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exceeds Pbeam/2Nu because at this power level the synchrotron period zs ∼ Lu

and the particles rotate to an absorptive phase of the ponderomotive potential.

This claim can be made more rigorous by repeating the gain calculation of the

previous section with the exact particle trajectories in the sinusoidal potential

[13] (note that when the gain is low we can still approximate E as constant).

However, since the particle trajectories now involve the Jacobi elliptic functions

associated with the full pendulum motion, the resulting integral for the energy

loss analogous to (3.35) can only be evaluated numerically.

The gain reduction can also be found by numerically solving the FEL equa-

tions. We show the results of the gain normalized to its small signal maximum

in Fig. 3.8. The inset panels show samples of the longitudinal phase space at

the end of the undulator for various values of the input power, along with the

separatrix defined by the optical field at z = Lu. When the power is much

less than Pbeam/2Nu the particles are still predominantly in the decelerating

phase, while the evidence of rotation in the ponderomotive bucket is clear when

P = 5(Pbeam/2Nu). At the largest field power the electrons have significantly

rotated in the potential, and the gain is reduced by a large factor.

3.4 High-gain regime

The FEL can also act as a high-gain amplifier, in which case the energy exchange

during a single pass through the undulator is large and the field amplitude cannot

be regarded as a constant. This high-gain regime is particularly important when

mirrors are not available to build oscillators, and has been used as the first way

to produce intense x-rays from FELs. Here, it is necessary to also consider the

field evolution, so that we must study the pendulum equations coupled to the

paraxial wave equation for the radiation.

3.4.1 Maxwell equation

In what follows we will consider the one-dimensional (1D) electromagnetic field

equation in the slowly varying approximation. We first examine the field equation

in the time domain, which could be obtained directly from the Fourier transform

of the paraxial wave equation (2.58) introduced to study undulator radiation.

Nevertheless, we feel that some additional physical insight can be obtained by

presenting a more complete derivation in the time domain, but we will return

to the spectral representation in Sec. 4.1.1. The 1D Maxwell equation for the

transverse electric field is[
1

c2
∂2

∂t2
− ∂2

∂z2

]
Ex = − 1

ε0c2
∂Jx
∂t

. (3.58)

We apply the slowly-varying envelope approximation to the time domain
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Maxwell equation by expressing the field as

Ex(z, t) = Ẽ(z, t) cos[k1z − ω1t+ φ(z, t)]. (3.59)

Here, we have separated the fast oscillation of the wave at the resonant frequency

∼ ei(k1z−ω1t) from the amplitude Ẽ and phase φ. We expect the amplitude

and phase to be slowly varying functions of z and t, meaning that they are

nearly constant over time scales Δt ∼ 1/ω1 and spatial scales Δz ∼ 1/k1. This

division results in a separation of spatiotemporal scales that we use to simplify

the wave equation (3.58). Defining the complex amplitude function E(z, t) =
1
2 Ẽ(z, t)eiφ(z,t), the radiation electric field is

Ex = E(z, t)ei(k1z−ω1t) + E∗(z, t)e−i(k1z−ω1t). (3.60)

We then decompose the wave operator as

1

c2
∂2

∂t2
− ∂2

∂z2
= D+D− with D± =

1

c

∂

∂t
± ∂

∂z
, (3.61)

and note that

D−
[
Eei(k1z−ω1t)

]
= −2ikEei(k1z−ω1t) + ei(k1z−ω1t)D−E. (3.62)

Assuming that the wave amplitude has slow variation over a wavelength, we

can neglect the second term in the equation above because |D−E| � k1|E|.
This is the essence of the slowly varying phase and amplitude approximation. In

addition, we have

D+

[
Eei(k1z−ω1t)

]
= ei(k1z−ω1t)D+E (3.63)

since D+e
i(k1z−ω1t) = 0. Upon multiplying the Maxwell equation (3.58) by

ie−ik1(z−ω1t)/2k1 we obtain

D+E − e−2i(k1z−ω1t)D+E
∗ = − i

2ε0k1c2
e−i(k1z−ω1t)

∂Jx
∂t

. (3.64)

The 1D current density is obtained from the electron motion in the undulator

field,

Jx = − ecK

2πσ2
x

cos(kuz)

Ne∑
j=1

1

γj
δ[z − zj(t)], (3.65)

where 2πσ2
x is the e-beam cross sectional area, so that −e/2πσ2

x is the charge

per unit area of the electron beam.

The transverse current (3.65) is comprised of a sum of delta functions, which

aparently contradicts the assumption that the field envelopes vary slowly. To

establish a well-defined, slowly varying current and eliminate the oscillating term

proportional to E∗ from the wave equation, we average Eq. (3.64) over the time

interval Δt by performing the following operation:

1

Δt

t+Δt/2∫
t−Δt/2

dt′
∣∣∣∣∣
at fixed z

. (3.66)
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Figure 3.9 Delta slice average in time at fixed undulator location z.

We require the averaging time Δt to be both longer than the inverse carrier

frequency ck1 and much shorter than the characteristic time over which the field

amplitude changes; the latter is given by the radiation coherence time tcoh that

we will derive in subsequent analysis. Hence, we require 1/ck1 ≤ Δt � tcoh,

in which case the field amplitude is approximately constant over Δt, and the

left-hand side of (3.64) becomes

1

Δt

t+Δt/2∫
t−Δt/2

dt′
[
D+E − e−2i(k1z−ω1t)D+E

∗
]
= D+E(t, z)

+O

(
1

ck1

∂

∂t
D+E

∗
) (3.67)

if we choose cΔt to be an integral number of wavelengths. To simplify the average

of the current, we integrate by parts using

i

k1c2
1

Δt

t+Δt/2∫
t−Δt/2

dt′ e−i(k1z−ω1t)
∂Jx
∂t′

≈ 1

c

1

Δt

t+Δt/2∫
t−Δt/2

dt′ e−i(k1z−ω1t
′)Jx, (3.68)

where we again take cΔt = nλ1 for n an integer.

Using Jx from Eq. (3.65) and the relation δ[z − zj(t
′)] = δ[t′ − tj(z)]/vz, the

integral of the current over t′ picks out the NΔ electrons that arrive at plane z

within the time interval ±Δt/2 of the time t (i.e., those that lie within the so-

called “Δ-slice” shown in Fig. 3.9). Thus, the slowly-varying Maxwell equation

(3.64) becomes

D+E = − 1

2ε0c

1

Δt

ecK

2πσ2
x

∑
j∈[z,Δt]

1

γj
e−i[k1z−ω1tj(z)] cos(kuz), (3.69)

where the sum includes only those electrons in the Δ-slice. We now write (3.69)

in terms of the slowly-varying electron phase θj(z) ≡ (k1 + ku)z − ω1t̄j(z), re-

calling that the average time t̄j(z) is defined by subtracting off the longitudinal
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oscillations in the planar undulator,

t̄j(z) ≡ tj(z)− K2

ω1(4 + 2K2)
sin(2kuz), (3.70)

so that θj(z) is slowly-varying. Note that when computing the undulator radia-

tion t̄j(z) and, hence, θj(z), were linear functions of z because the particle energy

was assumed constant, while in the FEL γ changes as the EM field is amplified.

We insert the definition (3.70) into the phase of the current, obtaining

e−i[k1z−ω1tj(z)] cos(kuz) = e−i[k1z−ωt̄j(z)] exp
[

iK2

4+2K2 sin(2kuz)
]
cos(kuz)

= e−iθj(z)
∑
n

Jn

(
K2

4+2K2

)
e2inkuz

1

2

(
e2ikuz + 1

)

→ e−iθj(z)
1

2
[JJ]. (3.71)

The final line (3.71) retains only the non-oscillatory terms n = 0, −1 from the

sum; this should be familiar from the section on undulator radiation. Introducing

the average electron volume density ne by

1

2πσ2
xv̄zΔt

∑
j∈[z,Δt]

e−iθj =
NΔ

2πσ2
xv̄zΔt

∑
j∈[z,Δt]

e−iθj

NΔ

≡ ne(z − v̄zt)〈e−iθj 〉Δ (3.72)

we can finally write the Maxwell equation in the slowly-varying envelope approx-

imation as [
∂

∂z
+

1

c

∂

∂t

]
E = −κ1ne〈e−iθj 〉Δ. (3.73)

Here, we approximate γj ≈ γr in the coupling constant, which at the fundamental

frequency we have define as

κ1 =
eK[JJ]

4ε0γr
. (3.74)

Note that while setting γj → γr in κ1 is a very good approximation, making

such a replacement in the particle phase would eliminate the FEL interaction

entirely. Finally, we stress that the subscript Δ in Eq. (3.73) refers to the Δ-slice

average at position z and time t. Hence, the quantity 〈e−iθj 〉Δ, which is often

referred to as the local bunching factor, is a function of both z and t.

3.4.2 FEL equations and energy conservation

Let us change the variables of Eq. (3.73) from (z, t)→ (z, θ), taking the field to

be E(θ, z). Using θ = (k1 + ku)z − ck1t, we have

∂

∂z

∣∣∣∣
t

+
1

c

∂

∂t

∣∣∣∣
z

=
∂

∂z

∣∣∣∣
θ

+ ku
∂

∂θ

∣∣∣∣
z

, (3.75)
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so that Eq. (3.73) becomes[
∂

∂z
+ ku

∂

∂θ

]
E(θ; z) = −κ1ne〈e−iθj 〉Δ. (3.76)

Next, we write the pendulum equations (3.19) in terms of E:

dθj
dz

= 2kuηj , (3.77)

dηj
dz

= χ1

(
Eeiθj + E∗e−iθj

)
, (3.78)

where

χ1 =
eK[JJ]

2γ2
rmc2

. (3.79)

Equations (3.76), (3.77), and (3.78) are the central governing equations for a

high-gain FEL in 1D.

The 1D FEL equations (3.76)-(3.78) conserve total (particle + field) energy.

To see this, consider the electromagnetic field energy density

u =
ε0
2
(E2 + c2B2) = ε0E

2
x = 2ε0 |E|2 . (3.80)

Since the kinetic energy density of the electrons is neγmc2, we have

d

dz

[∑
j

ne(1 + ηj)γrmc2 + 2ε0

∫
dθ

∣∣E(θ; z)
∣∣2] = 0. (3.81)

3.4.3 Dimensionless FEL scaling parameter ρ

By expressing the governing equations of physical systems in terms of dimension-

less quantities, one can identify important time and length scales and characterize

the relevant magnitudes of the physical variables. In this section we cast the FEL

equations into dimensionless form and find the fundamental scaling parameter

ρ. We will subsequently see that ρ, which is also called the Pierce parameter,

characterizes most properties of a high-gain FEL, while the dimensionless beam

and radiation variables will give us some sense of the dynamics without any

additional computation.

We introduce the as yet unspecified parameter ρ by defining the scaled longi-

tudinal coordinate ẑ ≡ 2kuρz that leads to the phase equation

dθj
dẑ

= η̂j for η̂j ≡ ηj
ρ

(the new “momentum” variable). (3.82)

To simplify the energy equation for η̂j , we define the dimensionless complex field

amplitude

a =
χ1

2kuρ2
E, (3.83)
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in terms of which the energy equation reduces to

dη̂j
dẑ

= a(θj , ẑ)e
iθj + a(θj , ẑ)

∗e−iθj . (3.84)

Writing the field equation (3.76) in terms of ẑ and a, we have[
∂

∂ẑ
+

1

2ρ

∂

∂θ

]
a(θ, ẑ) = − χ1

2kuρ2
neκ1

2kuρ
〈e−iθj 〉Δ. (3.85)

To simplify the field equation, we choose to set the coefficient on the right-hand-

side of (3.85) to unity. Thus, the dimensionless Pierce parameter ρ must be [9]

ρ =

[
neκ1χ1

(2ku)2

]1/3
=

(
e2K2[JJ]2ne

32ε0γ3
rmc2k2u

)1/3

=

[
1

8π

I

IA

(
K[JJ]

1 +K2/2

)2
γλ2

1

2πσ2
x

]1/3

, (3.86)

where IA = ec/re = 4πε0mc3/e ≈ 17045 A is the Alfvén current and 2πσ2
x is the

cross sectional area of the electron beam.

The scaled FEL equations have all coefficients unity, so that the dimensionless

form allows one to make a number of order-of-magnitude estimates regarding

the dynamics. First, one may a priori expect that the scaled variation d/dẑ � 1.

Thus, in the exponential growth regime we may anticipate the 1D gain length

LG0 ∼ (2kuρ)
−1. Additionally, since resonant energy exchange proceeds if the

ponderomotive phase is nearly constant, this implies that saturation of the

FEL interaction occurs when the scaled energy deviation η̂j ∼ 1 (or ηj ∼ ρ).

At this point we expect that the bunching will approach its maximum value∣∣〈e−iθj
〉
Δ

∣∣ → 1, which in turn implies that the maximum scaled amplitude of

the radiation |a| ∼ 1. Furthermore, if we had included the transverse derivatives

in the wave equation we would expect

1

4kuk1ρ
∇2
⊥ → 1. (3.87)

Identifying the transverse Laplacian with the radiation size via ∇2
⊥ ∼ 1/σ2

r , we

find that the rms mode size of the laser is roughly given by

σr ∼
√

λ1

4π

λu

4πρ
. (3.88)

While these arguments are heuristic, they give useful predictions of FEL per-

formance. Besides the observation that that the gain length is approximately

λu/4πρ, we use the definition (3.83) to translate the scaled radiation amplitude

|a| → 1 at saturation to |E| → 2kuρ
2/χ1, so that the maximum field energy

density

2ε0 |E|2 ∼ 2ε0ρ
4k2uρ

3

χ2
1

= 2ε0ρ
κ1

χ1
= ρneγrmc2. (3.89)
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Because nemc2γr is the electron energy density, we see that ρ also gives the FEL

efficiency at saturation:

ρ =
field energy generated

e-beam kinetic energy
. (3.90)

Therefore, the FEL (or Pierce) parameter ρ determines the main characteristics

of high-gain FEL systems, including

1. Gain length ∼ 4πλu/ρ,

2. Saturation power ∼ ρ×(e-beam power),

3. Saturation length Lsat ∼ λu/ρ,

4. Transverse mode size σr ∼
√
λ1λu/16π2ρ.

In the following sections we will analyze the FEL equations and demonstrate

that the dynamics indeed exhibit these simple scalings.

3.4.4 1D solution using collective variables

In this section, we illustrate the essentials of FEL gain by neglecting the θ de-

pendence of the electromagnetic field. This ignores the propagation (slippage)

of the radiation, and is equivalent to assuming that a has only one frequency

component. This model will be useful to illustrate the basic physics of the elec-

tron beam and radiation field in a high-gain device, but will be insufficient to

fully understand the spectral properties of self-amplified spontaneous emission

(SASE); we will present a more rigorous discussion of SASE in Sec. 4.3. The 1D

FEL equations ignoring radiation slippage are

dθj
dẑ

= η̂j (3.91)

dη̂j
dẑ

= aeiθj + a∗e−iθj (3.92)

da

dẑ
= −〈e−iθj 〉Δ . (3.93)

These are 2NΔ + 2 coupled first order ordinary differential equations, 2NΔ for

the particles, and 2 equations for the complex amplitude a. In general, these can

only be solved via computer simulation. However, the system can be linearized

in terms of three collective variables [9]:

a (field amplitude)

b = 〈e−iθj 〉Δ (bunching factor)

P = 〈η̂je−iθj 〉Δ (collective momentum).

The equations of motion for the bunching b and the field amplitude a follow

directly from Eqs. (3.91) and (3.93). Differentiating the collective momentum

yields

dP

dẑ
=

〈
dη̂j
dẑ

e−iθj

〉
− i

〈
η̂2j e

−iθj
〉
= a+ a∗

〈
e−2iθj

〉− i
〈
η̂2j e

−iθj
〉
. (3.94)
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Note that (3.94) contains additional field variables, and the resulting system of

equations is not closed. Nevertheless, these other terms are nonlinear, which we

therefore expect to result in negligible higher order corrections when a, b, and

P are much smaller than unity before saturation. Thus, linearizing (3.94) and

including the equations for b and a from (3.91) and (3.93) yields the following

closed system in the small-signal regime

da

dẑ
= −b Bunching produces

coherent radiation.
(3.95a)

db

dẑ
= −iP Energy modulation becomes

density bunching.
(3.95b)

dP

dẑ
= a

Coherent radiation drives

energy modulation.
(3.95c)

These are three coupled first order equations, which can be reduced to a single

third-order equation for a as

d3a

dẑ3
= ia. (3.96)

We solve the linear equation by assuming that the field dependence is ∼ e−iμẑ,

which results in the following dispersion relation for μ:

μ3 = 1. (3.97)

This is the well-known cubic equation [14], whose three roots are given by

μ1 = 1, μ2 =
−1−√3i

2
, μ3 =

−1 +√3i

2
. (3.98)

The root μ1 is real and gives rise to an oscillatory solution, while μ2 and μ3

are complex conjugates that lead to exponentially decaying and growing modes,

respectively. Furthermore, the roots obey

3∑
�=1

μ� = 0,

3∑
�=1

1

μ�
=

3∑
�=1

μ∗� =

3∑
�=1

μ2
� = 0, (3.99)

and the general solution to Eq. (3.96) is composed of a linear combination of the

exponential solutions:

a(ẑ) =

3∑
�=1

C�e
−iμ�ẑ. (3.100)
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The three constants C� are determined from the initial conditions a(0), b(0), and

P (0). By differentiating the expression for a and using (3.95), we find

a(0) = C1 + C2 + C3, (3.101)

da

dẑ

∣∣∣∣
0

= −b(0) = −i [μ1C1 + μ2C2 + μ3C3] , (3.102)

d2a

dẑ2

∣∣∣∣
0

= iP (0) = − [
μ2
1C1 + μ2

2C2 + μ2
3C3

]
. (3.103)

Using (3.99), this yields the electromagnetic field evolution as

a(ẑ) =
1

3

3∑
�=1

[
a(0)− i

b(0)

μ�
− iμ�P (0)

]
e−iμ�ẑ. (3.104)

The general solution for the radiation requires all three roots of μ. For long

propagation distances, however, the relative importance of the oscillating root

μ1 and decaying root μ2 becomes insignificant in comparison with the growing

solution associated with μ3. Thus, the radiation field is completely characterized

by μ3 in the exponential growth regime where ẑ � 1, so that

a(ẑ) ≈ 1

3

[
a(0)− i

b(0)

μ3
− iμ3P (0)

]
e−iμ3ẑ. (3.105)

The first term in the bracket describes the coherent amplification of an external

radiation signal, while the second and the third term show how modulations in

the electron beam density and energy may lead to FEL output. When the source

of these modulations is the electron beam shot noise then the exponential growth

is called self-amplified spontaneous emission (SASE).

3.4.5 Qualitative description of self-amplified spontaneous emission (SASE)

Self-amplified spontaneous radiation results from the FEL amplification of the

initially incoherent spontaneous undulator radiation [6, 7, 9]. It is of primary im-

portance for FEL applications in wavelength regions where mirrors (and, hence,

oscillator configurations) are unavailable.

For our first look at SASE, we use the formula for the radiation in the high-

gain regime (3.105) assuming that there is no external field a(0) = 0 and that

the beam has vanishing energy spread with P (0) = 0. In this case, the radiation

intensity in the exponential growth regime is

〈|a(ẑ)|2〉 ≈ 1

9
〈|b(0)|2〉e

√
3ẑ. (3.106)

Here, the scaled propagation distance
√
3ẑ =

√
3(2kuzρ) = z/LG0, and the ideal

1D power gain length is

LG0 ≡ λu

4π
√
3ρ

. (3.107)

The bunching factor at the undulator entrance 〈|b(0)|2〉 derives from the initial
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Figure 3.10 Illustration of basic SASE processes. Adapted from Ref. [15].

shot noise of the beam, which is subsequently amplified by the FEL process. This

input noise turns out to be approximately given by the spontaneous undulator

radiation generated in the first gain length LG0 of the undulator. In Sec. 4.3.2

we will show that

〈|b(0)|2〉 =
〈

1

N2
lcoh

∣∣∣∣∣
∑

j∈lcoh
e−iθj

∣∣∣∣∣
2〉
≈ 1

Nlcoh

, (3.108)

where Nlcoh is the number of electrons in a coherence length lcoh. As we have

mentioned, the normalized bandwidth of SASE is Δω/ω ∼ ρ, so that the co-

herence length lcoh ∼ λ1/ρ; alternatively, one can recognize the coherence length

as approximately given by the amount the radiation slips ahead of the electron

beam in one gain length. Hence, the start-up noise of a SASE FEL is character-

ized by

Nlcoh ∼
I

ec

λ1

ρ
. (3.109)

Figure 3.10 is a schematic illustrating the start-up, exponential growth, and

saturation of a SASE FEL. Some of the important radiation properties are

1. Saturation length Lsat ∼ λu/ρ;

2. Output power ∼ ρ× Pbeam;

3. Frequency bandwidth Δω/ω ∼ ρ;

4. 1D power gain length LG0 = λu/(4π
√
3ρ);

5. Transverse coherence: radiation emittance εr = λ/4π;

6. Transverse mode size: σr ∼
√
εrLG0;

7. Effective noise power Pin defined by P = Pin exp(z/LG) is approximately the

spontaneous radiation produced over two gain lengths LG0.
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Very high brightness electron beams are essential for SASE FELs, which have

been made possible through recent advances in photocathode gun technology (see

[16] and a review in [17]) and improvements of rf linacs. To generate sufficient

gain in the undulator and produce transversely coherent radiation, the electron

beam should meet the following criteria:

1. Energy spread Δγ/γ < ρ;

2. Emittance εx � λ/(4π);

3. Beam size σx � σr ∼
√

λ
4π

λu

4πρ ;

4. High peak current to achieve ρ ∼ 10−3 and, hence, a reasonable saturation

length and power efficiency.

The production and transport of such high-brightness beams is itself a rich sub-

ject, but beyond our intended scope; rather, the next two chapters will attempt to

explain the physics behind these e-beam requirements, and how they ultimately

relate to the performance of advanced x-ray sources.


