
- Website adding 12th language for 2016

- LHCb experience has > 20 institutes involved, EU and US for 2015/2016.
- · The experience is twofold:
 - The students search for the D⁰→Kπ decay using an event display.
 - The students also perform a lifetime measurement at the 1% level.

ALICE: Looking for strange particles

Search for strange particles from their V0-decays Visual identification of V0s from their decay pattern Invariant mass calculation

First part : visual analysis of ~ 15 events per group Merging of results

Second part:

Calculation of numbers of Ks, Λ , anti Λ from invariant mass distributions (fit gaussian/polynomial to peak/background; subtract background) for different centrality regions in lead-lead collisions

Concepts conveyed: invariant mass; centrality of PbPb collisions; background

results: observe strangeness enhancement in Pb-Pb collisions comparing with pp collisions

Use ROOT-based simplified ALICE event display

Strangeness enhancement: the particle yield normalised by the number of participating nucleons in the collision N_{part} , and divided by the yield in proton-proton collisions

ALICE: nuclear modification factor

- ALICE: heavy-ion experiment at the LHC
 - study properties of deconfined matter: the Quark-Gluon Plasma
 - Pb-Pb collision ≠ independent pp collisions
- nuclear modification factor $R_{AA} = \frac{yield (Pb-Pb)}{\langle N_{coll} \rangle yield (pp)}$
 - ratio of transverse-momentum distributions of charged particles in Pb-Pb and pp collisions, taking into account the collision geometry
 - R_{AA}<1 implies jet suppression in the QGP
- students' measurement
 - necessary concepts: measurement of
 - charged particle momentum
 - collision centrality
 - event-display based visual analysis
 - → R_{AA} simply via counting of tracks
 - ROOT based large scale analysis
 - → R_{AA} as a function of momentum in various Pb-Pb centrality classes
 - → students discover jet suppression!

Status

- 11.2. 23.3.2016
- Registration started 22.10.2015
- Signed up so far (numbers from 2015):

```
- ATLAS W: 30 (37)
```

- ATLAS Z: 81 (84)

CMS WZH: 42 (46)
 ◆ CERN videoconference

– ALICE: 14 (18)

– CMS WZH: 13 (28)

– ATLAS Z: 0 (14)

Uta → Ken/QuarkNet/ND in Oct

What do Masterclass moderators do?

Video conference International Masterclasses with moderators Julia and Kate

History and Statistics

What is a Masterclass like? Is it difficult?

Report from SG meeting

- Social media
 - IMC twitter account will open on Fri evening follow us!
 - Adam Davis (Quantum Diaries) will cover IMC this year
 - Other initiatives?
- New countries
 - WG will meet today
 - Initiatives with International Schools and IB
 - African School of Fundamental Physics
- World Particle Day
 - If we do this, Oct or Nov 2016
- TOTEM Masterclass
 - Start small in 2016

How much Masterclass is enough?

How much Masterclass is enough?

We have so far failed to find an upper limit.

Back-up slide

Zpath Near future

New features – implemented!

- Batch analysis after display of 50 events
- •Graviton → II, ZZ/4I, γγ
- •Dark Matter, Supersymmetry with missing transverse energy and leptons
- •And whatever to be discovered at

Invariant mass of di-leptons. In addition to the bumps shown in Figure $(J/\psi, Y, Z \text{ and } Z')$ a graviton resonance is added at 2 TeV, as well as a Supersymmetry contribution just below the Z mass.

The invariant mass distribution for di-leptons (top, shown in Figure) features the real data (J/ψ , Y and Z) (left), a simulated 1 TeV Z' and a simulated 2 TeV graviton resonance (right). The di-photon distribution (bottom) shows no Z, but the Higgs data (left, a 100 GeV selection cut was applied). A 2 TeV graviton is visible, but no Z' at 1 TeV as the Z' (and Z) cannot decay into di-photons (right).