Neutralino relic density from ILC measurements in the CPV MSSM

Sabine Kraml
LPSC Grenoble

Based on arXiv:0803.2584 (PRD78) with G. Bélanger, O. Kittel, H.U. Martyn and A. Pukhov

ENTApP dark matter workshop • CERN-TH • 2-6 Feb 2009

Motivation

- Cosmol. obs.→ amount of DM: Ωh²=0.11 ±6% (!)
 most attractive candidate: WIMP from BSM physics.
- WMAP SDSS
- Aim at colliders (after discovery) is to do precision measurements of BSM particles, incl DM candidate
- Hope to determine properties of BSM DM at LHC/ILC
 - \rightarrow make a "collider postdiction" of its Ωh^2
 - → test standard cosmological model
- In general, expected precision is O(10%) at LHC and few % at ILC → could match WMAP/PLANCK

Nojiri, Polesello, Tovey; Arnowitt et al.; Bambade, Berggren, Richard, Zhang; Martyn; Baltz, Battaglia, Peskin, Wizansky; Berger, Gainer, Hewett, Lillie, Rizzo.

Need precise measurements of masses and couplings ...

MSSM with CP violation

In the general MSSM, gaugino and higgsino mass parameters and trilinear couplings can be complex:

$$M_1=|M_1|e^{i\pmb{\phi_1}}$$
 , $\mu=|\mu|e^{i\pmb{\phi_\mu}}$, $A_f=|A_f|e^{i\pmb{\phi_f}}$

- Well known that sparticle and Higgs phenomenology at colliders depends sensitively on CP phases; important variations in production and decay rates.
- In hep-ph/0604150* we analysed all χ^0 annihilation channels and showed that CP phases can also have dramatic effects on the relic density (due to modif's in couplings!)

*) Belanger, Boudjema, SK, Pukhov, Semenov, hep-ph/0604150 (PRD73)

Example: light stau, t-channel

Belanger, Boudjema, SK, Pukhov, Semenov, hep-ph/0604150 (PRD73)

How well could ILC resolve this?

Pick a point for case study

	$\tilde{\chi}_1^0$	$\tilde{\chi}_2^0 \tilde{\chi}_1^+$	$\tilde{\chi}^0_3$	$\tilde{\chi}_4^0$
	80.7	164.9	604.8	610.5
	$ ilde{ au}$	$\tilde{ u}_{ au}$	\widetilde{e}	$\tilde{ u}_e$
R(1)	100.9	_	1000.9	_
L(2)	177.2	123.1	1001.1	998.0

- For $\phi_1 > 110^{\circ}$, $\Omega h^2 < 0.136$
- For ϕ_1 =0, relic density would be too large: Ωh^2 =0.167

Stau-bulk benchmark point

Input parameters

$$M_1 = 80.47 \text{GeV}$$
 $M_2 = 170.35 \text{GeV}$ $M_3 = 700 \text{GeV}$ $\phi_1 = 180$
 $\mu = 600 \text{GeV}$ $\tan \beta = 10$ $\phi_{\mu} = 0$
 $M_{\tilde{\tau}_L} = 138.7 \text{GeV}$ $M_{\tilde{\tau}_R} = 135.2 \text{GeV}$ $A_{\tau} = 60 \text{GeV}$ $\phi_{\tau} = 0$

Mass spectrum

	$\tilde{\chi}_1^0$	$\tilde{\chi}_2^0$	$\tilde{\chi}^0_3$	$\tilde{\chi}_4^0$	$\tilde{\chi}_1^+$	$\tilde{\chi}_2^+$	h_1	$h_{2,3}$
	80.7	164.9	604.8	610.5	164.9	612.1	116.1	997.
	$\tilde{ au}$	$\tilde{\nu}_{ au}$	\tilde{e}	$\tilde{\nu}_e$	\tilde{u}	d	\tilde{t}	\tilde{b}
R(1)	100.9	_	1000.9	_	999.4	1000.3	939.1	995.6
L(2)	177.2	123.1	1001.1	998.0	998.6	1001.7	1075.6	1006.4

- Light gauginos and staus, staus are strongly mixed
- LSP annihilates into tau pairs via stau exchange in t-channel efficient if staus are mixed no coannihilation

ILC measurements

MC simulation by H.U. Martin

- Threshold scans
- Kinematic endpoints
- Polarized cross sections
- Tau polarization

Difficulty: all channels lead to same signature: $\tau^+\tau^-$ E^{miss}

channel	observables	
$\tilde{\tau}_1^+ \tilde{\tau}_1^-$	$m_{\tilde{\tau}_1} = 100.92 \pm 0.40 \text{ GeV}$	$m_{\tilde{\chi}_1^0} = 80.67 \pm 0.35 \text{ GeV}$
	$\cos 2\theta_{\tilde{\tau}} = -0.065 \pm 0.028$	$\mathcal{P}_{\tau} = 0.64 \pm 0.035$
$\tilde{\tau}_2^+\tilde{\tau}_2^-$	$m_{\tilde{\tau}_2} = 176.9 \pm 9.1 \text{ GeV}$	"Invel!
$\tilde{\chi}_1^+ \tilde{\chi}_1^-$	$m_{\tilde{\chi}_1^{\pm}} = 164.88 \pm 0.015 \text{ GeV}$	per-mil level!

ILC cross sections

red (blue) points
$$\mathcal{L} = 2 \, \text{fb}^{-1} (10 \, \text{fb}^{-1})$$

N.B. heavy selectrons to avoid EDM constraints; suppresses neutralino production

- Perform a fit to the six measurements and ττ total Xsect at 400 GeV
- Free parameters: M_1 , μ , tan β , M_{L3} , M_{R3} , A_{τ} , ϕ_1 , ϕ_{τ}
- Use Markov Chain Monte Carlo (MCMC) to explore parameter space

Lagrangian parameters

black: χ^2 <1

green: $\chi^2 < 3.84$

NB: Gaugino & slepton mass parameters well determined; trilinear A_{τ} and phases of M_1 and A_{τ} undetermined

$\mu-\text{tan}\beta \text{ correlation}$

black: $\chi^2 < 1$

green: $\chi^2 < 3.84$

infered range: $0.11 < \Omega h^2 < 0.19$ at 95% CL

• Consider $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$

$$\tilde{\chi}_2^0 \to \tilde{\tau}_1^{\pm} \tau^{\mp}, \; \tilde{\tau}_1^{\pm} \to \tilde{\chi}_1^0 \tau^{\pm}$$

define T-odd asymmetry

$$A_1 = \frac{\sigma(\mathcal{T} > 0) - \sigma(\mathcal{T} < 0)}{\sigma(\mathcal{T} > 0) + \sigma(\mathcal{T} < 0)},$$

$$\mathcal{T} = (\mathbf{p}_{e^-} \times \mathbf{p}_{\tau^-}) \cdot \mathbf{p}_{\tau^+}$$

 $A_1 \neq 0$ would be signal of CP violation. But does not help to constrain Ωh^2 because A_1 symmetric around $\phi_1 = 90^\circ \odot$

Include Higgs mass in fit? → No

Stop parameters fixed to their nominal values

green: stop sector undetermined; blue: stop masses known to 10%

Interplay with direct DM detection

spin-independent neutralino-proton cross sections

Heavy squarks; χp interaction dominated by Higgs exchange

Interplay with direct DM detection -cont-

Interplay with EDM measurements (TI)

Present limit: $d_{Tl} < 9*10^{-25}$ e cm. Future improvement by 2 orders of magnitude would probe most of the parameter space of this scenario; however not much impact on Ωh^2

Conclusions

- Collider determination of Ωh² needs precise measurements of masses *and* couplings → CP phases
- Investigated "stau bulk" scenario in CPV-MSSM: only neutralino1, chargino1, stau1+2 detectable at ILC.
- Parameter fit gives $0.11 < \Omega h^2 < 0.19$ at 95% CL
- Direct DM detection and EDM experiments could somewhat help resolve the scenario.
- Would need complete –ino system at LC √s~1-2 TeV;