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Dark Matter: Why do we think it's there”



Dark Matter; Evidence

x Clusters

= Galaxies

= Gravitational lensing

= The Bullet Cluster

= Cosmic microwave background (CMB)
= Supernovae la

»x Large scale structure (LSS)

= Big bang nucleosynthesis (BBN)



Galaxy Clusters

(Zwicky & the Coma cluster ~1933)

Coma cluster
Image: Jim Misti (Misti Mountain Observatory)



(Galactic Rotation Curves
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(Galactic Rotation Curves
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Extended rotation curve of M33
Image: Stefania del.uca



Gravitational Lensing
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Credit: NASA, ESA, and D. Coe (NASA/JPL)



The “Bullet” Cluster

(1E 0657-56)

S WAL

Markevitch et al. (2005), Clowe et al. (2006)



Cosmic Microwave Background (CMB
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Growth of Large Scale Structure (LSS
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FIG. 1 (color online). Power spectrum of matter fluctuations in
s SO B ‘ a theory without dark matter as compared to observations of the
K SOt : galaxy power spectrum. The observed spectrum [24] does not
: have the pronounced wiggles predicted by a baryon-only model,
, but it also has significantly higher power than does the model. In
/ . 2 . . . . - »
Y. e fact A<, which is a dimensionless measure of the clumping,
"N . .
. b never rises above one in a baryon-only model, so we would not
3 expect to see any large structures (clusters, galaxies, people, etc.)
W, gl >l in the Universe in such a model.
[{O it

Sloan Digital Sky Survey Dodelson & Ligouri (2006)



Cosmic Microwave Background (CMB)

® Power spectrum very well
fit by the 6 (or 7)
parameter LCDM model

Qo+ QA+ Q=1

» | ocation of 1st peak

indicates

= More information about !
baranS + DM from peaks 500 1000 1500 2000
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Plot: Planck Collaboration/ESA

11



Modern "concordance” cosmology
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No Big Bang

Supernovae
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Big B

ang Nucleosynthesis (BBIN
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Cosmological energy budget

Obligatory Pie Chart
Image: Jeff Filippini
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Dark Matter: Candidates

x \Neakly-interacting massive particles (WIMPS)
(supersymmetry connection?)

x Axions (QCD connection?)

x  Other exotic candidates (e.g. primordial blackholes)

o NModify theory: of gravity2-After all, GR has been assumed

15



Dark Matter: What Is 1t”?

x \WIMPS? Axions”? No detection yet...

® Supersymmetry? Other BSM physics? Nothing from
the LHC so far...

® [nhe standard paradigm is threatened.

x Alternatives?

16



Dark matter in the Standard Model?

Quark nuggets, Witten (1984)

» Considered a (1st order)

QCD phase transition in the 3
early universe @ @

= Different stable phases of

nuclear matter may exist
(hadronic vs. gquark) @
L

= Hadrons plausibly produced

: : FIG. 3. Isolated shrinking bubbles of the high-t tur
alongside nuclear objects FIG. 3. laciated shrioking bitios of the igh-smmperatre

with masses 102 to 10'° g

Witten (1984)
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Average local dark matter density?
10'° g of dark matter expected within the Earth’s orbital radius

EARTH'S ORBIT

e,

Earth

Here, a smooth distribution

Could this be the wrong picture?
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Average |local dark matter density?
10° g of dark matter expected within the Earth’s orbital radius

EARTH'S ORBIT

Earth

10"g object

Could this be the right picture?
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How could this be?

» |nteraction rates go as

» | [kewise, acceleration due to drag Is proportional to

X
M

» [his can lbe small with a small cross section or big mass, and
therefore consistent with BBN, CMB, LSS, no Earth detection...

Ox
x \\e call — 7 the “reduced cross section”
LX
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Some other macroscopic models

x |n the Standard Model
x  Strange Baryon Matter (Lynn et al.,; 1990)
x  Baryonic Colour Superconductors (+ axion) (Zhitnitsky, 2003)
x  Strange Chiral Liquid Drops (Lynn, 2010)
x  Other names: nuclearites, strangelets, quark nuggets, CCO’s, ...

x  Primordial Black Holes

x BSM Models, e.g. SUSY Q-balls, topological defect DM, ...
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VWhat this work IS about

XENONI00 (2012)

— Observed limit (90% CL)

“
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Plot: Origgo, et al. (XENON Collaboration)
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VWhat this work IS about

® Strongly-interacting dark
matter: Starkman, et al.
(1990), ..., Mack et al.
(2007)

—

= L IMP. 778 _
5 25 /Q/ g
.4
<

» More or less constrained up
] |
to ~ 10" GeV g |
»x Have extended the search -40
to causal horizon at BBN st , , L
) 5 10 s 20

(10°8 GeV=10 solar masses) jog m_ [GeV]

Mack, et al. (2007)
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this work Is about
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VWhat this work IS about

® A systematic probe of “‘macroscopic’ dark matter

candidates that scatter classically (geometrically) with
matter

» \Ne call this macro dark matter and the objects Macros

® BasiC parameters: mass, cross section, charge, and some
model-specific (e.g. elastic vs. inelastic scattering)

]\/{}(7 Ox — 7TR>2(, V(Rx)
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New
Scientist

WEEKLY August 22-28 201

WORKOUTS THAT
MAKE YOU SMARTER
Tone your body,

tune your mind

SHOCK THERAPY
Saving birds by
electrocuting them

PRINT YOUR OWN
_ SPACECRAFT
Orbiting assembly line
awaits your orders

THE WRONG STUFF

Remix ordinary matter,
and very odd things happen

A QUESTION OF
LIFE AND DEATH

Biology starts answering questions psychiatry can't

NoJORS USSS OS5 CANSS S

0TTTANR0TI069FT ||
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Model-independent constraints

® [lastic and inelastic coupling of
x Macros to other Macros
n Macros to baryons
x Macros to photons

x  (Gravitational effects (lensing)
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Macro-Macro Coupling
Self-interacting dark matter (SIDM)

®x Spergel and Steinhardt
(2000) (cusp-core ISsue)

= Simulations vs. obs:
e.g., Dave et al. (2000),
Randall et al. (2007),
Rocha et al. (2012)

= ox /My <0.25 cm?®/g

Rocha et al. (2012)

Left — collision-less DM; Right — SIDM
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Macro-baryon Interactions

Cluster gas heating

= Virial theorem implies DM
particles and baryons will
have similar velocities

x High mass of Macros means
energy transter to baryons in
a collision, iImplying gas
heating

x (Gas would be hottest at
center. Lack of this
observation Implies

ox /My < 6 x 10"*cm?/g

Iog10 m (GeV)

Chuzhoy and Nusser (2006)
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Macro-baryon Interactions

Effects on large-scale structure

x DM-SM interactions would have
caused extra collisional damping
of acoustic oscillations of the
baryon-photon plasma (Boehm et
al. 2001, 2002, 2004)

= Chen et al. (2002) used CMB and
LSS observations to constrain
Interaction

1 L

0.10
x Dvorkin et al. (2014) added Lyman- k (h Mpc™)

alpha observations (z~3) and found Chen, et al. (2002)

Matter power spectrum

ox /My < 3.3x107° ecm?/g
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Model-independent constraints

Records left on earth



Macro-baryon Interactions

Resonant-bar Gravitational Wave Detectors

= Passing gravitational waves
distort spacetime, stretching
and contracting objects, for
example

x Can hope to detect G-waves by
looking for excitation of normal
modes of aluminum cylinders

= |f cold, also highly sensitivity to
cosmic rays and exotic particles
because of the thermo-acoustic
effect

Joseph Weber (~1960’s)
Image: AIP Emilio Segre Visual Archives
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Resonant-bar Gravitational Wave Detectors

DMJ, Glenn Starkman, Amanda Weltman, (in preparation)

= Such detectors (at ~2K) can
constrain nuclearite dark
matter (Liu and Barish, 1988)

= Null detection by the
NAUTILUS & EXPLORER
experiments rule out
nuclearite dark matter

candidates below

= Analysis can lbe generalized
for macro dark matter

Liu and Barish (1988)
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Macro-baryon Interactions

Ancient Mica

x Chemical etching reveals lattice
defects In muscovite mica

x Old samples buried deep (~3
km) underground makes for a
good exotic particle detector
(€.9. monopoles and nuclearites)

x Used by de Rujula and Glashow
(1984), Price (1988) to rule out

nuclearite dark matter

x (Generalizable to Macros

E\

o S e —— - l

.

FIG. 2. Geometry of collinear etch pits along the trajecto-
ry of a hypothetical monopole-nucleus bound state in three
sheets of mica that had been cleaved, etched, and superim-
posed for scanning.

Price and Salamon (1986)
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Macro Constraints

(on elastic scattering w/ baryons and other Macros)

/

' ' | | ' ' '
SIDM | | — Nuclear-density
LSS — Atomic-density ‘

Mica (elastic) |
Skylab ,
Resonant-bar |

DMJ, Starkman, Lynn (2014); DMJ, Starkman, Weltman (2014)
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Macro Constraints

(on inelastic scattering w/ baryons and other Macros)

— Nuclear-density
— Atomic-density
-2 0 2 4

DMJ, Starkman, Lynn (2014)
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Macro-photon Interactions

Effects on large-scale structure

= DM-photon interactions would
also cause damping (Boehm et
al. 2001, 2002, 2004)

= \Vilkinson et al. (2014) used
Planck CMB data to constrain
DM-photon interactions to

NA
x
»
N
-~

F_
O
-
s

ox/Myx < 4.5 x 10" "cm?*/g

= Actually applies to all Macros, 0 S0 100 1500 2000
assuming thermal equilibrium

with the plasma Wilkinson et al. (2014)

2500

3000
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Macro Constraints

(all types, If Macros couple to photons)

DMJ, Starkman, Lynn (2014)
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Model-independent constraints

Gravitational effects



Gravitational Lensing
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e

Apparent position i R

Position of source

y —
‘

Apparent position

Image: GFDL

Focus
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Gravitational Lensing

e Hux amplification
A

Image: GFDL

2+ u? + 2cos Ao
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Gravitational Lensing

Microlensing

A

Paczynski (1986)

24 u’+2cosA¢
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Gravitational Lensing

Microlensing

= Allsman, et al. (2000) and
Tisserand, et al. (20006)

monitored sources In the
SMC and LMC

® Griest et al. (2013) used
sources In the local solar
neighborhood

= Combined, they exclude

4x10%g< My <6x10*g

Paczynski (1986)
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Gravitational Lensing

Femtolensing

e See Gould, A. (1992)

A

Barnacka et al. (2012)

-2+ u? + 2 cos A¢
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Gravitational Lensing

Femtolensing

= Marani et al. (1998),
used data the BAISE
GRB experiment

x Barnacka et al. (2012)
used GRB data taken
from the Fermi satellite

Combined, they exclude

10" g < My < 10%¢g

Barnacka et al. (2012)
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Model-independent Macro Constraints
(including DM-photon coupling & lensing)

Femtolens
Microlens

10° 10° 10° 10° 10° 10° 10%% 10'° 10'® 10%! 10%* 10%’ 10°° 10°°
My [9]
DMJ, Starkman, Lynn (2014)
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Model-dependent constraints

Effects on BBN



Model-dependent constraints
Effects on BEBN

® [he Macros may carry a
net charge

= [f they also absorb Macro (0
baryons (or catalyze
decay, etc.) BBN would
oe affected

Example: positively-charged Macros
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Model-dependent constraints
Effects on BEBN

® Hellum mass fraction,

® Observationally, BiEEraaul (Aver et al. 2013)

® [ heoretl

cal uncertainties on Standard Model

poredica
ensure

ons are relatively tiny so we must

—0.01 5 AXéll\"Ia,(:r() 5 0.01
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Model-dependent constraints
Effects on BEBN

* Rate of change of (co-moving) numlbers densities

e~ V(Rx)/1 ’

(1- V1),
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Model-dependent constraints
Effects on BEBN

* [or surface potentials < 0.01 MeV.

DMJ, Starkman, Lynn (2014)
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Model-dependent constraints
Effects on BEBN

DMJ, Starkman, Lynn (2014)



Model-dependent constraints
Effects on BEBN

DMJ, Starkman, Lynn (2014)
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 Updates to appear: Improvement by a factor of ~2-4
DMJ, G. Allwright, M. Mafune, S. Manikumar, A. Weltman (2015)
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Conclusions

= Dark matter doesn’t have to interact weakly if it’s very
massive. It could still arise from the Standard Model.

» Regardless of its nature, there are large unconstrained
regions of macro dark matter parameter space. Much still
needs to be done...

® Such “strongly’-interacting dark matter candidates should
offer a richer astrophysical scenario than collision-less dark
matter. It may be relevant to several outstanding issues In the
current CDM paradigm (cusp vs. core, missing satellites,...)
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Thank you!
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