
4 1D FEL analysis

In this chapter we delve more deeply into the 1D theory of the FEL. The 1D

picture is sufficient to understand how an FEL works, since the essential FEL

physics is longitudinal in nature. A free-electron laser acts as a linear ampli-

fier in the small signal regime, and we will find that it is most easily analyzed

theoretically in the frequency representation. Hence, we begin this section by de-

riving the FEL equations in the frequency domain, including both the 1D wave

equation and the Klimontovich equation describing the electron beam. We then

apply these equations to the small-gain limit in Sec. 4.2, finding solutions that

generalize those of Sec. 3.3. We then turn our attention to the high-gain FEL in

Sec. 4.3, showing how the linearized FEL equations can be solved for arbitrary

initial conditions using the Laplace transform. In particular, Sec. 4.3 covers self-

amplified spontaneous emission (SASE) in some detail, because SASE provides

the simplest way to produce intense x-rays. We derive the basic properties of

SASE in the frequency domain, including its initialization from the fluctuations

in the electron beam density (shot noise), its exponential gain, and its spectral

properties. We then connect our analysis to the time domain picture via Fourier

transfomation, which helps complete the characterization of SASE’s fluctuation

properties. The Chapter concludes with a discussion of how the FEL gain satu-

rates in Sec. 4.4. We derive a quasilinear theory that describes the decrease in

gain associated with an increase in electron beam energy spread, and show qual-

itatively how this is related to particle trapping. We also discuss tapering the

undulator strength parameter after saturation to further extract radiation en-

ergy from the electron beam. Finally, we make a few comments on superradiance,

focusing on the superradiant FEL solution associated with particle trapping that

can support powers in excess of the usual FEL saturation power.

4.1 Coupled Maxwell-Klimontovich equations for the 1D FEL

The 1D FEL equations in the frequency domain can be used to obtain a clear un-

derstanding of various aspects of the SASE process, including the initial start-up

from particle shot noise, the exponential gain, the development of longitudinal

coherence, and the effect of the electron beam energy spread. They also quali-

tatively describes the full physics of x-ray FELs, since the effect of diffraction is
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smaller for shorter wavelengths. Here, we first derive the spectral wave equation,

and then turn to a frequency representation of the Klimontovich equation that

describes the dynamics of the electron distribution function.

4.1.1 Wave equation in the frequency domain

In the previous Chapter we derived the wave equation (3.73) for the slowly vary-

ing complex amplitude E(t; z). In order to obtain this equation, we averaged the

Maxwell wave equation over time both to isolate the amplitude E and to properly

define the slowly-varying current. Only after integrating over the time interval Δt

did the slowly-varying current become apparent – prior to the averaging Jx con-

tained an ill-defined sum of Dirac delta-functions. This time-domain approach is

convenient for developing an understanding of the high-gain behavior and scal-

ings, and is well-suited to time-dependent numerical simulation (e.g., the FEL

codes GINGER or GENESIS). The approximation involving the Δt average be-

comes accurate in the exponential growth regime when the e-beam has developed

significant bunching. On the other hand, the same average is not well-defined in

the initial stage when the electron distribution is completely stochastic. For this

reason the study of self-amplified spontaneous emission, which involves an in-

tense signal growing from initially random noise, is more appropriately carried

out in the frequency domain.

We introduce the slowly varying frequency domain amplitude Ẽν via

Ex(z, t) = eik1(z−ct)

∫
dν Ẽν(z)e

iΔνk1(z−ct) + c.c., (4.1)

where we recall that the normalized frequency difference Δν ≡ (ν − 1) ≡
(k − k1)/k1 for the fundamental h = 1. This definition differs slightly from

the conventions used in the chapter on spontaneous radiation, since the complex

conjugate implies that (4.1) includes only positive frequencies; nevertheless, this

is consistent with the power and flux definitions of Sec. 1.2.2, which count only

positive frequencies as seen in Eq. (1.69). For FEL radiation, we expect Ẽν to

be localized about the resonant frequency with Δν � 1, so that the ν-integral

extends only over a narrow range about ν = 1. This restriction has the same

physical significance as the Δ-slice averaging in the time domain.

We now proceed to derive the frequency-domain field equation in 1D by ne-

glecting the transverse dependence in the paraxial wave equation (2.64) obtained

when studying synchroton radiation. We proceed this way for several reasons:

first, we want to emphasize the fact that the FEL is a natural extention of

spontaneous undulator radiation once the self-consistent electron motion in the

radiation field is included; second, our approach to undulator radiation also in-

cluded emission at the odd harmonics, so that using our results from Sec. 2.4 will

also yield the wave equation for higher FEL harmonics; third, our Δ-slice aver-

age somewhat complicates a direct Fourier transformation of the time-domain

equation (3.76). Hence, we begin by re-writing the paraxial solution (2.64) with
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two modifications to the source that we explain below:[
∂

∂z
+

ik

2
φ2

]
Ẽω(φ; z) =

∑
h odd

eK[JJ]h
8πε0γrcλ2

Ne∑
j=1

e−iωθj(z)/ω1eiΔνkuz

×
∫
dx e−ikφ·xδ(x− xj).

(4.2)

First and foremost, we have replaced the initial particle time coordinate with

the dynamical phase via tj(0)→ t̄j(z)− (k1+ku)z/ω1 = −θj(z)/ω1. This gener-

alizes the source to include self-consistent particle motion in the ponderomotive

potential.1 Second, we have re-written the angular dependence of the current so

that we can replace the point-like electron source with a constant charge density

in the transverse plane by making the replacement δ(x−xj)→ 1/(2πσ2
x). Then,

in the 1D limit we have∫
dx e−ikφ·xδ(x− xj)→

∫
dx

e−ikφ·x

2πσ2
x

=
λ2

2πσ2
x

δ(φ), (4.3)

and the source is directed entirely in the forward direction.

The 1D limit is completed by defining the 1D electric field via

Ẽω(φ; z) = Ẽν(z)

ck1
δ(φ). (4.4)

The factor 1/ck1 accounts for the fact that the Fourier transform (4.1) is defined

with respect to the scaled frequency ν rather than ω; the δ(φ) enforces the

field to be in the forward direction only, which also implies that in the spatial

representation the electric field is independent of x. Inserting the field (4.4) into

(4.2) and integrating over angle yields the 1D field equation in the frequency

domain

∂

∂z
Ẽν = −ek1K[JJ]h

8πσ2
xε0γr

eiΔνkuz
1

2π

Ne∑
j=1

e−iνθj(z). (4.5)

We recall that the phase θj(z) is the position of the jth electron relative to the

bunch center in units of λ1/2π, and λ1 is the fundamental wavelength of the

undulator radiation.

Finally, we clean up the source current in the wave equation (4.5) by defining

the phase-shifted electric field amplitude

Eν(z) = e−iΔνzẼν(z). (4.6)

Note that this phase shift must be retained even though Δν ∼ ρ, since we also

have kuz ∼ 1/ρ. The field equation for Eν(z) is then(
∂

∂z
+ iΔνku

)
Eν(z) = −ek1K[JJ]h

8πσ2
xε0γr

1

2π

Ne∑
j=1

e−iνθj(z). (4.7)

1 Previously we calculated the spontaneous undulator radiation assuming that the electrons
move with the average longitudinal velocity v̄z = ω1/(k1 + ku), in which case
θj(z) = −ω1tj(0).
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Although this equation looks very similar to the time domain Eq. (3.76), the

frequency domain wave equation (4.5) differs in the following ways in that the

driving current is a sum over all electrons in the bunch, and the particle phase

factor is e−iνθ instead of e−iθ.

4.1.2 Particle dynamics: Klimontovich equation

In our previous analysis we have described the electron motion in an FEL us-

ing single particle (Newton’s) equations, from which we found an approximate

collective description. An alternate approach that retains all the generality of

the single particle equations while treating the electron beam as a single entity

employs a distribution function on phase space. It turns out that this approach

is also naturally suited for the frequency representation.

To retain the discrete nature of the electrons, we describe the electron beam

using the Klimontovich distribution function in the longitudinal phase space

spanned by (θ, η),

F (θ, η; z) =
k1
I/ec

Ne∑
j=1

δ[θ − θj(z)]δ[η − ηj(z)]. (4.8)

Here I/ec is the line density, and F is comprised of sum over all Ne particles

in the beam, with each particle contributing a delta function centered about its

coordinates in phase space.

The distribution function can be separated into the smooth background V

and the rest that contains the shot noise and the perturbation due to the FEL

interaction δF . We write this division as

F (θ, η; z) = V (η) + δF (θ, η; z), (4.9)

in which we assume that the smooth background distribution depends only on

the energy η but not on the phase θ. This corresponds to a uniform bunch model

which is approximately valid for a bunch that is much longer than the slippage

distance over one gain length, λ1/4πρ. Furthermore, we have taken V to be

independent of z, an assumption that applies before nonlinear saturation. Its

normalization is chosen such that
∫
dη V (η) = 1.

The frequency representation of the Klimontovich distribution function F (θ, η; z)

is given by

Fν(η; z) =
1

2π

∫
dθ e−iνθF (θ, η; z) =

1

Nλ

Ne∑
j=1

e−iνθj(z)δ[η − ηj(z)], (4.10)

where Nλ is the number of electrons in one radiation wavelength λ1. Conserva-

tive, Hamiltonian dynamics dictates that the distribution function is conserved

along single particle orbits, so that F satisfies the continuity equation

d

dz
F (θ, η; z) =

∂F

∂z
+

dθ

dz

∂F

∂θ
+

dη

dz

∂F

∂η
= 0. (4.11)
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The phase equation dθj/dz is the same as was derived previously; the energy

equation in terms of Eν(z) can be found by comparing the definitions (3.60) and

(4.1), from which we find that

eiθjE(z, θj) = eiθj
∫
dν Ẽν(z)e

iΔνk1(z−ctj) = eiθj
∫
dν Ẽν(z)e

−iΔνzeiΔνθj

=

∫
dν Eν(z)e

iνθj . (4.12)

If we include the force due to all odd radiation harmonics, the Vlasov equation

(4.11) becomes[
∂

∂z
+ 2kuη

∂

∂θ

]
δF = −

∑
h odd

χh

[∫
dν Eν(z)e

iνθ + c.c.

]
∂

∂η
(V + δF ), (4.13)

where we have defined the harmonic coupling χh = eK[JJ]h/(2γ
2
rmc2) and as-

sumed that the radiation frequency is narrowly centered about each harmonic,

so that ν ≈ h for h = 1, 3, . . ..

In what follows we will further assume that only one radiation harmonic con-

tributes to the sum, and treat δF and Eν as first order quantities. In this small-

signal limit we may drop the term ∼ δF from the right-hand-side of (4.13),

leaving only the (zeroth order) smooth background V (η). Fourier transforming

the result gives the linearized continuity equation in the frequency representation

as [
∂

∂z
+ 2iνkuη

]
Fν(η; z) = −χh

dV

dη
Eν(z). (4.14)

The 1D Maxwell-Klimontovich equations for the FEL are then completed by

using the definition (4.10) to express the source term of the wave equation (4.7)

in terms of Fν ; we get(
∂

∂z
+ iΔνku

)
Eν(z) = −κhne

∫
dη Fν(η; z), (4.15)

where the harmonic coupling

κh ≡ eK[JJ]h
4ε0γr

. (4.16)

It is easy to show that (4.15) with h = 1 is related to the field equation (3.76)

by the Fourier transform defined in (4.1). We recall that the electron volume

density

ne =
I

ec(2πσ2
x)

, (4.17)

and that in the 1D limit the cross sectional area 2πσ2
x is assumed to be large.

For the FEL this implies that the electron beam width should be much larger

than the natural FEL mode size, with σ2
x � λ1λu/(4π

2ρ).

We pause to make a brief comment on our assumption that only one FEL
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harmonic contributes to the equation (4.14). In the low-gain case this means that

we consider the amplification of a nearly monochromatic field whose frequency is

centered at hω1 with h odd and positive. This situation is particularly relevant to

an FEL oscillator designed to amplify one frequency over many passes through

the undulator. On the other hand, our high-gain analysis will assume that the

FEL operates at the fundamental frequency because this gives the largest gain,

so that high-gain devices typically operate with h = 1. While the generation

of harmonic radiation is possible with a high-gain device, this typically involves

nonlinear processes that we will discuss in Chap. 6.

4.2 Pertubative solution for small FEL gain

We have shown that in the linear regime the FEL is governed by the coupled

differential equations (4.15) and (4.14). It is easy to see that these are equivalent

to the integral equations

Eν(z) = e−iΔνkuz

[
Eν(0)− κhne

z∫
0

dz′ eiΔνkuz
′
∫
dη Fν(η; z

′)

]
(4.18)

Fν(η; z) = e−2iνkuηz

[
Fν(η; 0)− χh

z∫
0

dz′ e2iνkuηz
′ dV

dη
Eν(z

′)

]
. (4.19)

Combining these two, we find that the electric field satisfies

Eν(z) = e−iΔνkuz

⎡
⎣Eν(0)− κhne

z∫
0

dz′
∫
dη ei(Δν−2νη)kuz

′
Fν(η; 0)

+χhκhne

z∫
0

dz′ ei(Δν−2νη)kuz
′

z′∫
0

dz′′ e2iνkuηz
′′ dV

dη
Eν(z

′′)

⎤
⎦ .

(4.20)

The first term on the right-hand side is the input coherent radiation that prop-

agates unaltered to the point z, while the second term is the spontaneous undu-

lator radiation; we abbreviate the latter as

ESR
ν (z) ≡ −κhnee

−iΔνkuz

z∫
0

dz′
∫
dη ei(Δν−2νη)kuz

′
Fν(η; 0). (4.21)

The third term in Eq. (4.20) represents the effects of the interaction between the

electron beam and the radiation field.

As it stands, (4.20) clearly separates the initial, spontaneous, and amplified

parts of the radiation field, but is in general more difficult to solve then (4.15)

and (4.14). If the interaction is weak, however, we may replace Eν(z
′′) with the

unperturbed field e−iΔνkuz
′′
Eν(0) in the interaction term. In this case we have
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a closed-form solution that we can write as

Eν(z) = ECoh
ν (z) + ESR

ν (z), (4.22)

where in the weak-interaction (low-gain) approximation the coherent part of the

field is

ECoh
ν (z) = e−iΔνkuzEν(0)

×
⎡
⎣1 + χhκhne

∫
dη

z∫
0

dz′
z′∫
0

dz′′ ei(Δν−2νη)ku(z
′−z′′) dV

dη

⎤
⎦ .

(4.23)

The integrals over z′ and z′′ are straightforward, and at the end of the undulator

the coherent field can be cast in the form

ECoh
ν (Lu) =

{
1 +

jC,h

8

∫
dη V (η)[g(xν,η) + ip(xν,η)]

}
e−2πiΔνNuEν(0). (4.24)

The compact solution (4.24) obtains after integrating over η by parts and intro-

ducing additional short-hand notation with the constant jC,h and the functions

p and g. We have defined g(x) to be the same as the gain function introduced

when we first discussed low-gain FEL physics in Sec. 3.3.1, while we will find

that the function p(x) is related to the accompanying phase change of Eν(z).

Explicitly, these functions are

g(x) = − d

dx

(
sinx

x

)2

p(x) =
d

dx

(
2x− sinx

2x2

)
. (4.25)

We assume that the frequency is near an odd harmonic, ν = h+Δν with h odd

and Δν � 1, in which case g and p are functions of the argument

xν,η = 2πNu(hη −Δν/2). (4.26)

Finally, the dimensionless constant jC,h was introduced by Colson in his low gain

FEL analysis [1], and defined to be

jC,h ≡ 4hχhκhnekuL
3
u = 4π2h

e2ne

4πε0

K2[JJ]2h
γ3mc2

NuL
2
u (4.27)

= 2h(4πρNu)
3 [JJ]

2
h

[JJ]2
. (4.28)

The second line shows the relationship between jC,h and the dimensionless Pierce

parameter ρ that we introduced in Sec. 3.4.3. Since jC,h is proportional to the

gain when the gain is small, in this limit we also find that G ∝ (ρNu)
3. Again,

the low-gain solution (4.24) is valid if jC,h � 1, which is equivalent to requiring

that the undulator length is less then the ideal 1D FEL gain length, Lu/LG0 =

4π
√
3ρNu < 1. This requirement can be relaxed somewhat if the gain is reduced

by the energy spread of the electron beam.

To investigate the effects of the electron beam energy spread, we consider the
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case where the electrons’ energy distribution is Gaussian about η0:

V (η) =
1√
2πση

e−(η−η0)
2/2σ2

η . (4.29)

We then write the amplitude formula (4.24) as

ECoh
ν (Lu) =

{
1 +

jC,h

8

[
ḡ(x0) + ip̄(x0)

]}
e−2πiΔνNuEν(0). (4.30)

Here, we have defined the integrations

ḡ(x0) ≡
∫
dx′

e−x′2/2(2πNuhση)
2

√
2π(2πNuhση)

g(x0 − x′), (4.31)

p̄(x0) ≡
∫
dx′

e−x′2/2(2πNuhση)
2

√
2π(2πNuhση)

p(x0 − x′), (4.32)

with x0 ≡ 2πNu(hη0 −Δν/2).

Now, we can easily calculate the gain by considering the radiation energy

density u ∝ |Eν |2. We have

G =
u(Lu)− u(0)

u(0)
≈ jC,h

4
ḡ(x0) (4.33)

to first order in jC,h. This expression generalizes the gain formula (3.47) to in-

clude e-beam energy spread; in the limit ση � 1/(2πNuh) we have ḡ(x0)→ g(x0)

and (4.33) reproduces (3.47). In other words, the electron beam energy spread

can be neglected if its rms width is much less than that of the spontaneous radi-

ation at the FEL harmonic of interest. On the other hand, if the energy spread

ση � 1/(2πNuh) then we must account for the fact that electrons with different

energies satisfy the FEL resonance condition at different radiation wavelengths.

The resulting interference tends to reduce the FEL gain, and this physics is

captured mathematically by the convolution (4.31).

There is another convenient way to write ḡ(x0) if the energy distribution is

given by the Gaussian (4.29). This expression follows if we defer integrating

over the undulator length in Eq. (4.23), and instead integrate over η. Changing

variables to z = z′/Lu − 1/2 and s = z′′/Lu − 1/2 we find that

G = −jC,h

2

1/2∫
−1/2

dz

1/2∫
−1/2

ds (z − s) sin[2x0(z − s)]e−2[2πNu(z−s)ση ]
2

. (4.34)

In addition to energy exchange, the amplitude equation has an imaginary part

proportional to p(x). This term in Eq. (4.30) leads to a phase change of the field

that accompanies FEL gain. Figure 4.1(a) plots the functions ḡ(x) and p̄(x) as

a function of the detuning x0 = 2πNu(hη0 − Δν/2) when the energy spread

ση = 0.5(2πNuh). The functional form of g is very similar to the zero energy

spread case shown previously in Fig. 3.6, although the peak value has decreased

from 0.54 to about 0.46. The value of p at the detuning that maximizes the gain
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Figure 4.1 (a) Low-gain functions when the energy spread (2πNuh)ση = 0.5. The
amplitude gain ḡ is very similar to its cold counterpart, while the phase change p̄ is
small at maximum gain. (b) Energy spread dependence of the low-gain functions at
the detuning xM that gives maximal gain.

is small, about 0.13. Therefore, the phase change during FEL amplification is

also relatively small.

We are usually free to set the detuning x to maximize the gain, by either

choosing the energy or frequency offset (in fact, the FEL itself may pick out the

x of maximum gain). In Fig. 4.1(b) we plot ḡ and p̄ at the detuning xM that

maximizes the gain. We see that the phase change p̄ is between one-quarter and

two-fifths of ḡ, and is therefore typically rather small.

Furthermore, we see that the gain is not significantly affected by the energy

spread provided (2πNuh)ση � 0.5, after which ḡ drops quite rapidly. This shows

that the FEL gain at higher harmonics is more sensitive to energy spread, which

can be attributed to the fact that the normalized undulator radiation bandwidth

∼ 1/hNu. On the other hand, the FEL gain for a fixed e-beam energy, undulator

period, and undulator length also scales with the constant jC,h ∝ hK2[JJ]2h.

Hence, under these restrictions one may find that the gain at a certain target

wavelength is maximized by operating at a higher FEL harmonic, because in

this case jC,h increases as both h and K increase. This will be true provided the

energy spread is sufficiently small, ση � 1/(4πNuh). Such constraints on e-beam

energy or undulator length may be imposed by cost and/or size limits of the

FEL accelerator facility.

4.3 Solution via Laplace transformation for arbitrary FEL gain

We employed two different perturbation expansions in Sec. 3.2 and in Sec. 4.2 to

solve the FEL equations in the low-gain limit. Here, we develop the full solution

to the linearized 1D FEL equations that will generalize the collective variable

approach of Sec. 3.4.4. We assume emission at the fundamental dominates the
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dynamics (ν ≈ 1), so that the coupled FEL system is described by(
∂

∂z
+ iΔνku

)
Eν(z) = −κ1ne

∫
dη Fν(η; z), (4.35)[

∂

∂z
+ 2ikuη

]
Fν(η; z) = −χ1

dV

dη
Eν(z). (4.36)

The initial value problem of the coupled Eqs. (4.35) and (4.36) can be solved

by introducing the Laplace transform [2, 3]:

[
Eν,μ

Fν,μ

]
=

∞∫
0

dz eiμ2ρkuz

[
Eν(z)

Fν(z)

]
. (4.37)

We emphasize that ν ≈ 1 represents the frequency that is the Fourier conjugate

to the temporal phase θ, while μ gives complex growth as the fields propagate

in z. Taking the Laplace transform of the particle and radiation equations lead

to the algebraic linear system

−2iμρkuEν,μ + iΔνkuEν,μ = −κ1ne

∫
dη Fν,μ(η) + Eν(0) (4.38)

−2iμρkuFν,μ(η) + 2ikuηFν,μ(η) = −χ1Eν,μ
dV

dη
+ Fν(η; 0), (4.39)

where Eν(0) and Fν(η; 0) are the ν
th component of the initial radiation field and

the initial beam distribution, respectively. Equations (4.38)-(4.39) can be easily

solved for Eν,μ, and the inverse Laplace transformation yields

Eν(z) =

∮
dμ

2πi

e−iμ2ρkuz

D(μ)

⎡
⎣Eν(0) +

iκ1ne

2ρkuNλ

Ne∑
j=1

e−iνθj(0)

ηj(0)/ρ− μ

⎤
⎦ , (4.40)

where we have used the definition of Fν Eq. (4.10), and have defined the disper-

sion function

D(μ) ≡ μ− Δν

2ρ
−

∫
dη

V (η)

(η/ρ− μ)2
. (4.41)

Note that the integration contour in the complex μ plane must be below all

singularities/poles of (4.40), so that when z < 0 and the contour can be closed

at 
(μ)→ −∞, it encloses no poles and Eν(z < 0) = 0.

The first term of Eq. (4.40) describes the process of coherent amplification of

Eν(0), while the second term containing the particle phases e−iνθj describes FEL

radiation initiated by the electron beam; assuming that the beam is not initially

microbunched these phases are random and this term describes the process of

self-amplified spontaneous emission.

When z > 0 the contour integral of Eq. (4.40) encloses all the singularities

in the complex μ plane. There are many singularities of kinematic origin, which

give the free-streaming solutions for which μ = ηj(0)/ρ; however, these vary for

each particle according to the initial energy, and we will find that summing over

these contributions yield the usual spontaneous emission. Thus, the evolution in
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a free-electron laser is largely dictated by the poles of 1/D, which are given by

the roots of the dispersion relation:

D(μ) = μ− Δν

2ρ
−

∫
dη

V (η)

(η/ρ− μ)2
= 0. (4.42)

Solutions to D(μ) = 0 for which μ has a positive imaginary part give rise to

an exponentially growing electric field amplitude. For e-beams with vanishing

energy spread V (η) = δ(η), this dispersion relation become μ2(μ−Δν/2ρ) = 1,

which in turn reduces to the cubic equation (3.97) when Δν = 0.

Having found the field amplitude, we can compute the power spectral density

with some slight adjustments to the formula (1.70). Using the fact that Eω =

Eν/ω1 and integrating over the area 2πσ2
x, we find that

dP

dω
=

ε0
πc

2πσ2
xλ

2
1

T

〈|Eν(z)|2
〉
. (4.43)

Here T is the duration of the electron pulse, and 〈·〉 denotes an ensemble average

over the microscopic electron distribution. When calculating
〈 |Eν(z)|2

〉
for the

SASE term we will use the manipulation〈∑
j,


e−iν(θj−θ�)G(ηj , η
)

〉
=

〈∑
j

G(ηj , ηj)

〉
+

〈∑
j �=


e−iν(θj−θ�)G(ηj , η
)

〉

≈ Ne

∫
dη V (η)G(η, η), (4.44)

where the θj ’s are the initial phases, and we drop the sum with j �= � under the

assumption that the initial phases are completely random with no correlation.

For simplicity, we use the shorthanded notation θj = θj(0) and ηj = ηj(0) from

now on.

4.3.1 Spontaneous radiation and the low-gain limit

The system dynamics are largely governed by the dispersion function D(μ) of

Eq. (4.41). The FEL interaction itself is contained in the third term here, and

involves an integral over η of the distribution function V . We can connect the

present analysis with our calculation of the spontaneous undulator radiation and

the low-gain FEL by assuming this interaction to be weak. Thus, we expand 1/D

from the integral solution (4.40) as follows:

1

D(μ)
=

1

μ−Δν/(2ρ)
+

1

(μ−Δν/(2ρ))2

∫
dη

V (η)

(η/ρ− μ)2
+ . . . . (4.45)

This expansion is valid mathematically in the limit of vanishing ρ, and hence we

also have η/ρ→∞.

We compute the spontaneous radiation amplitude by keeping only the first

term in the expansion and applying the residue theorem of contour integration.
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Then, we get

Eν(z) = − iκ1ne

2ρkuNλ

Ne∑
j=1

e−iνθj
e−iΔνkuz − e−2iηjkuz

ηj/ρ−Δν/2ρ
, (4.46)

which is easy to show is the equal to the spontaneous radiation amplitude ob-

tained in the perturbation expnasion (4.20). To find the power spectral density,

we insert Eν(z) into Eq. (4.43) and evaluate the ensemble average with the help

of Eq. (4.44):

dP

dω

∣∣∣∣
1D

=

(
λ2
1

2πσ2
x

)
I

IA

(
K[JJ]

1 +K2/2

)2
γ2mc2z2

λ2
u

×
∫
dη V (η)

{
sin[kuz(η −Δν/2)]

kuz(η −Δν/2)

}2

.

(4.47)

The quantity λ2
1/(2πσ

2
x) can be interpreted as the characteristic diffraction an-

gular spread from a source of size 2πσ2
x: ΔφxΔφy ∼ λ2

1/(2πσ
2
x). In the 1D limit

this tends to zero, and we identify

δ(φ)
∣∣
φ=0

=
2πσ2

x

λ2
1

(4.48)

to relate our 1D result to the spectral-angular distribution of the radiation power

in the forward direction via

dP

dω

∣∣∣∣
1D

2πσ2
x

λ2
1

=
dP

dω
δ(φ)

∣∣
φ=0

=
dP

dωdφ

∣∣∣∣
φ=0

. (4.49)

Equations (4.47) and (4.49) give the well-known formula for undulator radiation,

which we derived previously as (2.97).

It is left as an exercise to show that the low-gain FEL theory can be reproduced

by keeping the second term of the expansion Eq. (4.45) into Eq. (4.40).

4.3.2 Exponential growth regime

In general, the dispersion relation may have a root with positive imaginary part

that in turn gives rise to an exponentially growing field amplitude. In keeping

with previous notation, we denote this root as μ3, so that 
(μ3) > 0. As ρkuz

becomes larger than unity the growing solution associated with μ3 tends to

dominate the field dynamics, in which case the field is well-described by a single

mode. Applying the residue theorem and keeping only the term associated with

the growing root μ3 gives

Eν(z) =
e−2iρμ3kuz

D′(μ3)

⎡
⎣Eν(0) +

iκ1ne

2ρkuNλ

Ne∑
j=1

e−iνθj

ηj/ρ− μ3

⎤
⎦ , (4.50)

where

D′(μ) =
dD

dμ
= 1− 2

∫
dη

V (η)

(η/ρ− μ)3
. (4.51)
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Figure 4.2 The growth rate μI as a function of the scaled detuning Δν/2ρ for a flattop
energy distribution with the full width Δη = ζρ, for various values of ζ. Adapted
from Ref. [2].

The corresponding electron distribution function, which can be obtained from

Eq.(4.39), is

Fν,μ(η) =
iχ1

2ku

dV/dη

(νη − μρ)
Eν,μ. (4.52)

The power spectral density of the radiation in the exponential growth regime,

which is computed by inserting Eq. (4.50) into Eq. (4.43), can be written as [2]

dP

dω
= e4μIρkuzgA

(
dP

dω

∣∣∣∣
0

+ gS
ρ γrmc2

2π

)
, (4.53)

where we write the imaginary part 
(μ3) ≡ μI , and the initial field and e-beam

conditions are given by

dP

dω

∣∣∣∣
0

≡ input power spectrum, (4.54)

gA ≡ 1

|D′(μ)|2 , (4.55)

gS ≡
∫
dη

V (η)

|η/ρ− μ|2 . (4.56)

The quantities μI , gA and gS are all functions of the detuning Δν and the

electron beam energy distribution. gA is a measure of how the initial radiation

power and shot noise seed the interaction, while gS quantifies the relative increase

in shot noise seeding as the beam energy spread increases; we will discuss these

coupling parameters further near the end of this section. The growth rate μI is

a very important FEL figure of merit, as it sets the required undulator length
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to reach saturation. As a simple example, Fig. 4.2 plots the growth rate μI

as a function of Δν/2ρ = Δω/(2ρω1) for various cases of the energy spread,

assuming that the beam energy distribution is a flattop of full width Δη = ρζ

[i.e., V (η) = 1/ρζ if |η| ≤ ρζ/2 and V (η) = 0 otherwise]. For this distribution,

evaluating the integral in the dispersion relation (4.41) leads to(
μ− Δν

2ρ

)(
μ2 − ζ2

4

)
= 1, (4.57)

and the roots have closed form expressions. It turns out that this dispersion

relation has the same functional form as that obtained including the quantum

effects of recoil, and in Appendix C.1 we write the general solution to the initial

value problem for the field, bunching, and collective momentum if μ obeys (4.57).

Here, we focus on the growth rate; Figure 4.2 indicates that μ has a positive

imaginary part over a frequency width characterized by the high-gain FEL

bandwidth Δν ∼ ρ. Additionally, the peak growth rate is a decreasing function

of the energy width of the distribution function.

For a given electron beam energy spread, it is clearly interesting to compute

the maximum value of μI , which we take to occur at a frequency detuning

Δνm: maxΔν μI(ν) = μIm at Δν = Δνm. The growth rate at frequencies near

its maximum can be approximately determined by expanding μI as a Taylor

series in Δν:

μI(Δν) = μIm − μI2(Δν −Δνm)2 + . . . . (4.58)

Thus, by approximating the growth rate as a quadratic function of the frequency

difference about its maximum, we may write the exponential gain function as

e4μIρkuz ≈ ez/LG exp

[
−1

2

(
ω − ωm

ωmσν

)2
]

(4.59)

where

4μImρkuz ≡ z

LG
ωm ≡ ω1(1 + Δνm) σ2

ν ≡
1

8μI2ρkuz
. (4.60)

Here, we have defined LG = (4μImρku)
−1 to be the power gain length, while

σν ∝ (ρkuz)
−1/2 is the rms relative bandwidth of the FEL. Equation (4.59)

approximates the frequency dependence of the FEL gain by a Gaussian function.

This gain profile describes both the gain curve for coherent amplification of the

initial spectral power dP/dω|0, and the ensemble averaged spectral profile for

the SASE term, since the beam shot noise acts as a white-noise (frequency-

independent) seed as shown by Eq. (4.53). Note the phrase “ensemble averaged”:

we will subsequently show that SASE behaves like the chaotic light described in

Sec. 1.2.5, so that any particular instance will be comprised of many longitudinal

modes that appear as “spikes” in the single-shot temporal and spectral power

profiles.

Now, we apply the Gaussian approximation (4.59) with the definitions (4.60)
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to express the FEL power spectral density (4.53) as

dP

dω
= gAe

z/LG exp

[
− (ω − ωm)2

2(ωmσν)2

](
dP

dω

∣∣∣∣
0

+ gS
ρ γrmc2

2π

)
. (4.61)

Equation (4.61), which is valid in the exponential growth regime 2ρkuz � 1,

shows how the power grows along the undulator.

For the special case of vanishing energy spread, the various parameters charac-

terizing the 1D FEL have closed form solutions [2, 3]. From (4.41), the dispersion

relation for a cold beam is

D(μ) = μ− Δν

2ρ
− 1

μ2
= 0, (4.62)

and the maximal growth rate is at zero detuning Δν = 0. It is then straightfor-

ward to show that

gA =
1

9
, gS = 1, (4.63)

LG = LG0 =
λu

4π
√
3ρ

, μIm =

√
3

2
. (4.64)

These results are the same as what was predicted by the collective variable model.

In addition, we can find the approximate dependence of the growth rate μ on

frequency difference Δν by expanding

μ(Δν) ≈ μ(0) + μ1Δν + μ2 (Δν)
2

(4.65)

with μ(0) = (i
√
3 − 1)/2 and assuming that Δν/ρ � 1. In this case, we solve

(4.62) order by order in Δν/ρ, finding that

μ ≈ −1

2

[
1− Δν

3ρ
+

(Δν)2

36ρ2

]
+ i

√
3

2

[
1− (Δν)2

36ρ2

]
. (4.66)

Hence, μI2 =
√
3/72ρ2, and the rms bandwidth for a beam with vanishing

energy spread is

σν = σΔω/ω =

√
3
√
3ρ

kuz
= ρ

√
18

NG
≈

√
0.83ρ

z/λu
, (4.67)

where NG is the number of power gain lengths of evolution.

In the general case, numerical calculation is necessary to obtain these quan-

tities. Figure 4.3 shows the maximum growth rate μIm and the corresponding

coupling parameters gS and gA as a function of the energy spread for a Gaussian

energy distribution. As expected, the maximum growth rate decreases (and the

growth length increases) as a function of ση, since electrons with different ener-

gies are resonant with different radiation frequencies. This effect for a Gaussian

energy spread can be approximated as affecting the gain length via

LG(ση) =
1

4ρkuμIm(ση)
≈ LG0

[
1 + (ση/ρ)

2
]
, (4.68)
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Figure 4.3 Maximum growth rate μI , radiation coupling gA, and shot noise seeding
parameter gS as a function of rms Gaussian energy spread width ση.

and we see that the gain length is severely lengthened when when the spread

in energies approaches the FEL bandwidth, i.e., when ση/ρ � 1. Note that the

gain length (4.68) is chosen for an optimal detuning Δν, and that the optimal

Δν becomes more negative as ση increases.

Additionally, both gA and gS are increasing functions of ση. The latter gS
gives the relative strength of the shot noise seeded SASE to that produced by

any coherent radiation seed, which is an important quantity if one is interested in

generating longitudinally coherent FEL light using an external radiation source.

As the energy spread increases, one must increase the electromagnetic seed power

to overcome the fractional increase in shot noise generated SASE. For small

energy spreads ση � ρ, the quadratic increase in gS can be ascribed to the

energy noise associated with the collective momentum P (0) that we introduced

in Sec. 3.4.4.

In the exponential growth regime, Eq. (4.67) implies that the SASE band-

width decreases as (λu/z)
1/2. Hence, during exponential growth the bandwidth

decreases more slowly than it does during the spontaneous emission phase where

Δν ∝ λu/z. We plot an example illustrating this in Fig. 4.4, where we see that

the SASE bandwidth follows that of the undulator radiation for the first few

gain lengths, after which it decreases as (λu/z)
1/2. The radiation force is set to

zero for the simulation of the undulator radiation. Note the difference in band-

width at saturation ẑ ≈ 10 (z ∼ λu/ρ) is a factor of order 2-3, whereas after

exponential growth the average SASE power is ∼ 105 to 107 times larger than

that of simple undulator radiation.

Before saturation, the expression (4.61) can be used to compute the charac-
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Figure 4.4 Evolution of SASE bandwidth and undulator radiation full-width, half-max
(FWHM) bandwidth. The factors 11.1 and 7.6 for the theory lines come from
Eqs. (2.72) and (4.67), respectively, using ρ = 5× 10−4.

teristics of SASE. For example, the coherence time tcoh can be computed from

the coherence function

C(τ) ≡
〈∫

dt E(t)E∗(t+ τ)
〉〈∫

dt |E(t)|2〉 =
1

〈P 〉
〈∫

dω e−iωτ dP

dω

〉
, (4.69)

where the second line identifies the correlation function with the Fourier trans-

form of the power spectral density using the Weiner-Khinchin theorem. The cor-

relation time tcoh ≡
∫
dτ |C(τ)|2 is easily evaluated using (4.69) and the power

spectral density (4.61); the result is quite similar to that of the chaotic light

discussed in Sec. 1.2.5, with

tcoh =

√
π

ωmσν
. (4.70)

Additionally, the quantity ργrmc2/2π in Eq. (4.53) [or (4.61)] may be inter-

preted as the input noise power contained in the electron beam [4]. The noise

power is independent of frequency (white noise), and it can be shown to be equal

to the power generated from spontaneous undulator radiation in two power gain

lengths [5]. Integrating the SASE term over the frequency, we obtain the elec-

tromagnetic power

P =

∫
dω

dP

dω
= gSgA

ρ γrmc2

2π

√
2πω1σνe

z/LG

= gSgAρPbeam
ez/LG

√
2Nlcoh

. (4.71)

Here Pbeam = (I/e)γrmc2 is the e-beam power and Nlcoh = (I/ec)lcoh is the

number of electrons in one coherence length lcoh ≡ ctcoh = λ1/(2
√
πσν). Since
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we expect the saturation power to be about ρPbeam, the total amplification factor

will be about Nlcoh , which is a large number whose typical magnitude is 105 to

107.

4.3.3 Temporal fluctuation and correlation of SASE

The SASE radiation consists of a random collection of a large number of co-

herent pulses, much like synchrotron radiation. To see this in the time domain,

we construct the temporal amplitude by Fourier transforming the field in the

frequency representation,

Ex(z, t) =

∫
dν Eν(z)e

iΔν[(k1+ku)z−ω1t]ei(k1z−ω1t), (4.72)

with Eν given by the growth SASE solution for the case of vanishing energy

spread

Eν(z) =
iκ1ne

2ρkuNλ

e−iμ2ρkuz

μD′(μ)

Ne∑
j=1

e−iνθj(0). (4.73)

In general, the integral cannot be evaluated exactly due to the dependence of μ

on Δν. However, in the limit that the energy spread is negligible, an approximate

result can be obtained using the second order expansion derived in (4.66). Hence,

we insert

μ = −1

2

[
1− Δν

3ρ
+

(Δν)2

36ρ2

]
+ i

√
3

2

[
1− (Δν)2

36ρ2

]
(4.74)

into the exponential of μ, and the resulting expression is a Gaussian integral that

can be done analytically. We obtain [6]

Ex(z, t) ∝ e
√
3ρkuz

√
z

Ne∑
j=1

exp
{
−iω1

[
t− z

c
(1 + ρΔβ)− tj

]}

× exp

{
−1 + i/

√
3

4σ2
τ

[
t− z

c

(
1 + 2

3Δβ
)− tj

]2}
,

(4.75)

where the normalized difference of the average electron beam velocity from unity

is Δβ ≡ 1− β̄z = (1 +K2/2)/2γ2, and the rms temporal width

στ =
1√
3σω

≈ 1

2ω1

√
z/λu

ρ
. (4.76)

The total field profile (4.75) describes a sum of Ne wave packets of rms pulse

length στ that grow exponentially as they propagate. This random collection

of modes has the essential properties of chaotic light, although in this case the

power grows exponentially with z while its coherence length increases ∼ √kuz.

Note that the relationship between the rms temporal and spectral widths of these

modes differ from the usual στσω = 1/2 due to the quadratic phase dependence

in (4.75). We show an example of such temporal evolution of SASE in Fig. 4.5.


