HPC usage experience EU

- Rod Walker, LMU Munich 28th Jan 2016

- Munich centric view
- Not mentioning
 - long-running Nordic HPC
 - potential usage (UK, FR)
 - China
 - General comments on HPC for ATLAS

Munich HPC

- LRZ SuperMUC
 - Phase 1: 150k cores, Sandybridge
 - Phase 2: 86k cores, Haswell
 - 10Mcore hours used from 20M allocation
 - effectively open-ended allocation if preempt-only
- Max Planck Institute computer centre: Hydra
 - 83k Sandybridge

ATLAS ProdSys integration

- Benefit from ND middleware and experience
- ARC CE designed for non-intrusive integration
 - aCT, stage-in/out data, BS interface(LoadLeveler)
 - added ability to have remote CE access cluster via ssh
- ATLAS SW available by rsync of cvmfs and relocation, more recently parrot.
 - SLES11 workarounds(openssl naming convention)
 - no outbound IP \rightarrow no Frontier \rightarrow only sim
 - only whole-node scheduled \rightarrow AthenaMP

ARC CE via ssh

- Not allowed service on HPC login node
- Key-base ssh allowed
- Mount shared FS using Fuse(sshfs)
- Interact with BS using ssh to run commands
 - important details solved by Michi(Bern, for CSCS)
- Remarkably stable
- Not optimal for data movement (ok for sim)

Parrot-CVMFS for HPC

- CVMFS needs no introduction
 - needs a local cache,... and Stratum-0 source
 - needs WN root mount, or at least FUSE
 - needs outbound IP connectivity
- HPC fails on all counts
 - no local disk, no (local)cache
 - no root, no fuse
 - no connectivity

Parrot-cvmfs

- Parrot is part of the cctools suite
 - http://ccl.cse.nd.edu/software/
 - much history and collaboration with cvmfs(Blomer)
- Wrapper around command/script/binary to intercept FS operations and do something
 - inc. HTTP, FTP, GridFTP, iRODS, CVMFS, Chirp
 - access to /cvmfs handled by plugin from Jakob
- Still requires outbound IP and proxy.

Parrot fun

Cvmfs anywhere

[aipanda121] cctools \$ ls /cvmfs/atlas.cern.ch ls: cannot access /cvmfs/atlas.cern.ch: No such file or directory [aipanda121] cctools \$ cctools-5.3.4-x86_64-redhat6/bin/parrot_run bash [aipanda121] cctools \$ ls /cvmfs/atlas.cern.ch repo [aipanda121] cctools \$

Make sure TRF does not need AFS

[aipanda121] cctools \$ ls -d /afs/cern.ch /afs/cern.ch [aipanda121] cctools \$ cctools-5.3.4-x86_64-redhat6/bin/parrot_run --mount=/afs=/dummy bash bash-4.1\$ ls -d /afs/cern.ch ls: cannot access /afs/cern.ch: No such file or directory bash-4.1\$

Alien cache

- Cvmfs cache can be on a shared FS
 - used by all clients, but still needs outbound IP
- Cvmfs cache can be pre-loaded
 - copy of stratum-0, 100% cache hits
 - no outbound IP required \rightarrow HPC
- Pre-loading can choose directories
 - anything containing .cvmfscatalog file
 - eg. base releases, DBReleases
 - faster than rsync
- Parrot ptrace style intercepts not without difficulty
 - several problems found and quickly fixed by cctools dev
 - argument ignored, seg fault, tar for log fails (on SLES)

> export PARROT_CVMFS_ALIEN_CACHE=/gpfs/work/pr58be/ri32buz2/cvmfs_preload

Optimized FS access

- Particular SuperMUC Phase1 problem
 - GPFS client configuration not good for ATLAS
 - inode cache too small(1000) delays on file access
 - G4 accesses O(1000) data files \rightarrow thrashing
- cvmfs has some internal caching
 - fewer GPFS inode lookup operations
 - effect is dramatic ...
 - G4 Initialization: 32mins \rightarrow 5mins
 - time per event: $115s \rightarrow 35s$
 - both comparable to native cvmfs

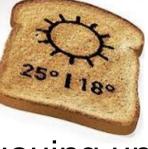
Current usage

- ARC CE each for Phase 1 and 2
- Asked to run in preempt queue on phase 1
 - this part has the larger jobs \rightarrow backfill potential
- Running 200 whole-node jobs (3200 cores), 4hr wall limit
 - usually at 200 limit.
 - occasionally drains a little. Rarely O(20) jobs preempted.
 - cannot delay 'proper' HPC job
 - negotiating increased limit
 - usually >1000 nodes idle
- 10M core hours running standard production G4
 - Reco-pile needs CD in DBRelease: no Frontier
- MPI Hydra also running in production ~60 nodes
- Looking forward to ES -ARC integration
 - negate preempt loss, maximize backfill

General HPC use for ATLAS

- Non-x86 covered by US talk
- CSCS intend to provide T2 inside general HPC
- Potential to contribute to HPC bid and design
 - efficient way to provide cpu power to science
 - single facility for capability computing and HTC
 - as a stake holder, HEP can ensure pledge
- Needs an attitude shift from HPC

Hardware choices


- Like: Linux & x86 maybe MIC too
- Agnostic about: fast network, Batch system.
- Can live with: OS & low RAM/core
 - prefer container-based virtualization(Docker, Shifter in US)
- Unhappy: Lack of compute node disk
 - computer is cpu, RAM, storage
 - OS lives in RAM, no swap

- no local scratch for high io or caching(cvmfs)
- disk adds little \$, and does not hurt HPC

Policy

- Outbound connectivity
 - no self-respecting HPC code would need the Internet
 - HEP code does: Frontier, cvmfs, wget, ...
 - even toasters have Internet!
 - assumption that users and intruders are queuing up to DoS attack a litigious bank
 - destinations controlled and throttled by firewall/NAT rules
 - no danger

Policy(2)

- Only multi-node jobs
 - HEP has almost no need wonderfully parallel
 - exception some evgen integration(Mira)
 - fragmentation of resources
 - scheduling question. Only short or preemptable jobs.
 - batch system load
 - only whole-node jobs implies 10k max OK.
 - SuperMUC and Hydra accept single-node jobs
 - makes perfect sense with preemption enabled

Policy(3)

- No gateway
 - or not useful GT5, UNICORE
- Must login to headnode to submit jobs
 - key-based ssh if lucky, or securID code if in US
- HEP needs a gateway
 - integration to *automatic* production system
 - data in/out , job submit, monitor
 - real HPC users would benefit too

Conclusion

- Persistence overcomes HPC hostility
 - masters and admins are often positive and helpful
 - but feel inhibited by funding and tradition
 - takes time, pressure from above
 - SuperMUC, Hydra in production with compromises
 - challenge each policy decision, for justification
- HEP stake in new HPC will change this
 - make cluster useful for more workloads