

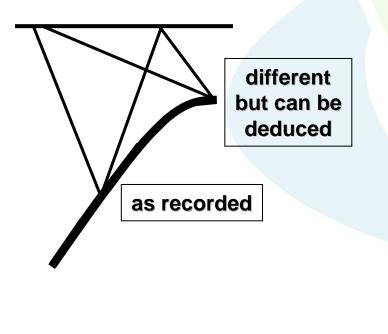
TIKIM – DYNAMICS and KINEMATICS

Contents

TIKIM Dynamics

TIKIM Kinematic methods...

- Straight Ray
- Curved (Bent) Ray
- Ray tracing
- A+ (Anelliptic)
- Velocity picking

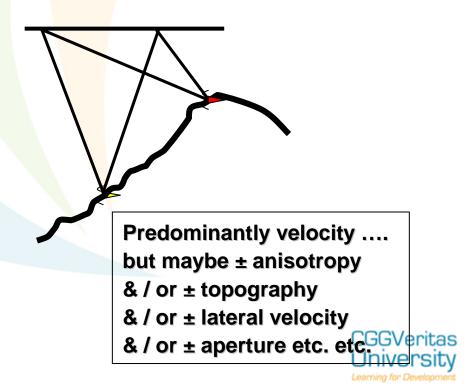

Dynamics and Kinematics

DYNAMICS

the attributes of the output

trace

what the sample, trace etc. looks like once it materialises at the migrated position


KINEMATICS

the mechanics of migration

how the sample, trace etc.

is imagined to be moved to final migrated position

essentially the shape of the operator

Dynamics

TIKIM incorporates 3 considerations that handle the amplitude, phase and frequency characteristics of the migrated position.

Pre-Migration concerning the sample

Angle Dependent Amplitude also known as the 'obliquity factor' or 'directivity factor'

Spherical Divergence or spreading factor along the diffraction curve

Post-Migration concerning the wavelet Wavelet shaping filtera built-in filter is applied to restore the wavelet

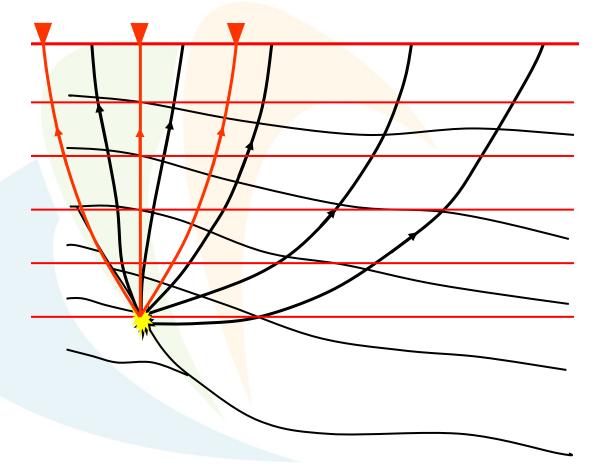
TIKIM offers a choice of kinematics....

...that is, different ways to compute the travel times.

There are three main options to choose from...

✓ Straight rays

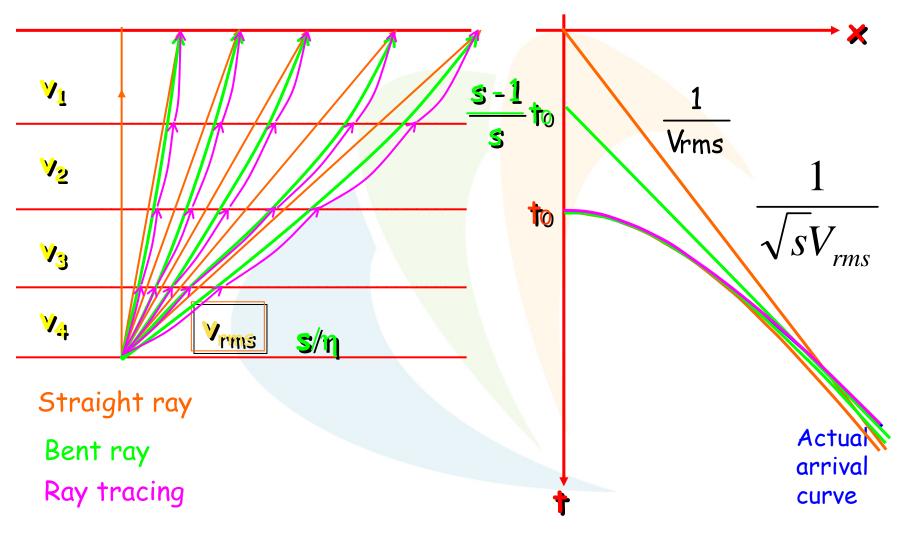
Each carries its own strengths and weaknesses.

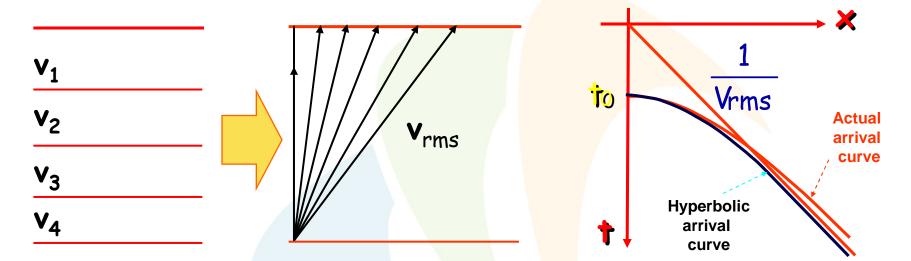


1D Assumption

We are facing a real world with possibly complex raypaths and diffraction curves. We try to model it using simple assumption.

Starting from a subsurface characterized by complex interfaces and spatially variant velocity (in black)


We try to derive an equivalent *locally* 1D medium (in red) that allows to approximate the kinematics of the rays.


Kinematics computation

Three of the methods are illustrated graphically...

Straight Ray Method description...

• It replaces the layered medium by a constant effective velocity (V_{RMS}) that fits the short spread moveout (x<z).

Its moveout corresponds to a perfect hyperbola.

TIKIM Kinematics Straight Ray coding

The straight ray approach is the default one. All is required is a LIBRI VI.

Kinematics computation

Straight Ray Method

Straight ray is a proven method and very robust for not too/highly structured data

Advantage: Very fast to run.

Disadvantage: Limit offsets by using a 30° ~ 40° mute

• Assumes hyperbolic condition. Derivation of operator shape easy to understand.

•In complex environment may be used as initial step to give an initial velocity field.

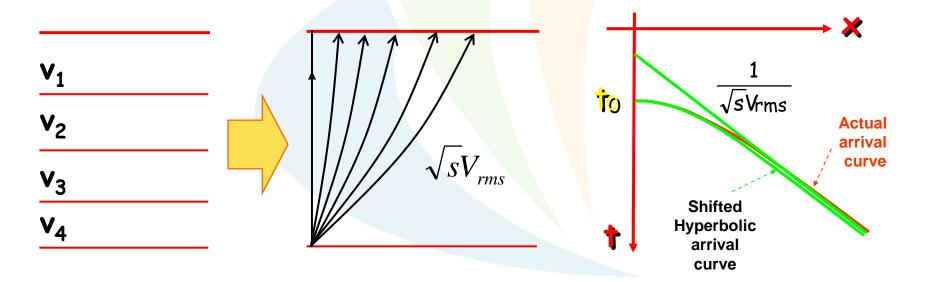
Straight rays

Straight ray is a proven method and very robust

- robust for not too/highly structured data
- ✓ fast velocity picking cycle
- Iimited range of dip and offsets
- robust to velocities

Bent Ray Method

Method 2 is designed to better take into account the ray bending effects when X becomes at least as large as z.


- It takes into account the layering and intrinsic anisotropic effects
- Delivers correct time for large dips up to a 50° mute.
- Designed for use in areas with long offsets and strong anisotropic effects

Kinematics computation

Bent Ray Method description...

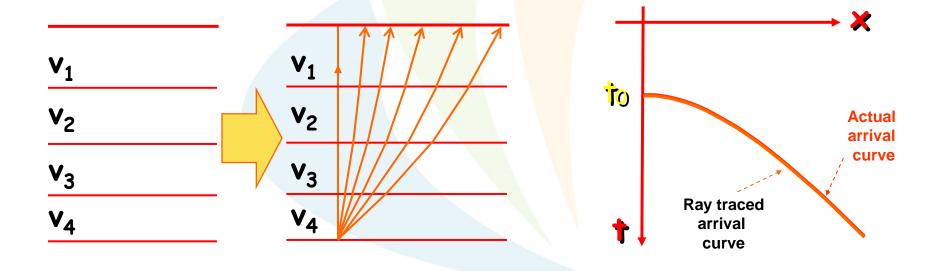
- This second method is a more accurate variant of the straight ray method
- It makes use of an additional parameter, SH that describes the shift in the asymptote origin of the curve.

TIKIM Kinematics Ray bend coding

The ray bending approach is triggered by the coding of an additional LIBRI SH (shift parameters)

As an alternative to supplying SH values parameter RAYBEND generates the layering anisotropy term.

Ray Tracing Method


- Method 3 is more elaborate than the first two methods.
- It gives the exact travel time of a 1D layered media with no limitation in offset.
- Delivers correct time for a 180 degree dip (turning waves)
- Optionally an intrinsic anisotropy trend can also be input,

Method used to establish final TIKIM migration velocities. Used with a wide angle mute.

Ray Tracing Method description....

- Rays are back-traced to the surface through constant velocity layers.
- It requires a knowledge of the interval velocities (derived from V_{RMS}).

Ray Tracing Method methodology.

- Full ray tracing is triggered by parameters RAYTRACE and VTREND
 - Requires input of a 1D velocity compaction trend (a single interval velocity function).
 - This is used as a reference model for ray tracing for the long offsets.
- Optionally a trend of intrinsic anisotropy values can also be input (ATREND option).
- Trend functions should be
 - Representative of values measured at several well locations.
 - Smoothly changing in time and without discontinuities.

