

DAM-Alarming
Data Analytics from Monitoring, for alarming

Summer Student Project 2015

A. Martin, C. Cristovao, G. Domenico
thanks to Luca Magnoni

IT-SDC-MI

31/08/2015

Introduction

Evaluation and implementation of CEP mechanisms

to act upon infrastructure metrics monitored by Ganglia

• WLCG is integrating cloud technologies providing an additional approach

for delivering computing capacity

• Ganglia is being adopted as monitoring system for clouds

• Re-purposing raw monitoring data in order to detect anomalies

DAM-Alarming 2

• Resource profiling

• Accounting

• Alarming

DAM-Alarming 3

DAM Overview

DAM-Alarming 4

DAM-Alarming
architecture

UDP

TCP

DAM-Alarming

X
M
L

H H

H : host event. Contains last metrics’ values per host

ESPER

S S

S : status event. Contains current host status

O
U
T
P
U
T

@

 : intermediate events

Event Processing statements

• Scalable distributed monitoring system

• “Designed for high-performance

computing systems such as clusters

and Grids”

• Open source project

• Collecting a standard set of monitoring

metrics (cpu, memory, disk, …)

• Providing web interface for visualizing

host performance

DAM-Alarming 5

Ganglia
introducing the distributed monitoring system

• Multiple gmonds on server, one per cluster

DAM-Alarming 6

Expected deployment use case

GMOND

GMETAD

UDP GMOND

GMOND

VM

VM

• Contacting each gmond on a server to retrieve monitoring data

DAM-Alarming 7

Fitting DAM-Alarming in deployment

GMOND

GMOND

GMOND

VM

VM

TCP
UDP

DAM-Alarming

• Set of technologies to process events and discover complex patterns

among their streams

• Goal: identify meaningful events and promptly respond to them

DAM-Alarming 8

Complex Event Processing (CEP)

Events Continuous processing

Query Query Query

Notifications

• Open source CEP solution

• Strong performance, in memory computation

• Strong community and support

• In use at IT-SDC: Metis monitoring system

• Simple Java API

• Event types compliant with several input formats (including POJO and Map objects)

• Event Processing language (EPL): SQL-like statements

DAM-Alarming 9

ESPER
introducing the event processing engine

• Filtering events

• Aggregation functions

• Pattern matching

Examples of EPL statements

select * from pattern [
every s=Status(state=State.OK) -> (
timer:interval(5 minutes) and not
s_update=Status(hostname=s.hostname, cluster=s.cluster))
];

select avg(cpu_idle) from ReportEvent.win:time(20 minutes);

select * from ReportEvent where cpu_idle > 85;

DAM-Alarming 10

• Raw data parsed into GangliaReport events

DAM-Alarming 11

Monitoring model
from events describing raw data

GANGLIA

GangliaReport

All parsed metrics

• Raw data parsed into GangliaReport events

• First EPL statement determines the host state

based on cpu_idle

• Possibility to correlate

metrics

DAM-Alarming 12

select hostname, VO, cluster, monitor, reported,
avg(cpu_idle) as ave, cpu_idle as lastVal,
'cpu_idle' as metricName, 'high cpu_idle' as problem
case
when avg(cpu_idle) > 85 then State.ERROR
when avg(cpu_idle) > 70 then State.WARNING
when cpu_idle is null then State.UNKNOWN
else State.OK

end as state
from GangliaReport.win:time(var_timeWindowLength min)
group by hostname,cluster;

Monitoring model
first layer of EPL statements

GANGLIA

GangliaReport

All parsed metrics

EPL

DAM-Alarming 13

Monitoring model
events describing host state

GANGLIA

GangliaReport

All parsed metrics

Check

State, relevant metric, average

EPL
• Raw data parsed into GangliaReport events

• First EPL statement determines the host state

based on cpu_idle

• Check Events describe the hosts state at current

time

• Raw data parsed into GangliaReport events

• First EPL statement determines the host state

based on cpu_idle

• Check Events describe the hosts state at current

time

• Second EPL keeps only Check events indicating

state transitions: new event Status

DAM-Alarming 14

select * from Check.std:groupwin(hostname, cluster).win:length(2)
where state is not prev(1, state) and prev(1, state) is not null;

Monitoring model
second level of EPL statements

GANGLIA

GangliaReport

All parsed metrics

Check

State, relevant metric, average

Status

State, relevant metric, average

EPL

EPL

• Raw data parsed into GangliaReport events

• First EPL statement determines the host state

based on cpu_idle

• Check Events describe the hosts state at current

time

• Second EPL keeps only Check events indicating

state transitions: new event Status

• State transitions trigger alarms

DAM-Alarming 15

GANGLIA

GangliaReport

All parsed metrics

Check

State, relevant metric, average

Status

State, relevant metric, average

ALARM

EPL

EPL

Monitoring model
alarming on status change

• Filtering notifications became crucial for

email alarming

• Third statement was added

• All status events

inserted into ES

DAM-Alarming 17

Upgrading monitoring model
filtering email notifications

GANGLIA

GangliaReport

All parsed metrics

Check

State, relevant metric, average

Status

State, relevant metric, average

EPL

EPL

Notification

State, relevant metric, average

EPL

EMAIL

ElasticSearch

DAM-Alarming

DAM-Alarming 18

Current deployment details

• Querying all 5 production Ganglia servers

• Used by ATLAS, CMS and LHCb

• Poll interval: 15 seconds

• 1.5 seconds timeout for

retrieving from one server

Ganglia

Information

System ?

JSON

XML

XML

XML

DAM-Alarming 19

Parsing the Retrieved Data
understanding the monitoring data

<GANGLIA_XML VERSION="3.6.0" SOURCE="gmond">
<CLUSTER NAME="VAC.UKI-LT2-UCL-HEP.uk" LOCALTIME="1436969801" OWNER="unspecified" LATLONG="unspecified"
URL="unspecified">
<HOST NAME="lcg-wn02-02.hep.ucl.ac.uk" IP="lcg-wn02-02.hep.ucl.ac.uk" TAGS="" REPORTED="1436969544" TN="257"
TMAX="20" DMAX="1800" LOCATION="unspecified" GMOND_STARTED="1436969444">
<METRIC NAME="load_one" VAL="1.41" TYPE="float" UNITS=" " TN="267" TMAX="70" DMAX="0" SLOPE="both">
<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="load"/>
<EXTRA_ELEMENT NAME="DESC" VAL="One minute load average"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="One Minute Load Average"/>
</EXTRA_DATA>
</METRIC>
...... # total of 29 metrics per host (default)
<METRIC NAME="swap_free" VAL="4194300" TYPE="float" UNITS="KB" TN="293" TMAX="180" DMAX="0" SLOPE="both">
<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="memory"/>
<EXTRA_ELEMENT NAME="DESC" VAL="Amount of available swap memory"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="Free Swap Space"/>
</EXTRA_DATA>
</METRIC>
</HOST>
</CLUSTER>
</GANGLIA_XML>

snippet

• Parsing into a Map object using SAX library

• Metrics describing gmond and report (timestamp, TN, hostname, cluster,...)

• Metrics describing host status (cpu_idle, mem_free, cpu_num, proc_total)

DAM-Alarming 20

Parsing the Retrieved Data
from XML to ESPER Event

...
<HOST NAME="lcg-wn02-02.hep.ucl.ac.uk"
IP="lcg-wn02-02.hep.ucl.ac.uk" TAGS=""
REPORTED="1436969544" TN="257" TMAX="20"
DMAX="1800" LOCATION="unspecified"
GMOND_STARTED="1436969444">
<METRIC NAME="load_one" VAL="1.41"
TYPE="float" UNITS=" " TN="267" TMAX="70"
DMAX="0" SLOPE="both">
...

Map<String, Object> event = new HashMap<String, Object>();
event.put("hostname", "lcg-wn02-02.hep.ucl.ac.uk");
event.put(“tn", 257);
event.put(“reported", 1436969544);
event.put("cpu_idle", 85.0f);
event.put("cpu_num", 5);
event.put("proc_total", 4);
event.put("mem_free", 456123);
event.put(“gmondStarted", 1436969444);
event.put(“location", "unspecified");

• First run

• 17 hours, produced 21 000 emails,

more than 1200 emails/hour

• Averaged over 2 minutes,

• Second run

• 16 hours, 500 email/hour

• Averaged over 15 minutes,

tweaked first statement

DAM-Alarming 21

First statistics from live deployment
analyzing output of first two runs connected to production servers

799100

Notifications per host in first run

• Need to get rid of

false positives

• 6 mails in 40 minutes

DAM-Alarming 22

Filtering email notifications
hosts oscillating around fixed threshold

ERROR

WARNING

OK

85

70

• Filtering out the notifications

• Combining states WARNING

and ERROR into one

DAM-Alarming 23

Filtering email notifications
hosts oscillating around fixed threshold

85
ERROR

OK

• Filtering out the notifications

• Combining states WARNING

and ERROR into one

• Reporting only long lasting

OK state

DAM-Alarming 24

Filtering email notifications
hosts oscillating around fixed threshold

85
ERROR

OK

DAM-Alarming 25

Filtering email notifications
successful example

• Connected to ElasticSearch

• Sending messages via log4j

to Logstash

• Visualizing using Kibana 3

and Kibana 4

• Improved statistics evaluation efficiency

DAM-Alarming 26

Evaluating statistics

during development

• Simplifying aggregations

DAM-Alarming 27

Kibana 4
more examples

• Real run statistics:

• Time: 27.08. 12:00 – 28.08. 12:00

• 4417 machines

• 8737 Status updates in ES

• 106 emails

DAM-Alarming 28

Concept proven!
Performance example after introducing mail notification filtering

DAM-Alarming 29

Challenges in alarming
hosts flapping at different rates

• Flapping

• Oscillating between states

• Difficult to detect

• Multiple kinds

• Variable period

DAM-Alarming 30

Challenges in alarming
hosts flapping at different rates

• Flapping

• Oscillating between states

• Difficult to detect

• Multiple kinds

• Variable period

• Detection based on fixed

values

• Number of status changes in a fixed time window

• Detecting Unreachable status by checking

the freshness of the report

DAM-Alarming 31

Challenges in alarming
unreachable hosts

DAM-Alarming 32

Future Work

• Improve classification

• Flapping detection

• Revision of alarming model (aggregate alarms per cluster)

DAM-Alarming 33

Project documentation
GitBook documentation with link to JavaDoc

https://sdcdam.web.cern.ch/sdcdam/DAM-CEP/index.html

DAM-Alarming 34

Project documentation
GitBook documentation with link to JavaDoc

https://sdcdam.web.cern.ch/sdcdam/DAM-CEP/javadoc/

• Testing all components

• Using JUnit testing suite to

implement Unit test

DAM-Alarming 35

Testing applications components

• Using JUnit testing suite

• Help when developing statements

• Could control time to test time windows

and time based patterns

DAM-Alarming 36

Testing EPL statements
// initializing ESPER engine and load EPL modules
EPRuntime cepRT = initEsper("test");

// creating test event
Map<String, Object> eventOK = new HashMap<String, Object>();
eventOK.put("hostname", "lhcb-cloud.cern.ch");
eventOK.put("reported", 1435924725);
eventOK.put("state", State.OK);

// sending first event
cepRT.sendEvent(eventOK, EVENT_TYPE);

// shifting time
long timeInMillis = System.currentTimeMillis();
timeInMillis += 15000;
timeEvent = new CurrentTimeEvent(timeInMillis);
cepRT.sendEvent(timeEvent);

// sending second event
cepRT.sendEvent(eventOK, EVENT_TYPE);

DAM-Alarming 37

Conclusion

• Successfully implemented an anomaly detection and alarming system based on raw

monitoring data coming from Ganglia

• Tested on 5 production cloud monitoring Ganglia servers

• Detecting anomalies based on cpu_idle and reporting them without spamming

• Injecting all status transitions into ES

• Processing more than 65 000 events/hour and can scale up

DAM-Alarming 39

Challenges in alarming
host flapping and spamming

DAM-Alarming 40

First statistics from live deployment
analyzing output of first two runs connected to production servers

799100

Notifications per host in first run Notifications per host in second run

DAM-Alarming 41

First statistics from live deployment
analyzing output of first two runs connected to production servers

Notifications per cluster in first run Notifications per cluster in second run

DAM-Alarming 42

First statistics from live deployment
analyzing output of first two runs connected to production servers

