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2D data can be migrated only in the plane of the section

All migration methods are based upon simplified models of the real 
Earth



Post-stack time migration             model             Pre-stack depth migration
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3D migration
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What is Migration?

Migration is the process which removes the effect of wave propagation 
from the seismic data!
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Migration Purpose

The recorded wave field is measured at the surface : P(P(x,y,t,zx,y,t,z=0)=0)

What is the sub-surface  Image (x,y,z) ?

But to access to the image, the velocity model V(x,y,z) must be defined.

The propagation of a wavefield P(x,y,z,t) is defined as :
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Migration Methods

Classes of Migration based on algorithms

Kirchhoff Migration (KIRCH)
performed by diffraction summation

FD Migration (WEMIG)
uses the finite difference solution of the wave equation in T-X 
space

FX Migration (FXMIG, GTMIG)
uses the finite difference solution of the wave equation in F-X 
space

FK Migration (FKMIG)
based on the 2D Fourier Transform



Kirchhoff Migration

Kirchhoff migration is performed by summation using either: 
Wavefront method
Diffraction method 

The following is a graphical explanation of the  wavefront and diffraction 
methods



Wavefront Migration - 1

Consider a wavefront impinging upon a dipping reflector. 
The actual reflection from P is assumed to be at P’

Both P and P’ lie on the same 
wavefront
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Construct a wavefront chart
In a constant velocity model 

the wavefronts are 
semi-circular



Wavefront Migration - 2
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Use the wavefront Chart in 
conjunction with a simple reflection 
model

The event is at P1' on trace S1

The event is at P2' on trace S2

The event is at P3' on trace S3

Plot the wavefront which overlays 
reflection point P1' 

Move chart to second trace

Plot the wavefront which overlies 
point P2'

Repeat for the third trace



Wavefront Migration - 3

The common tangent to the wavefronts
is the true position of the reflector

A more realistic approach is to assume 
velocity increases with depth which 
gives this  wavefront characteristic
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Wavefront Migration - 4

The wavefront is in fact , an isochron
curve

When velocity increases in depth and 
changes laterally this isochron curve 
becomes more and more complex

To take in account these time 
variations in X,Y domain, we can build 
a table of travel time for each shot 
point and each receiver point 

This method is in fact used for Pre-stack 

depth migration only
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Diffraction Curves Migration

The diffracting point can be regarded 
as a new source point at depth
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Diffraction Curves - 1

Construct diffraction curves based on 
hyperbolic equation 

Overlay these over the traces with 
a dipping reflection: slide along 
until the dipping event is a tangent 

Note the position of the diffraction 
curve which is a tangent to the 
dipping event

Repeat for the other traces



Diffraction Curves - 2

The line which joins the 
diffraction curves apex 
is the true reflector 
position

Note: These curves are 
sensitive to velocity
The distance by which 
an event is spatially shifted 
is proportional to the 
SQUARE of the velocity

stacking velocity is unlikely 
to be correct for migration
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Migration by Integral methods : Kirchhoff Migration - 1

Consider the location of each 
seismic sample to be a ‘pigeon 

hole’

Superimpose a wavefront chart 
onto a trace
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Migration by Integral Methods : Kirchhoff Migration - 2

Each sample value is ‘copied’ into the 
pigeon holes through 
which the wavefront curves pass

This procedure is repeated on all 
traces: the net result is a build-up of 
energy at the migrated position

Note: Kirchhoff Method may also use 
Diffraction Curve summation
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Huygen's Principle: Every reflector location is a Secondary Point Source

Image of Reflector: Integral of diffraction curve
Recorded Reflection: Tangent to diffraction curves
Extrapolation: Computation of diffraction curves (travel time) 
Imaging: Integration of the data along the diffraction curves

Migration by Integral Methods : Kirchhoff Migration - 3

X1 X2 X3

Recorded 
reflection



Wavefronts and Diffraction Curves

Wavefronts and Diffraction 
curves can be used 
together
Migrated position at 
intersection of the two 
curves 
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Procedure - 1



Procedure 2



Procedure 2 bis



Procedure 3



Procedure 3 bis



Procedure



Finite Difference Migration - 1

Implemented in:

t-x domain (WEMIG)

f-x domain (FXMIG)

Consider how the shape of a 

diffraction curve changes with 

depth in a constant velocity 

depth model

At the surface (z = 0) the curve is 

collapsed into a point
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Finite Difference Migration - 2

If all diffraction origin points could be placed at the surface then seismic 
energy is concentrated only at their points of origin (the apex of the 
curves) - the data is therefore migrated! 

The finite difference method uses a wave equation to ‘strip off’ layers of 
the earth (z steps) effectively projecting the source and receivers down to 
each successive layer

‘New’ Surface
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the ‘new’ surface

Original 
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Finite Difference Migration - 3

Consider a simple anticlinal model in depth and time

Points P1 and P2 are used as 
reference points to check how 
the migration is progressing

Starting at T=0 the first layer 
S1 is stripped from the 
section and stored
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Finite Difference Migration - 4

The receivers are next placed 
at depth Z1 and the wavefield
is recalculated: layer S2 is 
then removed and stored

The receivers are placed at 
depth Z2 and the wavefield
recalculated: layer S3 is 
then removed and stored

Z1

P1

P1 '

P2 '

P2

T0

Z0

Distance

Distance

S2

S2

TIME

DEPTH

S3

Z2

P1

P2

T0

Z0

Distance

DistanceP1 '

P2 '

S3

TIME

DEPTH



Finite Difference Migration - 5

Repeat for depth Z3 and 
layer S4 …

... and finally for depth Z4
and layer S5
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Finite Difference Migration - 6

Collect together the time 
slices S1, S2, S3, S4, S5
together…

… and combine to form the 
migrated section
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Frequency-Wavenumber (f-k) Migration

f-k migration is based on the 2-D Fourier transform 
Migration performed in f-k space
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Remapping the f-k Spectrum -

Consider two time 
sections with the position 
of a dipping event pre-
and post- migration

It can be shown that
tanθ = sinθm
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Remapping the f-k Spectrum - 3

Consider what happens to 
the period of a wavelet 
during migration:

The apparent spatial 
wavelength λ (and 
thus the wavenumber
k) is unchanged

The temporal period, T
is increased to T’, 

thus the frequency F 
is reduced



Remapping the f-k Spectrum - 4

An un-migrated event in the f-k 
domain will plot thus:
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After migration, the event will 
plot thus:



Remapping the f-k Spectrum - 5

Migration in the f-k domain is a downwards vertical frequency shift
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Aliasing and migration

At least 2CMPs within the apparent wavelength of the emerging wavefield



Spatial Aliasing - 1

Consider the following emerging wavefield at surface:
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θRay
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= vΔt / 2Δx



Spatial Aliasing - 2

At the alias point, the distance BC 
corresponds to half the alias period Ta

BC = vΔt / 2

Δt = Ta /2

sin θ

 

= vΔt / 2Δx
= vT / 4Δx

since fmax = 1 / Ta

sin θ

 

= v / 4 fmax Δx

therefore:
fmax = v / 4Δx sin θ

To avoid spatial aliasing:

2ΔX < v/2 sinθ

 

fmax
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Horizontally stratified media

Travel times of reflection move out on CMP gathers can be expressed 
as (Taner

 

and Koehler 1969)

 

:

t2(x) = C0

 

+ C1

 

x2

 

+ C2

 

x4

 

+ …
 
+ Ck

 

x2k

 

+ …

With x offset and 
C1

 

= 1/vrms
2

t2(x) = t2
0

 

+ x2/v2
rms

If x << depth



Dipping interface
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Move Out for a Dipping Layer

α
S G

M

S’

t2(x) = t20

 

+ x2

 

cos2α/v2

v2

 

=> v2/

 
cos2α

v => v/cosα

t2(x) = t2
0 + x2/v2 – x2sin2α/v2

If more than 1 layer:

Vstack = Vrms / cosα
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Normal Move Out without dip correction

With Geological Dip

No Geological 
Dip

A flat layer model NMO 
velocity is too slow for a 
dipping horizon 
NMO will over correct the 
dipping horizon
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higher apparent velocity
for dipping events

vDix
 

vDix

hyperbola (offset<depth)

Moveout of reflection events:

asymptote 1/vrms

Offsetvrms

Time

vrms to time interval velocity 
VDix = (Vi+1 ti+1 - Vi ti ) / Δt

1/vrms

 

1/1/vvrmsrms

Effect of dip on Move Out 
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Reflection point smearing 

Common mid-point gather

Dipping Reflectors
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dip-dependency in velocity field

DMO correction removes:

reflection point smearing in the
gather

NMO+DMO corrections transforms
non-zero offset data into 

zero offset data (TZO)

offsetvrms

time
vDix

Moveout (NMO+DMO)



DMO+NMO corrections and post stack migration



Dip MoveOut Geometry - 4

Where...

Δ = moveout
 
up dip

x = half source-receiver offset
D = depth to reflector at the 

midpoint (along normal)

φ
 
= local dip of reflector

Δ =
x
D

2

cos sinφ φ

It can be shown that...



DMO operator – same dip, different depths
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