Probing the ultraviolet completion of the Twin Higgs

Ennio Salvioni
UC Davis

3rd NPKI Workshop
Korea University, Seoul
June 14, 2016

1606.xxxxx with H.-C. Cheng and Y. Tsai

+ 1512.02647 with H.-C. Cheng, S. Jung and Y. Tsai

... that is to say,

Ennio Salvioni UC Davis

3rd NPKI Workshop Korea University, Seoul June 14, 2016

1606.xxxxx with H.-C. Cheng and Y. Tsai

+ 1512.02647 with H.-C. Cheng, S. Jung and Y. Tsai

750 GeV diphotons in Twin Higgs

Ennio Salvioni
UC Davis

3rd NPKI Workshop Korea University, Seoul June 14, 2016

1606.xxxxx with H.-C. Cheng and Y. Tsai

+ 1512.02647 with H.-C. Cheng, S. Jung and Y. Tsai

Introduction

- Is the 750 GeV particle related to the stabilization of the weak scale?
- Given absence of signals of colored top partners, the **Twin Higgs** seems compelling framework to think about this question

 See talks by Michael and Chris, this session
- Non-SUSY UV completions contain the ingredients needed to explain the signal

Well-defined setup with given particle content and couplings.

Include constraints from all aspects of the model

- Goal: quantify the tuning needed to explain the diphoton signal
- 750 will be a 'twin quarkonium:' learn some physics lessons of general applicability

The fraternal Twin Higgs

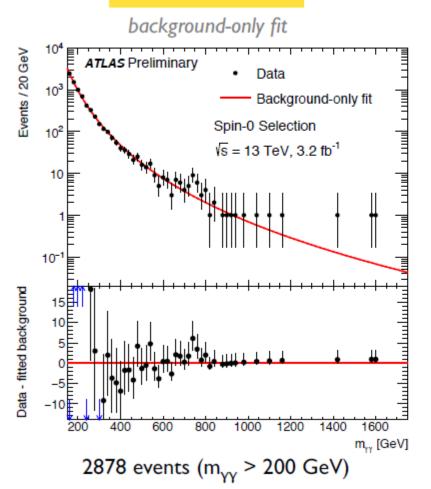
Craig, Katz, Strassler, Sundrum 2015

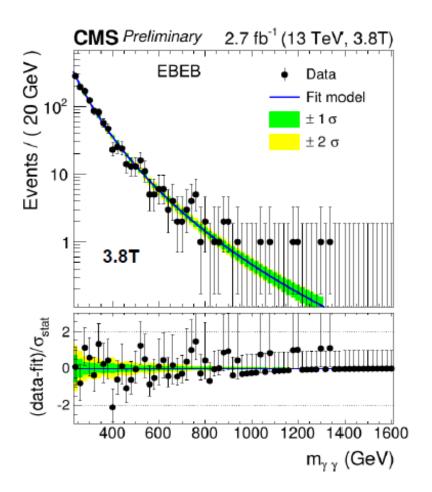
Minimal ingredients, motivated by naturalness

- Another Higgs doublet, global symmetry $SU(4) \stackrel{f}{\longrightarrow} SU(3)$
- Twin top with Z₂ symmetric Yukawa
- Twin electroweak gauge bosons with Z_2 symmetric coupling
- Twin color gauged with $g_s \sim \hat{g}_s$ at high scale $\Lambda_{\rm UV} \lesssim 4\pi f$

Light fermions?

 A full mirror copy of the SM runs into trouble with cosmology (many light dof). Not required by naturalness


Include only twin 3rd generation: top, bottom, tau and neutrino


Observation of a SM-like Higgs requires $v_B \gg v_A$

Add small soft Z_2 breaking $\sim \mu^2 H_A^\dagger H_A \quad \rightarrow \quad$ 'irreducible' tuning $\sim \frac{v^2}{f^2}$

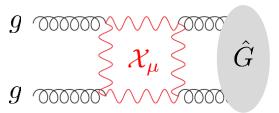
What is this?

SPIN-0 ANALYSIS

see talk by Tobi yesterday, and: Barak, D'Eramo, Elias-Miró, Halkiadakis, Kats, Matskedonskyi, Shadmi, Yu

Diphoton candidates in low-energy theory?

Twin Higgs (radial mode)?


Unsuppressed decays to longitudinal gauge bosons/Higgses, hard to make diphoton BR large enough

Twin glueball?

Best candidate is 0^+ , mass $~\sim 10\,\Lambda$ $~~\Lambda \sim 75~{\rm GeV}$

Production must go through loops of bi-fundamentals of color and twin-color, decay to photons also at loop

Bifundamentals need to be very light, run into experimental constraints

Also: lightest glueball is 0^{++} with mass ~ 500 GeV, must hide it

UV completing the Twin Higgs

• Low-energy theory is incomplete: quartic couplings from top loops are log-divergent $\delta V = \frac{3y_t^4}{8\pi^2}\log\Lambda_{\rm UV}\left(|H_A|^4 + |H_B|^4\right)$

In the full theory, cutoff must be replaced by physical mass thresholds.

• Proposal already in original Twin Higgs paper: extend the symmetry of top Yukawa to $SU(6) \times SU(4)$

color weak SM
$$SU(3)$$
 twin $SU(3)$ $y_t \left(H_A^\dagger \quad H_B^\dagger\right) Q \begin{pmatrix} t_A \\ t_B \end{pmatrix}$, $Q = \begin{pmatrix} q_A & \tilde{q}_B \\ \tilde{q}_A & q_B \end{pmatrix}$ sm $SU(2)$ twin $SU(2)$

Chacko, Goh, Harnik 2005

UV completing the Twin Higgs

Low-energy theory is incomplete: quartic couplings from top loops are log-divergent $\delta V = \frac{3y_t^4}{8\pi^2}\log\Lambda_{\rm UV}\left(|H_A|^4 + |H_B|^4\right)$

In the full theory, cutoff must be replaced by physical mass thresholds.

• Proposal already in original Twin Higgs paper: extend the symmetry of top Yukawa to $SU(6) \times SU(4)$

color weak SM
$$SU(3)$$
 twin $SU(3)$ $y_t \left(H_A^\dagger \quad H_B^\dagger\right) Q \begin{pmatrix} t_A \\ t_B \end{pmatrix}$, $Q = \begin{pmatrix} q_A & \tilde{q}_B \\ \tilde{q}_A & q_B \end{pmatrix}$ sm $SU(2)$ twin $SU(2)$

Chacko, Goh, Harnik 2005

New fermions charged under both sectors

They appear in all non-SUSY UV completions proposed so far

$$Q = \begin{pmatrix} q_A & \tilde{q}_B \\ \tilde{q}_A & q_B \end{pmatrix}$$

Cheng, Jung, Salvioni and Tsai, 2015

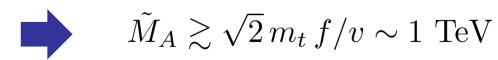
• \tilde{q}_A has SM color, mixes with the top quark

$$\tilde{M}_A \gtrsim \sqrt{2} \, m_t \, f/v \sim 1 \, \, {\rm TeV}$$

$$Q = \begin{pmatrix} q_A & \tilde{q}_B \\ \tilde{q}_A & q_B \end{pmatrix}$$

Cheng, Jung, Salvioni and Tsai, 2015

• \tilde{q}_A has SM color, mixes with the top quark


$$\tilde{M}_A \gtrsim \sqrt{2} \, m_t \, f/v \sim 1 \, \, {\rm TeV}$$

$$Q = \begin{pmatrix} q_A & \tilde{q}_B \\ \tilde{q}_A & q_B \end{pmatrix}$$

Cheng, Jung, Salvioni and Tsai, 2015

• \tilde{q}_A has SM color, mixes with the top quark

For 750 as bound state of colored fermions, see for ex.: Kats and Strassler; Kamenik and Redi, Ko, Yu and Yuan

$$Q = \begin{pmatrix} q_A & \tilde{q}_B \\ \tilde{q}_A & q_B \end{pmatrix}$$

• \tilde{q}_B can be ~ 375 GeV, contains fermion with twin color and SM el. charge

Assume $\Lambda \gtrsim 55~{
m GeV}$ to forbid decay of 750 into twin glueballs

$$Q = \begin{pmatrix} q_A & \tilde{q}_B \\ \tilde{q}_A & q_B \end{pmatrix}$$

• \tilde{q}_B can be ~ 375 GeV, contains fermion with twin color and SM el. charge

Assume $\Lambda \gtrsim 55~{
m GeV}$ to forbid decay of 750 into twin glueballs

Hidden quarkonium

The diphoton width of the lightest (pseudoscalar) bound state is

$$\Gamma(\eta_{\lambda} \to \gamma \gamma) = N_c 4\pi \alpha^2 Q_{\lambda}^4 \frac{|\psi(0)|^2}{m_{\lambda}^3} m_{\lambda}$$

$$\frac{\left|\psi(0)\right|^2}{m_{\lambda}^3} = ?$$

e.g., Kang, Luty 2008

• Semiclassical picture for $m_{\lambda}\gg \Lambda$:

$$= \frac{\text{hard scattering length}}{\text{string length}} = \frac{1/m_{\lambda}}{m_{\lambda}/\Lambda^2} = \frac{\Lambda^2}{m_{\lambda}^2}$$

Works within factor ~ 2 for QCD charmonia and bottomonia (e.g. J/ψ , Υ)

750 GeV as pseudoscalar bound state

Two serious issues (generic to any bound state of color-less fermions)

why is diphoton signal so large (~ 5 fb) ?

see also Yael's talk, Thursday

~ 1 fb for $Q_{\lambda} = 1$

e.g. Csaki, Hubisz, Lombardo and Terning, 2016

where is the vector bound state?

q γ/Z \bar{q}

Strong constraint, < 1 fb at 8 TeV

 Υ_λ

16

750 GeV diphotons in Twin Higgs

Solution comes from the UV completion

Cheng, Salvioni and Tsai, to appear

 \mathcal{X}_{μ} off-diagonal gauge boson of strong SU(6), bi-fundamental of color & twin color

✓ Pseudoscalar production via

$$g$$
 χ_{μ}
 η_{λ}
 $\sim \log \frac{m_X^2}{m_b^2}$

 \checkmark Suppressed $\Upsilon_{\lambda} \to ee$ due to

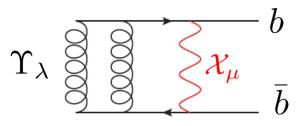
750 GeV diphotons in Twin Higgs

Solution comes from the UV completion

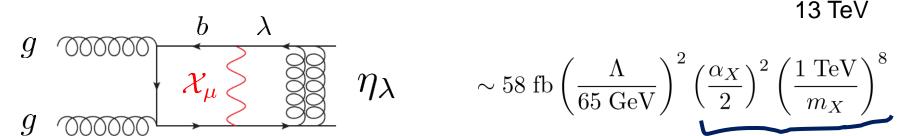
Cheng, Salvioni and Tsai, to appear

 \mathcal{X}_{μ} off-diagonal gauge boson of strong *SU*(6), bi-fundamental of color & twin color

✓ Pseudoscalar production via


$$g = \frac{b}{\chi_{\mu}} \qquad \eta_{\lambda}$$

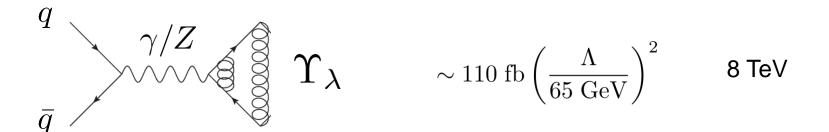
$$g = \log \frac{m_{\chi}^{2}}{m_{b}^{2}}$$


 \checkmark Suppressed $\Upsilon_{\lambda} \to ee$ due to

(for η_{λ} need long. \mathcal{X} , extra $\frac{1}{m_{X}^{2}}$)

Diphotons from pseudoscalar

light and strongly coupled \mathcal{X}

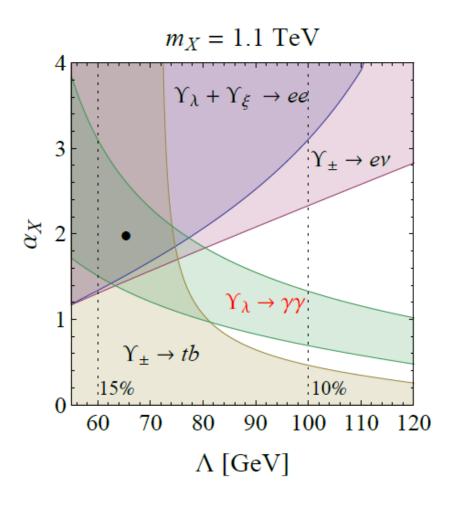

$$\eta_{\lambda}$$

$$b_L$$
 $\Gamma \sim N_c^2 rac{\pi lpha_X^2}{4} rac{|\psi(0)|^2}{m_\lambda^2} rac{m_\lambda^8}{m_X^8}$

mediated by longitudinal ${\mathcal X}$ strongly suppressed

 ${
m BR}_{\gamma\gamma} \sim {
m BR}_{bb} \sim 0.2$, diphoton signal ~ 5 fb well reproduced

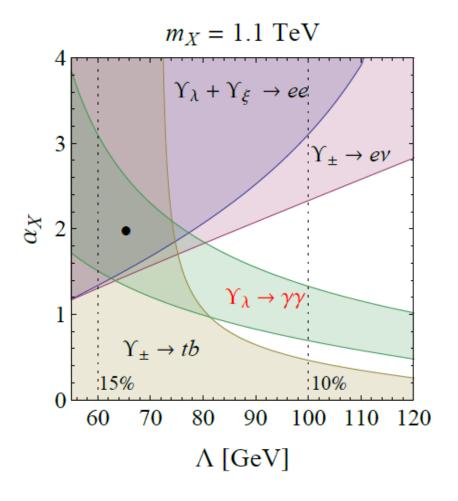
Vector bound state



$$\Upsilon_{\lambda}$$

 ${\rm BR}_{e^+e^-} \sim {\rm few} \times 10^{-3}$, dilepton rate < 1 fb

Full picture


Cheng, Salvioni and Tsai, to appear

How much tuning? At 2 loops:

Large Λ ~ 65 GeV (exact Z₂ gives ~ 5 GeV), milder than 10%

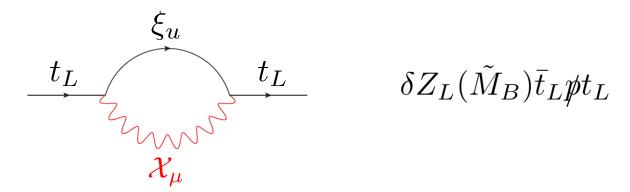
Full picture

Cheng, Salvioni and Tsai, to appear

$$ilde{q}_B = egin{pmatrix} \xi_u \ \lambda_d \end{pmatrix} \sim \mathbf{2}_{-1/2}$$

$$m_{\lambda} - m_{\xi} \simeq 15 \text{ GeV} \ll \Lambda$$

large η_{λ} width?

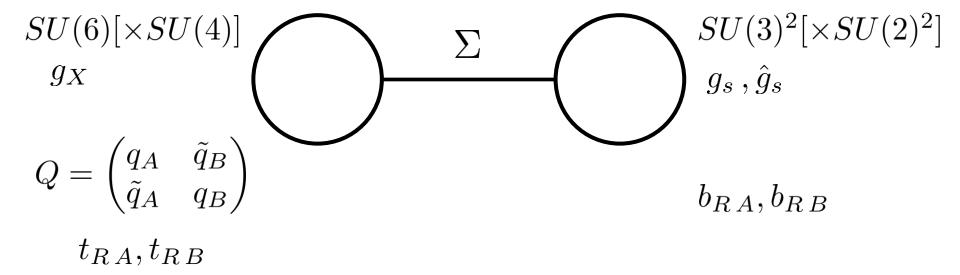

How much tuning? At 2 loops:

Large Λ ~ 65 GeV (exact Z₂ gives ~ 5 GeV), milder than 10%

Tuning

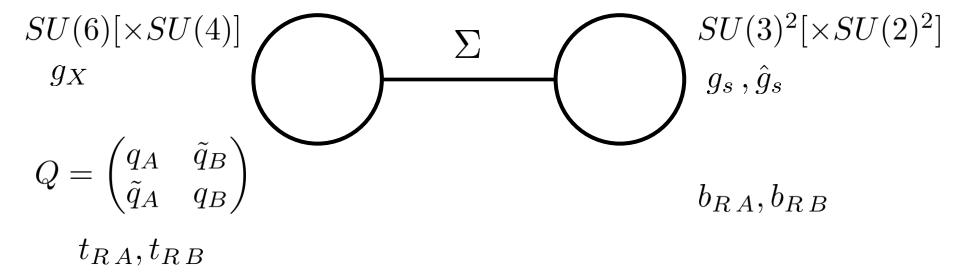
How much tuning? At 2 loops:

Mass splitting of \tilde{q}_B and \tilde{q}_A :


Same for the twin top, with $M_B o M_A$

$$\delta m_h^2 \sim \tfrac{3y_t^2\Lambda_{\rm UV}^2}{4\pi^2} \tfrac{N_c\alpha_X}{4\pi} \tfrac{\tilde{M}_B^2 - \tilde{M}_A^2}{m_X^2} \log \tfrac{\Lambda_{\rm UV}^2}{m_X^2} \qquad \text{~~few percent}$$

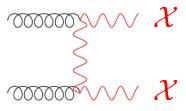
$$(\tilde{M}_B = 375 \text{ GeV}, \tilde{M}_A \gtrsim 1 \text{ TeV})$$


Two-site picture

•
$$|D_\mu\Sigma|^2 \quad \to \quad m_X^2=\frac{g_X^2u^2}{4}\,, \qquad m_G^2=\frac{\sqrt{g_X^2+g_s^2\,u^2}}{4}$$
 for $g_X\gg g_s$, $m_G\sim m_X$

$$\begin{pmatrix} \mathcal{G} & \mathcal{X}^+ \\ \mathcal{X}^- & \hat{\mathcal{G}} \end{pmatrix}$$

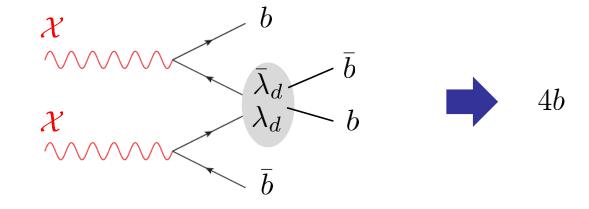
Two-site picture


$$|D_\mu \Sigma|^2 \to m_X^2 = \frac{g_X^2 u^2}{4} \,, \qquad m_G^2 = \frac{\sqrt{g_X^2 + g_s^2} \, u^2}{4}$$
 for $g_X \gg g_s$, $m_G \sim m_X$

But adding higher dim operators:

$$\Omega = \operatorname{diag}(\mathbf{1}_3, \mathbf{0}_3) \qquad \left| \operatorname{Tr}[\Omega \Sigma^{\dagger} D_{\mu} \Sigma] \right|^2 \quad \to \quad m_G^2 \sim 2 \, m_X^2$$

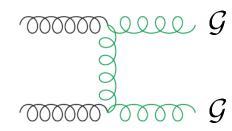
Exotic vector


Pair-produced via QCD

 $\frac{\Gamma_X}{m_X} = \frac{\alpha_X}{4}$

broad!

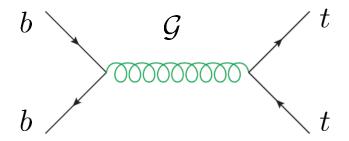
Decays



similarly, $~\mathcal{X}
ightarrow t \xi_u~$ gives ~4t , but constraints OK for $~m_X \sim 1~{
m TeV}$

• Decay $\mathcal{X} \to t\hat{t}$ gives stop-like signature, but with very heavy (~ 700 GeV) invisible particle. Weak sensitivity

KK gluon


- Couples strongly to top and L bottom
- Pair produced via QCD

ATLAS 1505.04306 + CONF-2016-013; see talk by Aurelio yesterday

4-top search gives ${ m m_G \gtrsim 1.2~TeV}$

• Also single production in $b\bar{b}$,

If narrow, 13 TeV search for $t\bar{t}$ resonances gives ~ 2.0 TeV

But broad,
$$\frac{\Gamma_G}{m_G}=\frac{\alpha_G}{4}\sim \frac{1}{2}$$
 , actual bound much weaker

KK gluon, continued

 Couples strongly to top and L bottom generates only LL operators for down sector

$$\mathcal{L}_{\text{eff}} = -\frac{g_X^2}{6m_G^2} \bar{b}_L^i \gamma^\mu b_L^i \bar{b}_L^j \gamma_\mu b_L^j$$

Strongest bound from Kaon mixing,

e.g. Csaki, Falkowski and Weiler 2008

$$\mathcal{H}_{\text{eff}} = \frac{g_X^2}{6m_G^2} |V_{td}V_{ts}|^2 \bar{d}_L \gamma^\mu s_L \bar{d}_L \gamma_\mu s_L$$

Assume CP-invariance in strong sector, bound from real part

$$\frac{m_X}{g_X} > 0.14 \; {\rm TeV}$$
 (Im part $ightarrow$ 2.1 TeV)

$$m_G < \sqrt{2} m_X \sim 1.6 \; {
m TeV}$$
 still viable

Summary

- Attempt to explain 750 GeV signal in Twin Higgs framework
- Focused on non-SUSY UV completions (2-site model)
 Candidate is 'twin quarkonium,' bound state of color-less fermions
- General issues: (1) small production rate and (2) absence of dilepton signal
- t channel exchange of exotic SU(6) vector solves them simultaneously.
 Non-trivial interplay of UV physics
- Well-defined framework allows to quantify **electroweak tuning**: few % from Z_2 breaking in fermion spectrum
- **Predictions:** vector resonances ~ 750 GeV in $b\bar{b}$, $t\bar{b}$, $t\bar{t}$
 - + dileptons, lepton + nu

Light bifundamental vector and KK gluon, broad. Signals in $t\bar{t}$ and 4 tops

Backup

Exotic quark mixing

Mass matrix for top and exotic quark

$$-\left(\overline{u}_{3R}^{A} \quad \overline{\tilde{u}}_{3R}^{A}\right) \begin{pmatrix} \frac{y_{t}f}{\sqrt{2}}s_{h} & \frac{y_{t}f}{\sqrt{2}}c_{h} \\ 0 & \tilde{M}_{A} \end{pmatrix} \begin{pmatrix} u_{3L}^{A} \\ \tilde{u}_{3L}^{A} \end{pmatrix} + \text{h.c.}$$

• For $\tilde{M}_A=0$ there is a zero eigenvalue.

Minimum value consistent with observed top mass:

$$\tilde{M}_A \ge m_t \frac{f}{v} \sqrt{1 + \sqrt{1 - v^2/f^2}} = \sqrt{2} \, m_t \frac{f}{v} + O(v^2/f^2) \,.$$

$$(f = 1 \text{ TeV} \longrightarrow \tilde{M}_A \gtrsim 1 \text{ TeV})$$

The Twin Higgs

Symmetry breaking pattern

Chacko, Goh, Harnik 2005

7 Goldstones
$$H \sim e^{i\Pi/f} \begin{pmatrix} 0 \\ 0 \\ 0 \\ f \end{pmatrix} SU(2)_A \qquad \text{gauged}$$

$$SU(2)_B$$

- 3 Goldstones eaten by 'B' gauge bosons with mass $\sim g_B f$ The remaining 4 identified with the SM Higgs doublet
- Quadratic corrections to Higgs potential from gauge loops

$$H \equiv \begin{pmatrix} H_A \\ H_B \end{pmatrix} \qquad \delta V = \frac{9g_A^2}{64\pi^2} \Lambda_{\text{UV}}^2 H_A^{\dagger} H_A + \frac{9g_B^2}{64\pi^2} \Lambda_{\text{UV}}^2 H_B^{\dagger} H_B$$

•
$$A \stackrel{Z_2}{\longleftrightarrow} B$$
 enforces $g_A = g_B$ $\delta V \sim H^\dagger H$, $SU(4)$ invariant

Top quark sector

• Similar cancellation for top loops: Z_2 symmetric Yukawa coupling

$$y_t H_A q_A \, t_A + y_t H_B q_B \, t_B$$
 'twin top', triplet of $SU(3)_B$

$$\delta V = \frac{3}{8\pi^2} \left[-y_t^2 \Lambda_{\text{UV}}^2 H^{\dagger} H + y_t^4 \log \Lambda_{\text{UV}} (|H_A|^4 + |H_B|^4) \right]$$

Top quark sector

Similar cancellation for top loops: Z₂ symmetric Yukawa coupling

$$y_t H_A q_A \, t_A + y_t H_B \underline{q_B \, t_B}$$
 'twin top', triplet of $SU(3)_B$

$$\delta V = \frac{3}{8\pi^2} \left[-y_t^2 \Lambda_{\text{UV}}^2 H^{\dagger} H + y_t^4 \log \Lambda_{\text{UV}} \left(|H_A|^4 + |H_B|^4 \right) \right]$$

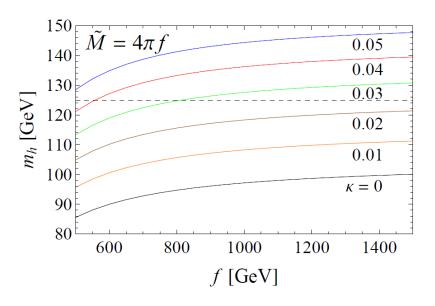
residual log-sensitivity to UV scale

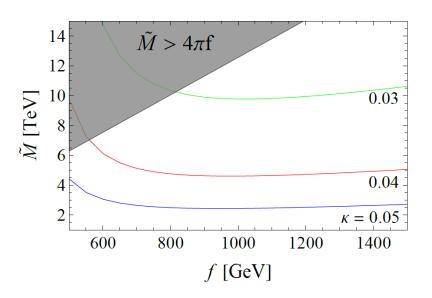
• At this level, $SU(3)_B$ can be a global symmetry. But at 2-loops

$$\frac{g_s}{-\bar{y}_t} = \frac{3y_t^2 g_s^2}{8\pi^4} \Lambda_{\text{UV}}^2 \sim (500 \text{ GeV})^2$$

naturalness suggests to gauge $SU(3)_B$, with $g_s^A \sim g_s^B$ at UV scale

Exotic quark mass

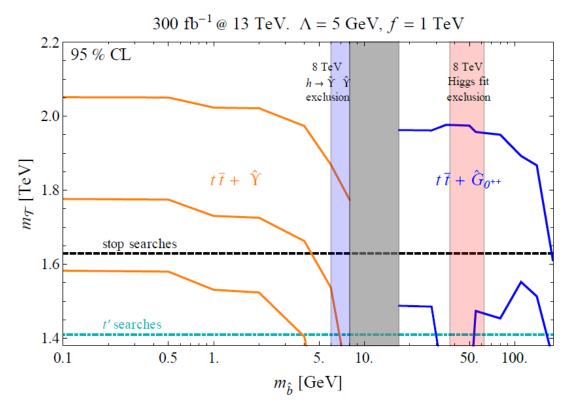

The mass of the exotic fermions cuts off the divergence in the quartic,


$$\delta V = \frac{3y_t^4}{8\pi^2} \log \tilde{M} (|H_A|^4 + |H_B|^4)$$

so it is related to the physical Higgs mass. Similar to stops in SUSY

Exact relation depends on (unknown) extra quartic from UV physics,

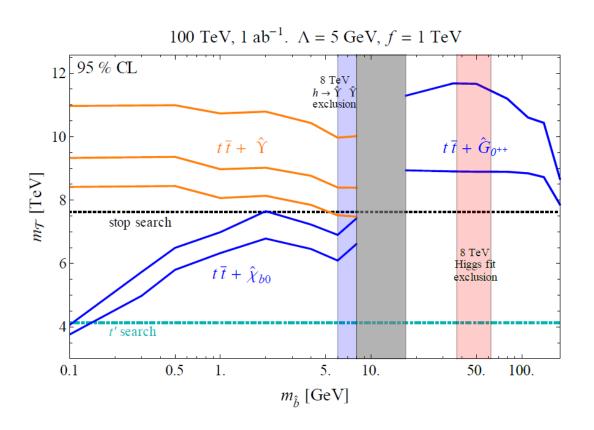
$$\delta V = \kappa \left(|H_A|^4 + |H_B|^4 \right)$$


RG-improved 1-loop potential, see Haber et al. 1996

$t\bar{t}$ + displaced twin hadron at 13 TeV

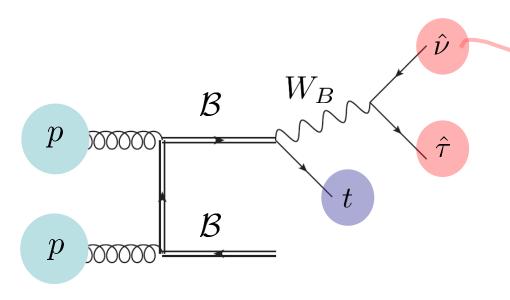
Assume background-free

exclude signal at 95% CL if it gives > 3 events



Cheng, Jung, ES, Tsai, 2015

- Orange leptonic DV, blue hadronic DV
- Different curves represent uncertainties on twin hadron fractions
- Black line shows irreducible bound from stop search (assume all twin hadrons leave undetected)


100 TeV

Same simplified modeling of detector as for 13 TeV

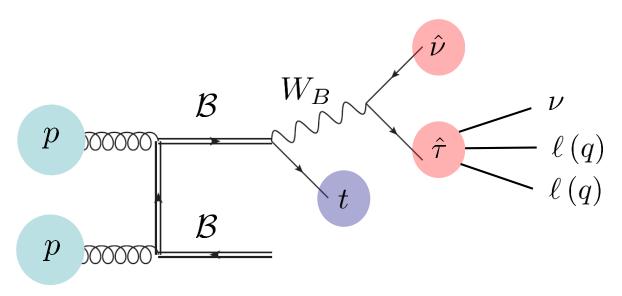
Orange leptonic DV, blue hadronic DV

Twin lepton signals

So far, assumed twin leptons heavy

However, mass is free parameter from naturalness standpoint

They can mix with the SM neutrinos and behave like **sterile neutrinos**


$$c\tau_{\hat{\ell}} = 10 \,\mathrm{cm} \, \left(\frac{10^{-3}}{\sin \theta_{\nu}}\right)^2 \left(\frac{m_{\hat{\ell}}}{6 \,\mathrm{GeV}}\right)^5$$

- Decays include $\hat{\ell} \rightarrow \nu \ell \ell, \quad \hat{\ell} \rightarrow \nu q \bar{q}$
 - for favorable lifetimes, get both leptonic and hadronic DV
- More model-dependent, but gives novel signals

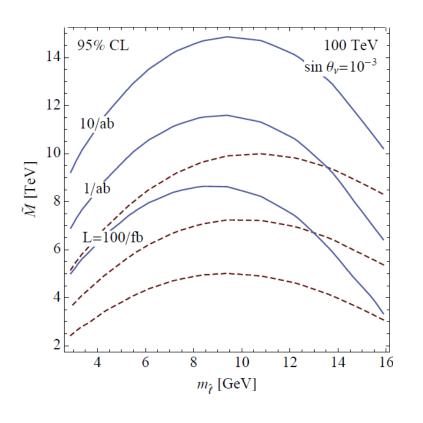
prompt $t\bar{t}$ + displaced sterile neutrino

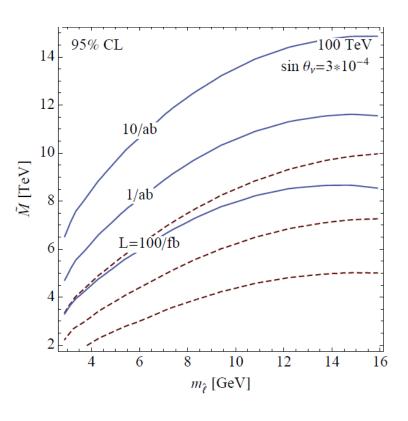
Twin lepton DVs

Leptonic DV

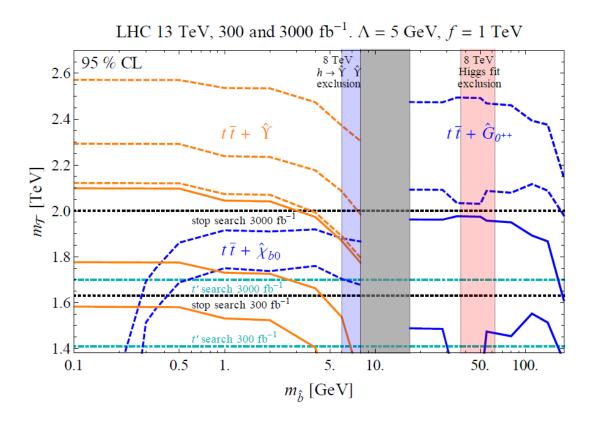
- \circ ID: displaced dilepton search, but large boost of ℓ gives too small $\Delta R \sim O(0.01)$
- HCAL + MS: ATLAS displaced lepton jet search 1409.0746

Hadronic DV


- Again ATLAS searches 1504.03634 (ID + MS) and 1501.04020 (HCAL)
- \circ ID contributes little, due to requirement $d_0>10~\mathrm{mm}$


$t\bar{t}$ + displaced twin lepton at 100 TeV

Assume background-free


exclude signal at 95% CL if it gives > 3 events

- Two different assumptions on the neutrino/twin lepton mixing
- Blue is hadronic DV, brown dashed is leptonic DV

HL-LHC

- Solid curves for 300 fb⁻¹, dashed for 3000 fb⁻¹.
- Blue hadronic DV, orange leptonic DV