CHARGED PARTICLE IRRADIATION EFFECTS ON ZIRCALOY-4

Tshepo Mahafa P-LABS Necsa

P-LABS

Necsa_Wits Workshop, 10 - 11 September 2015, Necsa, Pelindaba

CONTENTS

- Introduction
- Radiation Damage Process
- ✤ Zircaloy-4
- Experimental
- Results
- Conclusion

- During the service lifetime of reactors, key reactor materials such as zircaloy-4 degrade.
- Their degradation is due to the fast neutron environment generated in the reactor core during fission.
- This alters the physical and mechanical properties of zircaloy-4 resulting in the material becoming the limiting factor in continual operation of the reactor.
- To overcome this limitation, better radiation resistant materials need to be developed.
- Their development however requires a fundamental understanding of the mechanisms governing this degradation.

BURNUP INCREASE PER GENERATION

Figure 1: Schematic representation of burnup increase per generation of reactors

ZIRCALOY-4

Figure 3: Cross section of a single fuel rod showing clad material

High mechanical strength High corrosion resistance High thermal conductivity

<u></u>

Necsa_Wits Workshop, 10 - 11 September 2015, Necsa, Pelindaba

RADIATION DAMAGE PROCESS

Primary knock-on

Figure 4: Schematic representation of radiation damage process

Table	1:	Disp	lacement	threshold	enerav	of	elements
abic		Pisp	lacement	unconoid	chicigy		cicilicitis

Element	E _d (eV)
С	30
AI	27
Si	25
Zr	40
Fe	40
Cu	40

0.00014

Figure 5: SRIM Simulation of the penetration depth of protons in zircaloy-4

SAMPLE PREPARATION AND CHARACTERIZATION

Polishing and Etching

- Sample polished used Silicon carbide (SiC) papers of various grit sizes (1200,2400, and 4000) and diamond paste of various roughness (1 μm and 0.25 μm).
- Sample etched with a mixture of 10% Hydrofluoric acid (HF), 45% Nitric Acid (HNO₃), and 45% Hydrogen Peroxide (H₂O₂) after polishing.

Characterization Techniques

- Optical Microscopy (OM)
- Scanning Electron Microscopy (SEM)
- ✤ X-ray Diffraction (XRD)

IRRADIATION CONDITIONS

Water cooled Under vacuum at 10⁻⁷ mbar

Figure 6: Schematic representation of a radio frequency quadrupole (RFQ) accelerator at Necsa.

Parameters	Value
Energy (MeV)	2
Current (mA)	1.8
Beam spot (mm)	3
Pulse width (μs)	400
Repetition rate (Hz)	20

Table 2: Accelerator operation conditions during irradiation

FLUENCE 1.2 x 10¹⁹ protons/cm²

RESULTS: OM ANALYSIS

Figure 7: OM micrographs of virgin zircaloy-4 placed in the (A) horizontal direction and (B) in the vertical direction on microscope stage.

RESULTS: SEM ANALYSIS

Figure 8: SEM micrographs of virgin ziircaloy-4 at (a) 120 X mag, (b) 2000 X mag, and (c) 10000 X mag and SEM micrographs of proton irradiated zircaloy-4 at at (d) 120 X mag, (e) 2000 X mag, and (f) 10000 X mag

RESULTS: XRD ANALYSIS

Figure 9: XRD pattern of un-irradiated zircaloy-4

Red Indices - Zirc-4 Blue Indices - ZrC

Figure 9: XRD pattern of proton irradiated zircaloy-4

RESULTS: RUTHERFORD BACKSCATTERING SPECTROSCOPY (RBS) ANALYSIS

(1)

(2)

Proton Irradiated Exposed Side Proton Irradiated Unexposed Side C Counts Zr Channel number

Figure 10: RBS spectra of unexposed (black) and exposed (red) proton irradiated zircaloy-4.

$$E_0$$
 - incident particle energy m_1 - proton mass E_1 - backscattered particle energy m_2 - target mass Θ - scattering angle

$$\mathbf{E_1} = \mathbf{k}\mathbf{E_0}$$

$$\mathbf{k} = \left[\frac{(\mathbf{m_2^2} - \mathbf{m_1^2 sin^2} \theta)^{\frac{1}{2}} + \mathbf{m_1 cos} \theta}{\mathbf{m_1} + \mathbf{m_2}} \right]^2$$

RESULTS: XRD PEAK COMPARISON

Figure 11: Comparison of the (002) peak of the unirradiated (black) and the proton irradiated (red) zircaloy-4.

$$\mathbf{L} = \frac{\mathbf{K}\boldsymbol{\lambda}}{\beta\mathbf{cos}\boldsymbol{\theta}}$$

Figure 11: Comparison of the (101) peak of the unirradiated (black) and the proton irradiated (red) zircaloy-4.

λ

d

RESULTS: XRD 2D COMPARISON

Figure 12: 2D XRD data frame of (a) un-irradiated and (b) proton irradiated zircaloy-4

Zircaloy-4 State	Residual Stress (MPa)		Interlayer spacing (A°)		Particle Size (nm)	
	σ ₁₁	σ ₂₂	d ₍₀₀₂₎	d ₍₁₀₁₎		
Virgin	-7.9 ± 1.0	-9.30 ± 0.9	2.577	2.460	35	
Proton Irradiated	6.7 ± 2.2	8.0 ± 2.2	2.583	2.463	107	

Table 3: XRD o	quantitative	analysis	of	zircaloy	y-4
					,

Necsa_Wits Workshop, 10 - 11 September 2015, Necsa, Pelindaba

- **Proton irradiation leads to changes in the microstructure of zircaloy-4.**
- **XRD** and **SEM** revealed a change in crystallite size after proton irradiation.
- ✤ Melting and cracking on the surface of zircaloy-4 was observed with SEM.
- Residual stress reversal was observed with XRD even though it was within the instrument uncertainty.

