

Macro Dark Matter

David M. Jacobs
Claude Leon Postdoctoral Fellow
University of Cape Town

SLAC 21 September 2015

Collaborators: Glenn Starkman, Bryan Lynn, Amanda Weltman

Dark Matter: Why do we think it's there?

Dark Matter: Evidence

- Clusters
- Galaxies
- Gravitational lensing
- The Bullet Cluster
- Cosmic microwave background (CMB)
- Supernovae la
- Large scale structure (LSS)
- Big bang nucleosynthesis (BBN)

Galaxy Clusters

(Zwicky & the Coma cluster ~1933)

Coma cluster

Image: Jim Misti (Misti Mountain Observatory)

Galactic Rotation Curves

Rubin, et al. (1980)

Galactic Rotation Curves

Extended rotation curve of M33 Image: Stefania deLuca

Gravitational Lensing

Cluster Abell 1689 Credit: NASA, ESA, and D. Coe (NASA/JPL)

The "Bullet" Cluster

(1E 0657-56)

Markevitch et al. (2005), Clowe et al. (2006)

Cosmic Microwave Background (CMB)

Image: Planck Collaboration/ESA

$$\frac{\delta T}{T} \simeq \frac{\delta \rho}{\rho} \equiv \delta \sim 10^{-5}$$

Growth of Large Scale Structure (LSS)

Sloan Digital Sky Survey

FIG. 1 (color online). Power spectrum of matter fluctuations in a theory without dark matter as compared to observations of the galaxy power spectrum. The observed spectrum [24] does not have the pronounced wiggles predicted by a baryon-only model, but it also has significantly higher power than does the model. In fact Δ^2 , which is a dimensionless measure of the clumping, never rises above one in a baryon-only model, so we would not expect to see any large structures (clusters, galaxies, people, etc.) in the Universe in such a model.

Dodelson & Ligouri (2006)

Cosmic Microwave Background (CMB)

■ Power spectrum very well fit by the 6 (or 7) parameter LCDM model

$$\Omega_m + \Omega_\Lambda + \Omega_\kappa = 1$$

- Location of 1st peak indicates $\Omega_{\kappa} \simeq 0$
- More information about baryons + DM from peaks

Plot: Planck Collaboration/ESA

Modern "concordance" cosmology

Big Bang Nucleosynthesis (BBN)

Burles, et al. (1999)

Cosmological energy budget

Obligatory Pie Chart Image: Jeff Filippini

Dark Matter: Candidates

- Weakly-interacting massive particles (WIMPS)
 (supersymmetry connection?)
- Axions (QCD connection?)
- Other exotic candidates (e.g. primordial blackholes)

Modify theory of gravity? After all, GR has been assumed

Dark Matter: What is it?

- WIMPS? Axions? No detection yet...
- Supersymmetry? Other BSM physics? Nothing from the LHC so far...
- The standard paradigm is threatened.
- Alternatives?

Dark matter in the Standard Model?

Quark nuggets, Witten (1984)

- Considered a (1st order)
 QCD phase transition in the early universe
- Different stable phases of nuclear matter may exist (hadronic vs. quark)
- Hadrons plausibly produced alongside nuclear objects with masses 10⁹ to 10¹⁸ g

FIG. 3. Isolated shrinking bubbles of the high-temperature phase.

Witten (1984)

Average local dark matter density? 10¹⁶ g of dark matter expected within the Earth's orbital radius

Here, a smooth distribution

Could this be the wrong picture?

Average local dark matter density? 10¹⁶ g of dark matter expected within the Earth's orbital radius

Could this be the right picture?

How could this be?

Interaction rates go as

$$\Gamma \sim n_{\rm x} \sigma_{\rm x} v \sim \frac{\sigma_{\rm x}}{M_{\rm x}} \rho_{\rm x} v \qquad \text{or} \qquad \Gamma \sim n_{\rm x} A_T v \sim \frac{1}{M_{\rm x}} \rho_{\rm x} A_T v$$

$$\Gamma \sim n_{\rm x} A_T v \sim \frac{1}{M_{\rm x}} \rho_{\rm x} A_T v$$

Likewise, acceleration due to drag is proportional to $\frac{\sigma_{\rm X}}{M_{
m T}}$

$$\frac{\sigma_{
m X}}{M_{
m X}}$$

- This can be small with a small cross section or big mass, and therefore consistent with BBN, CMB, LSS, no Earth detection...
- lacksquare We call $\dfrac{\sigma_{
 m x}}{M_{
 m x}}$ the "reduced cross section"

Some other macroscopic models

- In the Standard Model
 - Strange Baryon Matter (Lynn et al., 1990)
 - Baryonic Colour Superconductors (+ axion) (Zhitnitsky, 2003)
 - Strange Chiral Liquid Drops (Lynn, 2010)
 - Other names: nuclearites, strangelets, quark nuggets, CCO's, ...
- Primordial Black Holes
- BSM Models, e.g. SUSY Q-balls, topological defect DM, ...

Plot: Origgo, et al. (XENON Collaboration)

- Strongly-interacting dark matter: Starkman, et al. (1990), ..., Mack et al. (2007)
- More or less constrained up to ~ 10¹⁷ GeV
- Have extended the search to causal horizon at BBN (10⁵⁸ GeV=10 solar masses)

Mack et al. (2007)

- A systematic probe of "macroscopic" dark matter candidates that scatter classically (geometrically) with matter
- We call this macro dark matter and the objects Macros
- Basic parameters: mass, cross section, charge, and some model-specific (e.g. elastic vs. inelastic scattering)

$$M_{\rm X}$$
, $\sigma_{\rm X} = \pi R_{\rm X}^2$, $V(R_{\rm X})$

New Scientist

WEEKLY August 22 - 28, 2015

WORKOUTS THAT MAKE YOU SMARTER Tone your body,

tune your mind

Saving birds by electrocuting them

PRINT YOUR OWN SPACECRAFT Orbiting assembly line awaits your orders

THE WRONG STUFF

Remix ordinary matter, and very odd things happen

A QUESTION OF LIFE AND DEATH

Biology starts answering questions psychiatry can't

Science and technology news www.newscientist.com Faculty opportunities

Model-independent constraints

- Elastic and inelastic coupling of
 - Macros to other Macros
 - Macros to baryons
 - Macros to photons
- Gravitational effects (lensing)

Macro-Macro Coupling

Self-interacting dark matter (SIDM)

- Spergel and Steinhardt (2000) (cusp-core issue)
- Simulations vs. obs:
 e.g., Davé et al. (2000),
 Randall et al. (2007),
 Rocha et al. (2012)

$$\sigma_{\rm xx}/M_{\rm x} \lesssim 1~{\rm cm}^2/{\rm g}$$

$$\Rightarrow \sigma_{\rm x}/M_{\rm x} \lesssim 0.25 \ {\rm cm}^2/{\rm g}$$

Left — collision-less DM; Right — SIDM

Macro-baryon Interactions

Cluster gas heating

- Virial theorem implies DM particles and baryons will have similar velocities
- High mass of Macros means energy transfer *to* baryons in a collision, implying gas heating
- Gas would be hottest at center. Lack of this observation implies

$$\sigma_{\rm x}/M_{\rm x} < 6 \times 10^{-2} \,{\rm cm}^2/{\rm g}$$

Chuzhoy and Nusser (2006)

Macro-baryon Interactions

Effects on large-scale structure

- DM-SM interactions would have caused *extra* collisional damping of acoustic oscillations of the baryon-photon plasma (Boehm et al. 2001, 2002, 2004)
- Chen et al. (2002) used CMB and LSS observations to constrain interaction
- Dvorkin et al. (2014) added Lymanalpha observations (z~3) and found

$$\sigma_{\rm x}/M_{\rm x} \leq 3.3\times 10^{-3}~{\rm cm^2/g}$$

Matter power spectrum

Model-independent constraints

Records left on earth

Macro-baryon Interactions

Resonant-bar Gravitational Wave Detectors

- Passing gravitational waves distort spacetime, stretching and contracting objects, for example
- Can hope to detect G-waves by looking for excitation of normal modes of aluminum cylinders
- If cold, also highly sensitivity to cosmic rays and exotic particles because of the thermo-acoustic effect

Joseph Weber (~1960's) Image: AIP Emilio Segrè Visual Archives

Resonant-bar Gravitational Wave Detectors

DMJ, Glenn Starkman, Amanda Weltman, (in preparation)

- Such detectors (at ~2K) can constrain nuclearite dark matter (Liu and Barish, 1988)
- Null detection by the NAUTILUS & EXPLORER experiments rule out nuclearite dark matter candidates below ≤ 10⁻⁴ g
- Analysis can be generalized for macro dark matter

Liu and Barish (1988)

Macro-baryon Interactions

Ancient Mica

- Chemical etching reveals lattice defects in muscovite mica
- Old samples buried deep (~3 km) underground makes for a good exotic particle detector (e.g. monopoles and nuclearites)
- Used by de Rujula and Glashow (1984), Price (1988) to rule out nuclearite dark matter ≤ 55 g
- Generalizable to Macros

FIG. 2. Geometry of collinear etch pits along the trajectory of a hypothetical monopole-nucleus bound state in three sheets of mica that had been cleaved, etched, and superimposed for scanning.

Price and Salamon (1986)

Macro Constraints

(on elastic scattering w/ baryons and other Macros)

DMJ, Starkman, Lynn (2014); DMJ, Starkman, Weltman (2014)

Macro Constraints

(on inelastic scattering w/ baryons and other Macros)

DMJ, Starkman, Lynn (2014)

Macro-photon Interactions

Effects on large-scale structure

- DM-photon interactions would also cause damping (Boehm et al. 2001, 2002, 2004)
- Wilkinson et al. (2014) used
 Planck CMB data to constrain
 DM-photon interactions to

$$\sigma_{\rm X}/M_{\rm X} < 4.5 \times 10^{-7} {\rm cm}^2/{\rm g}$$

 Actually applies to all Macros, assuming thermal equilibrium with the plasma

Wilkinson et al. (2014)

Macro Constraints

(all types, if Macros couple to photons)

DMJ, Starkman, Lynn (2014)

Gravitational effects

Image: GFDL

Flux amplification

$$A = \frac{2 + u^2 + 2\cos\Delta\phi}{u\sqrt{4 + u^2}}$$

$$u \equiv \frac{r_0}{R_E}$$

$$\Delta \phi = E \Delta r$$

Image: GFDL

Microlensing

$$A = \frac{2 + u^2 + 2\cos\Delta\phi}{u\sqrt{4 + u^2}}$$

$$u \equiv \frac{r_0}{R_E}$$

$$\Delta \phi = E \Delta r$$

Microlensing

- Allsman, et al. (2000) and Tisserand, et al. (2006) monitored sources in the SMC and LMC
- Griest et al. (2013) used sources in the local solar neighborhood
- Combined, they exclude

$$4 \times 10^{24} \,\mathrm{g} < M_{\rm x} < 6 \times 10^{34} \,\mathrm{g}$$

Femtolensing

• See Gould, A. (1992)

$$A = \frac{2 + u^2 + 2\cos\Delta\phi}{u\sqrt{4 + u^2}}$$

$$u \equiv \frac{r_0}{R_E}$$

$$\Delta \phi = E \Delta r$$

Femtolensing

- Marani et al. (1998),
 used data the BATSE
 GRB experiment
- Barnacka et al. (2012)
 used GRB data taken
 from the Fermi satellite
- Combined, they exclude

$$10^{17} \,\mathrm{g} < M_{\mathrm{x}} < 10^{20} \,\mathrm{g}$$

Model-independent Macro Constraints

(including DM-photon coupling & lensing)

DMJ, Starkman, Lynn (2014)

Effects on BBN

Effects on BBN

- The Macros may carry a net charge
- If they also absorb baryons (or catalyze decay, etc.) BBN would be affected

Example: positively-charged Macros

Effects on BBN

 \blacksquare Helium mass fraction, $X_4 = \frac{4 \times \frac{1}{2} n_n}{n_n + n_p} = \frac{2n_n}{n_n + n_p}$

$$X_4 = \frac{4 \times \frac{1}{2} n_n}{n_n + n_p} = \frac{2n_n}{n_n + n_p}$$

- Observationally, $X_4^{\text{obs}} \simeq 0.25 \pm 0.01$ (Aver et al. 2013)
- Theoretical uncertainties on Standard Model predications are relatively tiny so we must ensure

$$-0.01 \lesssim \Delta X_4^{\mathrm{Macro}} \lesssim 0.01$$

Effects on BBN

Rate of change of (co-moving) numbers densities

$$\dot{\mathcal{N}}_n = -\left(\Gamma_n + \Gamma_{nX}\right) \mathcal{N}_n$$

$$\dot{\mathcal{N}}_p = +\Gamma_n \mathcal{N}_n - \Gamma_{pX} \mathcal{N}_p$$

Absorption rates

$$\Gamma_{nX} = \langle \rho_{\rm X} \frac{\sigma_{\rm X}}{M_{\rm X}} v \rangle$$

$$\Gamma_{nX} = \langle \rho_{\mathbf{X}} \frac{\sigma_{\mathbf{X}}}{M_{\mathbf{X}}} v \rangle$$

$$\Gamma_{pX} = \Gamma_{nX} \times \begin{cases} e^{-V(R_{\mathbf{X}})/T}, & V(R_{\mathbf{X}}) \ge 0 \\ \left(1 - \frac{V(R_{\mathbf{X}})}{T}\right), & V(R_{\mathbf{X}}) < 0 \end{cases}$$

Effects on BBN

For surface potentials < 0.01 MeV:

$$\left| \frac{\sigma_{\rm X}}{M_{\rm X}} \lesssim 8 \times 10^{-11} \left| \frac{V(R_{\rm X})}{{
m MeV}} \right|^{-1} {
m cm}^2 {
m g}^{-1} \right|$$

For surface potentials > roughly 1 MeV:

$$\frac{\sigma_{\rm X}}{M_{\rm X}} \lesssim 2 \times 10^{-10} \text{ cm}^2 \text{ g}^{-1}$$

DMJ, Starkman, Lynn (2014)

Effects on BBN

DMJ, Starkman, Lynn (2014)

Effects on BBN

DMJ, Starkman, Lynn (2014)

• **Updates to appear**: Improvement by a factor of ~2-4 DMJ, G. Allwright, M. Mafune, S. Manikumar, A. Weltman (2015)

Conclusions

- Dark matter doesn't have to interact weakly if it's very massive. It could still arise from the Standard Model.
- Regardless of its nature, there are large unconstrained regions of macro dark matter parameter space. Much still needs to be done...
- Such "strongly"-interacting dark matter candidates should offer a richer astrophysical scenario than collision-less dark matter. It may be relevant to several outstanding issues in the current CDM paradigm (cusp vs. core, missing satellites,...)

Thank you!

References:

- Jacobs, D.M., Starkman, G.D., Lynn, B.W., Macro Dark Matter, MNRAS 450, 3418 (2015), arXiv:1410.2236.
- Jacobs, D.M., Starkman, G.D., Weltman, A., Resonant Bar Constraints on Macro Dark Matter, Phys. Rev. D 91, 115023 (2015), arXiv:1504.02779.
- Jacobs, D.M., Allwright, G., Mafune, M., Manikumar, S.,
 Weltman, A. Updated BBN Constraints on Macro Dark Matter, arXiv:1510.XXXXX