Form factor measurement with process $\mathrm{Z} \rightarrow 4 \mathrm{l}$

T. Kharlamova, A. Kharlamov, Yu. Tikhonov, A. Maslennikov, A. Kupich, P. Podberezko

Budker Institute of Nuclear Physics, Novosibirsk Novosibirsk State University

Formfactor measurement with $\mathrm{Z} \rightarrow 41$

- Z decays to real lepton and virtual one
- $\mathrm{Z} \rightarrow$ ll vertex depends on lepton virtuality $\mathrm{Q}_{\text {lepton }}{ }^{2}$
- This vertex function is called "form factor" V(Q)

$\mathbf{V}(\mathbf{Q})$ is sensible to interference effects
from New Physics

Theory

Effective Lagrangian with CP -violating effects:

$$
\left.\mathcal{L}_{\mathrm{CP}}(x)=\sum_{\ell}\left[f_{\mathrm{V} \ell} \bar{\ell}(x) \gamma^{\nu} \ell(x)+f_{\mathrm{A} \ell} \bar{\ell}(x) \gamma^{\nu} \gamma_{5} \ell(x)\right] Z^{\mu}(x)\left[\partial_{\mu} A_{\nu}(x)-\partial_{\nu} A_{\mu}(x)\right]\right\}
$$

Exp/MC ratio $\quad R(y)=\frac{\Gamma\left(Z \rightarrow \ell^{+} \ell^{-} \gamma\right)}{\Gamma_{\operatorname{sm}}\left(Z \rightarrow \ell^{+} \ell^{-}-\gamma\right)}$

$$
\frac{R(y)-1}{\hat{f}_{\mathrm{V} \ell}^{2}+\hat{f}_{\mathrm{A} \ell}^{2}}=\frac{\Delta \Gamma_{\mathrm{CP}}\left(\hat{f}_{\mathrm{V} \ell}, \hat{f}_{A \ell} ; y\right)}{\Gamma_{\mathrm{SM}}\left(\mathrm{Z} \rightarrow \ell^{+} \ell^{-} \gamma\right)\left(\hat{\mathrm{f}}_{\mathrm{V} \ell}^{2}+\hat{\mathrm{f}}_{A \ell}^{2} \ell\right)}
$$

y is a cut parameter for 2-particles moment sum:

$$
\frac{\left(k_{(1)}+k_{(2)}\right)^{2}}{m_{Z}^{2}} \geq y \text {. }
$$

Form factors restrictions:

$$
\begin{aligned}
& \hat{f}_{V_{\mu}}^{2}+\hat{f}_{A \mu}^{2}<(2.6)^{2}, \\
& \hat{f}_{V_{\tau}}^{2}+\hat{f}_{A T}^{2}<(2.6)^{2} .
\end{aligned}
$$

$\hat{f}_{\mathrm{Ve}}^{2}+\hat{f}_{\Lambda \ell}^{2}=1$ will lead to deviations of $\mathrm{R}(\mathrm{y})$ from 1 of up to about 10% at $\mathrm{y}=0.2$

D. Bruß, O. Nachtmann, P. Overmann CP Violation in radiative Z Decays arXiv:hep-ph/9703216v1

Invariant mass for $Z \rightarrow 4 \mu$ in our selections

High statistics is provided by low Pt and no $\mathrm{m}_{\|}$lepton selections

Event selection for 2012 data

Preselection

- Standart HSG2 cuts without J / ψ veto and m_{11} cut
- Each lepton is identified as loose (at least)
- $P_{t}>2 \mathrm{GeV}$ for each lepton and $|\eta|<2.5$ for muons and $|\eta|<2.47$ for electrons

Cuts

- Track isolation $\sum \mathrm{P}_{\mathrm{t}} / \mathrm{P}_{\mathrm{t}}<0.1$
- Calorimeter isolation $\sum \mathrm{E}_{\mathrm{t}} / \mathrm{E}_{\mathrm{t}}<0.5$
- Sum of Pt > 60 GeV
- $\mathrm{d}_{0} / \sigma_{\mathrm{d}_{0}}<5$ for muons
- $40<\mathrm{m}_{12}<80 \mathrm{GeV}$

For this analysis we take only $\mathrm{Z} \rightarrow 41$ region of the plot

Invariant mass distribution of the leading lepton pair, m_{12}

For this analysis we take $40<\mathrm{m}_{12}<80 \mathrm{GeV}$ to reduce Zx bkg

Invariant mass distribution of the subleading lepton pair, m_{34}

For events selected with all cuts $\quad m_{34}[\mathrm{MeV}]$

$\mathrm{Z} \rightarrow 4 \mu$ before and after $\sum\left|\mathrm{P}_{\mathrm{t}}\right|$ cut

Selected events $\mathrm{Z} \rightarrow 41$ after cut $\sum\left|\mathrm{P}_{\mathrm{t}}\right|>60 \mathrm{GeV}$

Invariant mass of 4 leptons with soft cuts

Q^{2} - distribution for Q_{p} and Q_{m}

Q - distribution in MC with only FSR diagram divided to Q - distribution in MC with all tree level diagrams

Q^{2} distribution for $\mathrm{Z} \rightarrow 41$ process is saturated by FSR diagrams at 2% level

Q distribution for Data-2012 divided to MC-truth level Comphep $(4 \mu+4 e+2 e 2 \mu)$ $F(Q)=\frac{\left(\frac{\partial \sigma}{\partial Q}\right)_{\text {Data }}}{\left(\frac{\partial \sigma}{\partial Q}\right)_{M C}}$

$\mathrm{Z} \rightarrow 4 \mu$ comparison with full MC

Event Selection for Data and MC:

- Track isol $\sum \mathrm{P}_{\mathrm{t}} / \mathrm{P}_{\mathrm{t}}<0.1$
- Calo isol $\sum \mathrm{E}_{\mathrm{t}} / \mathrm{E}_{\mathrm{t}}<0.5$
- four leptons with $\mathrm{P}_{\mathrm{t}}>3 \mathrm{GeV}$
- Sum of $\mathrm{Pt}>70 \mathrm{GeV}$
- $\mathrm{m}_{12}<80 \mathrm{GeV}$

Powheg generator cuts - $\mathrm{m}_{\|}>0.25 \mathrm{GeV}$
-four leptons with $P_{t}>3 \mathrm{GeV}$, - $\mathrm{m}_{41}>40 \mathrm{GeV}$

Points - data
Red hist - mc (NLO)

mc12_8TeV.147225.PowhegPythia8_AU2CT10_ZZ_4mu_mll025_4lpt3_m4l40. merge.NTUP_SMWZ.e1750_s1581_s1586_r3658_r3549_p1328

$\mathrm{Z} \rightarrow 4 \mu$ fit with shape from MC

To estimate number of signal and background events the fit was provided in each Q-bin. Signal shape was taken from Powheg full MC and background shape was fitted with Chebyshev polynoms.

$\mathrm{Z} \rightarrow 4 \mu$ fit with shape from MC

Powheg MC is multiplied by factor 1.32 taken from Powheg/Comphep cross sections comparison at truth level

$\mathrm{Z} \rightarrow 4 \mu$ fit with shape from MC

Powheg MC is multiplied by factor 1.32 taken from Powheg/Comphep
Cross sections comparison at truth level

Conclusions

- We report $\mathrm{Z} \rightarrow 41$ soft selections resulting in high statistics
- It allows to measure $Z \rightarrow 21$ vertex dependence on the $\mathrm{Q}_{\text {lepton }}{ }^{2}$ (or cross section dependence on $\mathrm{Q}_{\text {lepton }}{ }^{2}$)
- $\mathrm{Z} \rightarrow 21$ vertex dependence on the $\mathrm{Q}_{\text {lepton }}{ }^{2}$ is sensible to interference with New Physics
- To measure $\mathrm{Z} \rightarrow 21$ vertex dependence on the $\mathrm{Q}_{\text {lepton }}{ }^{2}$ one needs:
- $\mathrm{Z} \rightarrow 41 \mathrm{MC}$ with low $\mathrm{P}_{\mathrm{t}}>2 \mathrm{GeV}$
- Recommendations for μ / e with low $\mathrm{P}_{\mathrm{t}}>2 \mathrm{GeV}$
- First look at $\mathrm{Z} \rightarrow 4 \mu$ gives $\mathrm{f}_{\mathrm{V}}{ }^{2}+\mathrm{f}_{\mathrm{A}}{ }^{2}$ about 0.5

Back ups

$\mathrm{Z} \rightarrow 4 \mu$ form factor measurement - first look

$\mathrm{Z} \rightarrow 4 \mathrm{e}$ comparison with full MC

Tree level diagrams - 1

Delete, on/off, Restore, Latex

Tree level diagrams - 2

Invariant mass for 4 leptons

$\mathrm{d}_{0} / \sigma_{\mathrm{d}_{0}}$ for soft muon (3)

Calorimeter isolation

Track isolation

Transverse momentum distribution

Q - distribution for Q_{p} and Q_{m}

Q_{p} vs Q_{m} for Powheg MC

MC Samples

- Powheg
mc12_8TeV.147225.PowhegPythia8_AU2CT10_ZZ_4mu_mll025_4lpt3 m4140
M_II $>0.25 \mathrm{GeV}$
$\mathrm{m}_{\mathrm{L}} 4 \mathrm{l}>40 \mathrm{GeV}$
$\mathrm{pT}>3 \mathrm{GeV}$
- Comphep

Private sample $Z \rightarrow 4 \mu$ at truth level
M_II > 0.5 GeV

- Sherpa

Mc12_8TeV.189608.Sherpa_CT10_IIII_ZZ_MassiveSB
M_ee>0.1 GeV
$\mathrm{pT}>5 \mathrm{GeV}$ for two leading leptons

PowhegPythia/ComphepPythia comparison

Powheg/Comphep comparison

