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Introduction

Evaluation and implementation of CEP mechanisms 

to act upon infrastructure metrics monitored by Ganglia

• WLCG is integrating cloud technologies providing an additional approach 

for delivering computing capacity

• Ganglia is being adopted as monitoring system for clouds 

• Re-purposing raw monitoring data in order to detect anomalies
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• Resource profiling

• Accounting

• Alarming
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DAM Overview
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DAM-Alarming
architecture

UDP

TCP

DAM-Alarming

X
M
L

H H

H : host event. Contains last metrics’ values per host

ESPER

S S

S : status event. Contains current host status

O
U
T
P
U
T

@

    

 : intermediate events

Event Processing statements



• Scalable distributed monitoring system

• “Designed for high-performance 

computing systems such as clusters 

and Grids”

• Open source project

• Collecting a standard set of monitoring 

metrics (cpu, memory, disk, …)

• Providing web interface for visualizing 

host performance
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Ganglia
introducing the distributed monitoring system



• Multiple gmonds on server, one per cluster
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Expected deployment use case 
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• Contacting each gmond on a server to retrieve monitoring data
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Fitting DAM-Alarming in deployment
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• Set of technologies to process events and discover complex patterns 

among their streams

• Goal: identify meaningful events and promptly respond to them

DAM-Alarming 8

Complex Event Processing (CEP)

Events Continuous processing

Query Query Query

Notifications



• Open source CEP solution

• Strong performance, in memory computation

• Strong community and support

• In use at IT-SDC: Metis monitoring system

• Simple Java API

• Event types compliant with several input formats (including POJO and Map objects)

• Event Processing language (EPL): SQL-like statements
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ESPER
introducing the event processing engine



• Filtering events

• Aggregation functions

• Pattern matching

Examples of EPL statements

select * from pattern [
every s=Status(state=State.OK) -> (
timer:interval(5 minutes) and not 
s_update=Status(hostname=s.hostname, cluster=s.cluster))
];

select avg(cpu_idle) from ReportEvent.win:time(20 minutes);

select * from ReportEvent where cpu_idle > 85;
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• Raw data parsed into GangliaReport events
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Monitoring model
from events describing raw data

GANGLIA

GangliaReport

All parsed metrics



• Raw data parsed into GangliaReport events

• First EPL statement determines the host state 

based on cpu_idle

• Possibility to correlate 

metrics
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select hostname, VO, cluster, monitor, reported,
avg(cpu_idle) as ave, cpu_idle as lastVal,
'cpu_idle' as metricName, 'high cpu_idle' as problem
case 
when avg(cpu_idle) > 85 then State.ERROR
when avg(cpu_idle) > 70 then State.WARNING
when cpu_idle is null then State.UNKNOWN
else State.OK

end as state
from GangliaReport.win:time(var_timeWindowLength min) 
group by hostname,cluster;

Monitoring model
first layer of EPL statements

GANGLIA

GangliaReport

All parsed metrics

EPL
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Monitoring model
events describing host state

GANGLIA

GangliaReport

All parsed metrics

Check

State, relevant metric, average

EPL
• Raw data parsed into GangliaReport events

• First EPL statement determines the host state

based on cpu_idle

• Check Events describe the hosts state at current 

time



• Raw data parsed into GangliaReport events

• First EPL statement determines the host state

based on cpu_idle

• Check Events describe the hosts state at current 

time

• Second EPL keeps only Check events indicating 

state transitions: new event Status
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select * from Check.std:groupwin(hostname, cluster).win:length(2)
where state is not prev(1, state) and prev(1, state) is not null;

Monitoring model
second level of EPL statements
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GangliaReport

All parsed metrics
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• Raw data parsed into GangliaReport events

• First EPL statement determines the host state

based on cpu_idle

• Check Events describe the hosts state at current 

time

• Second EPL keeps only Check events indicating 

state transitions: new event Status

• State transitions trigger alarms
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Monitoring model
alarming on status change



• Filtering notifications became crucial for 

email alarming

• Third statement was added 

• All status events 

inserted into ES
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Upgrading monitoring model
filtering email notifications
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Current deployment details

• Querying all 5 production Ganglia servers

• Used by ATLAS, CMS and LHCb

• Poll interval: 15 seconds

• 1.5 seconds timeout for 

retrieving from one server

Ganglia 

Information 

System ?

JSON

XML

XML

XML
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Parsing the Retrieved Data 
understanding the monitoring data

<GANGLIA_XML VERSION="3.6.0" SOURCE="gmond">
<CLUSTER NAME="VAC.UKI-LT2-UCL-HEP.uk" LOCALTIME="1436969801" OWNER="unspecified" LATLONG="unspecified" 
URL="unspecified">
<HOST NAME="lcg-wn02-02.hep.ucl.ac.uk" IP="lcg-wn02-02.hep.ucl.ac.uk" TAGS="" REPORTED="1436969544" TN="257" 
TMAX="20" DMAX="1800" LOCATION="unspecified" GMOND_STARTED="1436969444">
<METRIC NAME="load_one" VAL="1.41" TYPE="float" UNITS=" " TN="267" TMAX="70" DMAX="0" SLOPE="both">
<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="load"/>
<EXTRA_ELEMENT NAME="DESC" VAL="One minute load average"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="One Minute Load Average"/>
</EXTRA_DATA>
</METRIC>
...... # total of 29 metrics per host (default)
<METRIC NAME="swap_free" VAL="4194300" TYPE="float" UNITS="KB" TN="293" TMAX="180" DMAX="0" SLOPE="both">
<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="memory"/>
<EXTRA_ELEMENT NAME="DESC" VAL="Amount of available swap memory"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="Free Swap Space"/>
</EXTRA_DATA>
</METRIC>
</HOST>
</CLUSTER>
</GANGLIA_XML>

snippet



• Parsing into a Map object using SAX library

• Metrics describing gmond and report (timestamp, TN, hostname, cluster,...)

• Metrics describing host status (cpu_idle, mem_free, cpu_num, proc_total)
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Parsing the Retrieved Data 
from XML to ESPER Event

...
<HOST NAME="lcg-wn02-02.hep.ucl.ac.uk" 
IP="lcg-wn02-02.hep.ucl.ac.uk" TAGS="" 
REPORTED="1436969544" TN="257" TMAX="20" 
DMAX="1800" LOCATION="unspecified" 
GMOND_STARTED="1436969444">
<METRIC NAME="load_one" VAL="1.41" 
TYPE="float" UNITS=" " TN="267" TMAX="70" 
DMAX="0" SLOPE="both">
... 

Map<String, Object> event = new HashMap<String, Object>();
event.put("hostname", "lcg-wn02-02.hep.ucl.ac.uk");
event.put(“tn", 257);
event.put(“reported", 1436969544);
event.put("cpu_idle", 85.0f);
event.put("cpu_num", 5);
event.put("proc_total", 4);
event.put("mem_free", 456123);
event.put(“gmondStarted", 1436969444);
event.put(“location", "unspecified");



• First run

• 17 hours, produced 21 000 emails, 

more than 1200 emails/hour

• Averaged over 2 minutes, 

• Second run

• 16 hours, 500 email/hour

• Averaged over 15 minutes, 

tweaked first statement
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First statistics from live deployment
analyzing output of first two runs connected to production servers

799100

Notifications per host in first run



• Need to get rid of 

false positives

• 6 mails in 40 minutes
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Filtering email notifications
hosts oscillating around fixed threshold

ERROR

WARNING

OK

85

70



• Filtering out the notifications

• Combining states WARNING

and ERROR into one
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Filtering email notifications
hosts oscillating around fixed threshold

85
ERROR

OK



• Filtering out the notifications

• Combining states WARNING

and ERROR into one

• Reporting only long lasting

OK state
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Filtering email notifications
hosts oscillating around fixed threshold

85
ERROR

OK
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Filtering email notifications
successful example 



• Connected to ElasticSearch

• Sending messages via log4j 

to Logstash

• Visualizing using Kibana 3 

and Kibana 4

• Improved statistics evaluation efficiency
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Evaluating statistics 

during development



• Simplifying aggregations 
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Kibana 4 
more examples



• Real run statistics:

• Time: 27.08. 12:00 – 28.08. 12:00

• 4417 machines

• 8737 Status updates in ES

• 106 emails
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Concept proven!
Performance example after introducing mail notification filtering
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Challenges in alarming
hosts flapping at different rates

• Flapping 

• Oscillating between states

• Difficult to detect

• Multiple kinds 

• Variable period 
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Challenges in alarming
hosts flapping at different rates

• Flapping

• Oscillating between states

• Difficult to detect

• Multiple kinds 

• Variable period

• Detection based on fixed 

values

• Number of status changes in a fixed time window



• Detecting Unreachable status by checking 

the freshness of the report
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Challenges in alarming
unreachable hosts
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Future Work

• Improve classification 

• Flapping detection

• Revision of alarming model (aggregate alarms per cluster)
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Project documentation 
GitBook documentation with link to JavaDoc

https://sdcdam.web.cern.ch/sdcdam/DAM-CEP/index.html
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Project documentation 
GitBook documentation with link to JavaDoc

https://sdcdam.web.cern.ch/sdcdam/DAM-CEP/javadoc/



• Testing all components

• Using JUnit testing suite to 

implement Unit test
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Testing applications components



• Using JUnit testing suite

• Help when developing statements

• Could control time to test time windows 

and time based patterns
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Testing EPL statements
// initializing ESPER engine and load EPL modules
EPRuntime cepRT = initEsper("test"); 

// creating test event
Map<String, Object> eventOK = new HashMap<String, Object>(); 
eventOK.put("hostname", "lhcb-cloud.cern.ch"); 
eventOK.put("reported", 1435924725); 
eventOK.put("state", State.OK);

// sending first event
cepRT.sendEvent(eventOK, EVENT_TYPE); 

// shifting time
long timeInMillis = System.currentTimeMillis();
timeInMillis += 15000; 
timeEvent = new CurrentTimeEvent(timeInMillis); 
cepRT.sendEvent(timeEvent); 

// sending second event
cepRT.sendEvent(eventOK, EVENT_TYPE); 
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Conclusion

• Successfully implemented an anomaly detection and alarming system based on raw 

monitoring data coming from Ganglia

• Tested on 5 production cloud monitoring Ganglia servers

• Detecting anomalies based on cpu_idle and reporting them without spamming

• Injecting all status transitions into ES

• Processing more than 65 000 events/hour and can scale up
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Challenges in alarming
host flapping and spamming
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First statistics from live deployment
analyzing output of first two runs connected to production servers

799100

Notifications per host in first run Notifications per host in second run
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First statistics from live deployment
analyzing output of first two runs connected to production servers

Notifications per cluster in first run Notifications per cluster in second run
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First statistics from live deployment
analyzing output of first two runs connected to production servers


