Machine Protection

Lars Fröhlich DESY

CERN Accelerator School on FELs and ERLs – June 9, 2016

Overview

- What & Why?
- Interaction of Beams with Matter
- Damage to Permanent Magnets

Photo: Wikimedia Commons, CC BY-SA 3.0 https://commons.wikimedia.org/w/index.php?curid=134686

What & Why?

What is Machine Protection?

Machine protection is the sum of all measures that protect an accelerator and its infrastructure from the beam.

- Machine Protection System
 - Interlock on components (magnets, screens, ...)
 - Monitoring of the beam (beam loss monitors, charge monitors, BPMs, ...)
 - Mitigation (inform the operator, reduce repetition rate, fire abort kickers, stop beam production immediately, ...)

Case Study: European XFEL (Early Design)

What is Machine Protection?

Machine protection is the sum of all measures that protect an accelerator and its infrastructure from the beam.

- Machine Protection System
 - Interlock on components (magnets, screens, ...)
 - Monitoring of the beam (beam loss monitors, charge monitors, BPMs, ...)
 - Mitigation (inform the operator, reduce repetition rate, fire abort kickers, stop beam production immediately, ...)
- Collimators, absorbers
- Shielding
- Physics (matching, collective effects, ...)
- Robust systems+software (feedbacks, LLRF, controls, ...)
- Safe procedures (switch on, change beam energy, ramp to full power, ...)

Average Electron Beam Powers

Normal conducting

•	FERMI@Elettra	1.4 GeV	10 Hz	14 W
•	SACLA	7 GeV	10-60 Hz	18-140 W
•	LCLS	15 GeV	120 Hz	36-360 W

Photo: DESY

Superconducting

•	FLASH	1.3 GeV	1-3 MHz pulsed	10 W - 22 kW
•	European XFEL	17.5 GeV	4.5 MHz pulsed	>500 kW
•	LCLS-II	4 GeV	0.1-1 MHz CW	120 kW

Energy recovery linacs

•	NovoFEL	12 MeV	5.6-22 MHz CW	15-60 kW
•	Jlab FEL	200 MeV	75 MHz CW	>1 MW
•	Future ERLs?	5 GeV	1.3 GHz CW	500 MW

Photo: Michael J. Linden	Normal conductingFERMI@ElettraSACLALCLS	1.4 GeV 7 GeV 15 GeV	10 Hz 10-60 Hz 120 Hz	14 W 18-140 W 36-360 W
average beam p	$= \frac{\text{energy}}{\text{charge}}$ $= \frac{\text{``bean}}{\text{``bean}}$	$\frac{y}{e} \cdot \frac{\text{charge}}{\text{time}}$ $\frac{a \text{ energy}''}{e} \cdot \frac{e}{a \text{ energy}''}}{e} \cdot \frac{e}{e}$	average cur repetition ra	rent ate•bunch charge

Energy recovery linacs

•	NovoFEL	12 MeV	5.6-22 MHz CW	15-60 kW
•	Jlab FEL	200 MeV	75 MHz CW	>1 MW
•	Future ERLs?	5 GeV	1.3 GHz CW	500 MW

Hazards

For an accelerator with **P** = 1 MW:

Local loss power (W)	Effects
100 - 1000 10-3	Thermal/mechanical damage
10 - 100	Mechanical failure of flange connections
1 — 100	Activation of components
1 — 100	Radiation damage to electronics, optical components, &c.
1 — 10	Excessive cryogenic load, quenches
0.01 0.1 10-7	Demagnetization of permanent magnets

Interaction of Beams with Matter

Photo: Wikimedia Commons, CC BY-SA 3.0 https://commons.wikimedia.org/w/index.php?curid=11085

Energy Loss of Electrons in Matter

Bremsstrahlung: Radiation Length

- At high energies, the energy loss by bremsstrahlung scales like: $dE/dx \approx E \cdot const.$
- Therefore, the remaining particle energy can be written as:

 $E(x) \approx E_0 \exp\left(-\frac{x}{L_{\rm rad}}\right)$

- After one radiation length, the energy of a high energy electron has decreased to 1/e of its initial value.
- The radiation length is often normalized to a standard density:

 $X_0 = L_{\rm rad} \cdot \rho_0$

	L _{rad} (cm)	X ₀ (g/cm ²)
Aluminum	8.9	24.01
Titanium	3.56	16.17
Iron	1.76	13.84
Copper	1.43	12.86
Tungsten	0.35	6.76
Lead	0.56	6.37

Photonic Interactions with Matter

- Minimum energy for pair production: $2.511 \text{ keV} \approx 1.02 \text{ MeV} (e^+/e^-)$ $2.106 \text{ MeV} \approx 211 \text{ MeV} (\mu^+/\mu^-)$
- Cross section for muon production is small, but muons are of concern for personnel protection!
- Cross section scales roughly as Z²: Heavy elements shield well against photon beams
- Mean free photon path at high energies:

 $L_{\rm pair} \approx \frac{9}{7} L_{\rm rad}$

The typical path length a photon can travel in matter until it is consumed in a pair production event is ~30% higher than the radiation length of the material.

Electromagnetic Cascades

A Veeery Simple Shower Model

Assumptions:

- An electron emits half of its energy as a single photon after L_{rad} .
- A photon is converted to an e⁺/e⁻ pair, each carrying half of its energy, after L_{rad}.
- The shower stops when particle energies drop below the critical energy.

Particle energy after N radiation lengths: $E(N) = E_0/2^N$

The critical energy is reached after N_{crit} radiation lengths: $E_{crit} = E(N_{crit}) = E_0/2^{N_{crit}}$

Number of radiation lengths to reach the critical energy: $N_{crit} = \ln(E_0/E_{crit}) / \ln(2)$

This is only a qualitative model! Better: Monte Carlo (Fluka, Geant, ...)

1 GeV Electrons on Copper

1 GeV Electrons on Copper

Electron Beam Hitting a Copper Target

Electron Beam Hitting a Copper Target

Damage to Permanent Magnets

Demagnetization of Permanent Magnets

Teruhiko Bizen - "Brief Review of the Approaches to Elucidate the Mechanism of the Radiation-induced Demagnetization" (ERL workshop 2011, Tsukuba, Japan)

- FELs rely on precision magnetic fields
- Permanent magnets lose magnetic field under irradiation with high energy electron beams
- Various magnetic materials behave differently

Skupin et al., "Undulator demagnetization due to radiation losses at FLASH", Proc. EPAC 2008, pp. 2308-2310

Demagnetization of Permanent Magnets

Can demagnetization be compensated by undulator tuning (opening gaps)?

FLUKA beam loss simulation

5

0

x (cm)

15

10

-15 -10 -5

- FELs rely on precision magnetic fields
- Permanent magnets lose magnetic field under irradiation with high energy electron beams
- Various magnetic materials behave differently

Skupin et al., "Undulator demagnetization due to radiation losses at FLASH", Proc. EPAC 2008, pp. 2308-2310

FLASH: Longitudinal Dose Distribution

Field Loss of a PETRA-II Undulator

P. Vagin et al., "Commissioning experience with insertion devices at PETRA III", SR2010, Novosibirsk, Russia.

Demagnetization and Phase Error

Example: FERMI@Elettra FEL-2, second stage radiator 66 periods of 3.48 cm

Final Remarks

Photo: Sémhur, Wikimedia Commons, CC BY-SA 3.0 https://commons.wikimedia.org/w/index.php?curid=2436548

Final Remarks & References

• Balance:

- Protect the machine
- Protect the beam
- With as little resources as possible
- Variety:
 - Beam dynamics, particle physics, instrumentation, controls, reliability theory, systems design

C. Sibley, "Machine Protection Strategies for High Power Accelerators", PAC 2003. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1288989

R. Schmidt et al., "Protection of the CERN Large Hadron Collider", New Journal of Physics 8 (2006) 290, http://dx.doi.org/10.1088/1367-2630/8/11/290

K. Wittenburg, "Beam Loss Monitors", CERN Accelerator School, Dourdan, France, 2008. <u>http://cern.ch/cas/France-2008/Lectures/Wittenburg-BLM.pdf</u>

L. Fröhlich, "Machine Protection for FLASH and the European XFEL", DESY-THESIS-2009-012. http://dx.doi.org/10.3204/DESY-THESIS-2009-012

L. Fröhlich, "Machine Protection for Single-Pass FELs", FEL 2012. http://accelconf.web.cern.ch/AccelConf/FEL2012/papers/weoa03.pdf

R. Schmidt, "Machine Protection", CERN Accelerator School, Trondheim, Norway, 2013. https://cas.web.cern.ch/cas/Norway-2013/Lectures/Schmidt.pptx

J. Wenninger, "State-of-the-Art and Future Challenges for Machine Protection Systems", IPAC 2014. <u>https://cds.cern.ch/record/1741652/files/CERN-ACC-2014-0080.pdf</u>

I. Strašík, "Machine Protection", CERN Accelerator School, Prague, Czech Republic, 2014. <u>http://cas.web.cern.ch/cas/CzechRepublic2014/Lectures/Strasik.pdf</u>

