Prompt/non-prompt lepton discrimination study with BDT in the ttH multilepton final states at ATLAS

Nazim Huseynov JINR Yuriy Ilchenko U of Texas

Physics Computing Russian Institutes meeting

September 22, 2015

Physics Motivation

- ttH measures directly the top quark Yukawa coupling
- Fundamental constant of nature proportional to top quark mass
- $H \rightarrow bb$ is a dominant decay mode irreducible $t\bar{t} + bb$ background
- $H \rightarrow WW$ is a second largest branching ratio
- $\sigma_{ttH} = 130 fb^{-1} at \ 8 TeV expect \approx 2700 \ ttH$ events with $21 fb^{-1}$
- $\sigma_{ttH} = 509 fb^{-1} at \ 13 TeV$

Predicted theory events $L = 21 f b^{-1} at \sqrt{s} = 8 T e V$

Nevents

$ttH \rightarrow 4W + 2b$	588
ttH ightarrow 4WW au au + 2b	172
$ttH \rightarrow WWZZ + 2b$	72

5 analysis channels ($H \rightarrow WW, \tau\tau, ZZ$)

- $ttH \rightarrow same \ sign \ 2-lepton$
- $ttH \rightarrow 3$ -lepton
- $ttH \rightarrow 4$ -lepton
- $ttH \rightarrow 2$ -lepton + 1τ
- $ttH \rightarrow 1$ -lepton + 2τ

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Signal and background composition

Dominant backgrounds

Channel	S/B	Signal	Background	top (%)	ttW (%)	ttZ (%)	VV (%)	Z+jets (%)
2lee5j	0.16 ± 0.04	0.73 ± 0.03	4.56 ± 1.17	28.8	32.7	24.4	10.6	3.5
2lem5j	0.20 ± 0.03	2.13 ± 0.05	10.62 ± 1.54	24.0	47.3	22.6	3.5	2.7
2lmm5j	0.19 ± 0.03	1.41 ± 0.04	7.57 ± 1.31	23.3	51.8	14.4	9.0	1.6
2lee4j	0.04 ± 0.01	0.44 ± 0.02	10.16 ± 2.43	49.1	20.4	9.5	7.6	13.5
2lem4j	0.06 ± 0.01	1.16 ± 0.03	18.51 ± 2.54	44.2	33.9	11.4	10.4	0.0
2lmm4j	0.07 ± 0.01	0.74 ± 0.03	10.26 ± 1.82	36.1	46.4	10.1	5.2	2.2
31	0.24 ± 0.03	2.34 ± 0.04	9.63 ± 1.33	12.6	28.2	46.6	9.2	3.3
4lZenr.	0.22 ± 0.02	0.19 ± 0.01	0.83 ± 0.07	0.5	0.8	88.0	9.1	0.0
4lZdep.	4.17 ± 2.42	0.03 ± 0.003	0.01 ± 0.004	16.7	33.3	50.0	0.0	0.0

 $t\bar{t}$ production with non-prompt leptons is a major background for the few ttH channels, e.g. 21, 31

Nazim Huseynov (JINR)

September	22,	2015	4 ,	/ 24
-----------	-----	------	-----	------

3

글 > - + 글 >

Motivation of BDT implementation

- Non-prompt leptons from hadron decays is a significant background for a number of channels
- *tt* is one of major processes contributing <u>non-prompt</u> leptons in the signal region
- Idea is to use TMVA Toolkit for Multivariate Analysis boosted decision tree (BDT) – to separate prompt from non-prompt leptons
- Original roadmap is described in the proposal note http://www.yuraic.web.cern.ch/yuraic/notes/note_tth_bdt_proposal.pdf

(日) (周) (三) (三)

Samples and Strategy

Samples

Full simulation sample.

group.physhiggs.ttHlep.117050.NTUP_COMMON.e1728_s1581_s1586_r3658_r3549_p1575_vFullTruth4_Special/

Altfast simulation sample.

group.physhiggs.ttHlep.117050.NTUP_COMMON.e1727_a188_a171_r3549_p1575_vFullTruth4_SpecialV2/

Strategy

- Run the ntupler (UT)
 - Save only needed lepton variables for decision tree
 - Matching procedure: mark leptons as prompt or non-prompt based on the truth information in MC
- Employ BDT from TMVA
- Comparison with standard cuts
- Try to optimize standard cuts with MVA

< 🗇 🕨

Muon cuts

- Matching $\Delta R = 0.05$
- ▶ |*eta*| < 2.47, excluding 1.37 < |*eta*| < 1.52
- Muon ID: Tight
- Electron cuts
 - Matching $\Delta R = 0.1$
 - ▶ |*eta*| < 2.47, excluding 1.37 < |*eta*| < 1.52
 - Electron ID: VeryTightLH

- 3

イロト イヨト イヨト

Training and Test samples

- Samples
 - Training 8000 events for signal and background
 - Test 8000 events for signal and background

• Decision Tree

- Boosting algorithm, BoostType=Grad
- Maximum cell tree depth, NNodesMax=3
- A variable range granularity nCuts=20

- 4 同 6 4 日 6 4 日 6

BDT input paramters

We use lepton variables only (no event global variables are included)

Muons		Electrons		
Variable	Separation	Variable	Separation	
1: mu_etcone20/mu_pt	6.172 <i>e</i> –01	1: el_etcone20/el_pt	4.677 <i>e</i> –01	
2: <i>mu_ptcone</i> 20/ <i>mu_pt</i>	4.955 <i>e</i> –01	2: el_ptcone20/el_pt	4.290 <i>e</i> –01	
3: mu_sigd0PV	3.870 <i>e</i> –01	3: el_sigd0PV	3.344 <i>e</i> –01	
4: <i>mu_z</i> 0 <i>SinTheta</i>	3.010 <i>e</i> –01	4: mu_z0SinTheta	3.103 <i>e</i> –01	
5: <i>mu_pt</i>	3.357 <i>e</i> –01	5: <i>el_pt</i>	1.692 <i>e</i> –01	
6: <i>mu_eta</i>	7.432 <i>e</i> –03	6: el_eta	2.291 <i>e</i> -02	

æ

(日) (同) (三) (三)

BDT Response

Training and Test samples

Good separation between prompt(signal) and non-promt (background) leptons

Nazim Huseynov (JINR)

イロト イポト イヨト イヨト

ROC Curve

Receiver-operating characteristic (ROC) curves allows us to assess the decision tree performance

< ロ > < 同 > < 三 > < 三

Comparison BDT vs cuts for electrons

Comparison BDT vs cuts (zoomed) for electrons

TMVA BDT

BDT score cuts : 0.6, 0.4, 0.2, 0.0, -0.2, -0.4, -0.6

- 3

イロト イポト イヨト イヨト

Comparison BDT vs cuts (zoomed) for muons

Muon ROC curve: low-stat (left), large-stat(right)

Decided to take into account pile-up by proper sampling Produced two samples 10% and 33% of the size of fullsim sample

Nazim Huseynov (JINR)

September 22, 2015 14 / 24

< □ > < 同 > < 三 > < 三

Comparison BDT vs cuts (zoomed) for muons

TMVA BDT

ROC curve comparison: 10% fullsim samples

TMVA is unable to construct BDT on 33% sample (errors) TMVA shows bad performance

Nazim Huseynov (JINR)

Comparison BDT vs cuts (zoomed) for muons

scikit-learn BDT

Applied scikit-learn - widely used open-source MVA library, an industry standard Produces stable ROC-curve

(日) (同) (三) (三)

September 22, 2015

16 / 24

- TMVA produces instable results
- scikit-learn BDT gives a better discrimination vs standard cuts for muons
- standard cut optimization with BDT does not seem to be possible but requires further investigation
- at a given signal efficiency BDT rejection is better than the standard cuts
- estimated improvement in background rejection is about 25% (scikit-learn)

- 4 同 6 4 日 6 4 日 6

- understand why TMVA misbehaves (ask within community and/or get in touch with authors possibly?)
- repeat the study for electons
- use ttH signal for prompts and ttbar for non-prompt
- employ either scikit-learn or fixed TMVA to implement MVA object selection cuts
- produce analysis cutflow and compare with the standard cutflow

- 4 同 6 4 日 6 4 日 6

THANKS FOR YOU ATTENTION!

3

(日) (周) (三) (三)

Backup

Nazim Huseynov (JINR)

September 22, 2015 20 / 24

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Electron variables distribution

Training sample

- Signal: blue
- Background: red

* Bottom left and center plots scale by 1000 x-axis

Nazim Huseynov (JINR)

Electron variables correlations

Signal sample

Electron BDT score RMS

- BDT score RMS in pt vs ptcone20/pt coordinates
 - Electrons with low pt and low ptcone20/pt have large BDT score RMS (green area); it means information from other variables is used

Isolation cut optimization

- Standard: ptcone20/pt=0.05
 - Events with BDT score = 0.6 selected (subset of the left plot from slide #5)
 - · Optimized isolation cut is selected as follows,

