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The cosmological constant is very small today


from quantum field theory we expect


 


Why so small? Why not zero?


Is there an adjustment mechanism?

Is it always very small?

1 Introduction: A brief history of vacuum energy

The discovery of the acceleration of the Universe [1] has led to one of the deepest puzzles of
modern day physics. While within cosmology the dark energy responsible for the acceler-
ation can simply be described by adding a new parameter, the cosmological constant (cc)
to the expansion equations, within particle physics this CC is expected to correspond to
the vacuum energy of the quantum field theory, determined by the underlying microscopic
physics. It is then di⇤cult to explain why a simple estimate for the vacuum energy is many
orders of magnitude larger than the observed value ⇥ � (10�3 eV)4, which is much smaller
than any other scales appearing in the Standard Model (SM) of particle physics. Super-
symmetry (SUSY) is the only known mechanism to set the CC to zero, however SUSY
breaking does contribute to the vacuum energy resulting in the oft quoted 60 orders of
magnitude discrepancy, known as the CC problem. On the other hand, if there is a (yet
to be identified) adjustment mechanism for the cosmological constant,1 then why is it not
exactly zero? This has led many scientists to embrace Weinberg’s approach, who predicted
the expected magnitude of the CC from anthropic considerations: if the CC was much
larger than the critical density then structure could not have formed given the observed
size of density perturbations recorded in the the cosmic microwave background.

Looking at the cosmic history of the Universe, one can realize that the CC problem is
in fact not a single problem, but several problems. At every phase transition the Universe
undergoes (when the vacuum expectation values of fields are changing) the vacuum energy
is expected to jump by an amount proportional to the critical temperature Tc:

�⇥i ⇥ T 4
c,i . (1.1)

In order for the CC to not dominate after the phase transition (and thus allow ordinary
radiation dominated expansion of the Universe in accordance with successful structure
formation), the total CC after the end of the phase transition has to be quite precisely
equal to the change in the CC generated at the next phase transition. Viewed from this
angle the CC problem is even more disturbing: every time the CC is about to dominate
the energy density a new phase transition must happen, and the amount of cancellation
of the CC during the phase transition is already anticipating the future history of the
Universe. At temperatures above the electroweak scale the CC in the SM is of order M4

W .
As the Universe cools and goes through the EW phase transition the CC gets reduced to a
size of the order of the QCD scale, which then gets reduced to its current size during the
QCD phase transition. Depending on the UV completion of the SM there may be another
GUT and/or SUSY phase transition (or something else). A sketch of the evolution of the
pressure due to radiation together with that of the CC (assuming a GUT, EW and QCD
phase transition) is shown in Fig. 1 which illustrates the main features: the CC was much
larger at earlier times, nevertheless it always remained a sub-dominant component of total

1Any such adjustment mechanism is strongly contrained by the Weinberg no-go theorem [2], for recent
discussions see [3].
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Sketch of vacuum energy evolution

energy density except around the times of the phase transitions. A simple toy model for
the evolution of vacuum energy is presented in App. ??. This picture again underlines the
interpretation of the CC as a quantity determined by microscopic physics, which can vary
as the theory undergoes a series of phase transitions.
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Figure 1: Sketch of the evolution of the cosmological constant (red) and the total pressure
dominated by radiation (blue) during the exapansion of the Universe. Left: standard
evolution where the vacuum energy jumps at every phase transition (the ones pictured here
correspond to the GUT, electroweak and QCD phase transitions). Right: the evolution
assuming some form of adjustment mechanism for vacuum energy.

Whether this is indeed the basic picture of the evolution of the CC would be one
of the most important fundamental questions of physics to be verified experimentally.2

Any such experiment would also yield verification of the microscopic origin of the CC, as
the gravitational e�ect of the vacuum energy of the quantum field theory. The di⇥culty
in verifying this picture experimentally is clear: until very recently, the CC was always
a sub-leading component of the energy density, and thus was never the main driver of
the expansion. Moreover the most recent known phase transition is that of QCD, at a
temperature TQCD

c � 200 MeV. While this is a relatively low particle physics scale, most of
the phenomena relevant to experimental cosmology (nucleosynthesis, structure formation,
CMBR) are sensitive only to temperatures well below the QCD scale. Thus one would need
to consider new observables that are potentially sensitive to the details of the QCD or the
electroweak (EW) phase transitions. This is further complicated by the fact that both of
these phase transitions are thought to be quite weak: the QCD phase transition is likely a
cross-over, while the EW phase transition in the SM with a 125 GeV Higgs boson is second
order, whose imprints are weaker than those of strongly first order phase transitions would
be. For example a strongly first order PT is expected to lead to production of gravitational
waves, whose spectrum could potentially be sensitive to the evolution of the CC during
the PT. Since neither of the PT’s is expected to be first order, no significant gravitational
waves would have been produced.

2A potential alternative history (corresponding to that of an adjustment mechanism) would have a CC
that is always zero, except for some spikes during the phase transitions.
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FIG. 1 (Color online) A schematic outline for the phase dia-
gram of matter at ultra-high density and temperature. The
CFL phase is a superfluid (like cold nuclear matter) and has
broken chiral symmetry (like the hadronic phase).

cross-flavor pairing, and those stresses will become more
severe as the density (and hence µ̄) decreases. This will
be a major theme of later sections.

F. Overview of the quark matter phase diagram

Fig. 1 shows a schematic phase diagram for QCD that
is consistent with what is currently known. Along the
horizontal axis the temperature is zero, and the density
is zero up to the onset transition where it jumps to nu-
clear density, and then rises with increasing µ. Neutron
stars are in this region of the phase diagram, although
it is not known whether their cores are dense enough to
reach the quark matter phase. Along the vertical axis the
temperature rises, taking us through the crossover from
a hadronic gas to the quark-gluon plasma. This is the
regime explored by high-energy heavy-ion colliders.

At the highest densities we find the color-flavor locked
color-superconducting phase,2 in which the strange quark
participates symmetrically with the up and down quarks
in Cooper pairing. This is described in more detail in
Secs. II, IV, and V. It is not yet clear what happens
at intermediate density, and in Secs. III and VI we will

2 As explained in Sec. I.A, we fix Nf = 3 at all densities, to main-
tain relevance to neutron star interiors. Pairing with arbitrary
Nf has been studied (Schäfer, 2000a). For Nf a multiple of three
one finds multiple copies of the CFL pattern; for Nf = 4, 5 the
pattern is more complicated.

discuss the factors that disfavor the CFL phase at inter-
mediate densities, and survey the color superconducting
phases that have been hypothesized to occur there.

Various aspects of color superconductivity at high tem-
peratures have been studied, including the phase struc-
ture (see Sec. VI.A), spectral functions, pair-forming
and -breaking fluctuations, possible precursors to con-
densation such as pseudogaps, and various collective
phenomena (Abuki et al., 2002; Fukushima and Iida,
2005; Hatsuda et al., 2006; Kitazawa et al., 2002, 2004,
2005a,b, 2007; Voskresensky, 2004; Yamamoto et al.,
2007). However, this review centers on quark matter at
neutron star temperatures, and throughout Secs. II and
III we restrict ourselves to the phases of quark matter
at zero temperature. This is because most of the phases
that we discuss are expected to persist up to critical tem-
peratures that are well above the core temperature of a
typical neutron star, which drops below 1 MeV within
seconds of its birth before cooling down through the keV
range over millions of years.

II. MATTER AT THE HIGHEST DENSITIES

A. Color-flavor locked (CFL) quark matter

Given that quarks form Cooper pairs, the next ques-
tion is who pairs with whom? In quark matter at suf-
ficiently high densities, where the up, down and strange
quarks can be treated on an equal footing and the disrup-
tive effects of the strange quark mass can be neglected,
the most symmetric and most attractive option is the
color-flavor locked phase, where quarks of all three colors
and all three flavors form conventional zero-momentum
spinless Cooper pairs. This pattern, anticipated in early
studies of alternative condensates for zero-density chi-
ral symmetry breaking (Srednicki and Susskind, 1981),
is encoded in the quark-quark self-energy (Alford et al.,
1999b)

⟨ψα
i Cγ5ψ

β
j ⟩ ∝ ∆CFL(κ+1)δα

i δβ
j + ∆CFL(κ−1)δα

j δβ
i

= ∆CFLϵαβAϵijA + ∆CFLκ(δα
i δβ

j + δα
j δβ

i )
(5)

The symmetry breaking pattern is

[SU(3)c] × U(1)B

× SU(3)L × SU(3)R
︸ ︷︷ ︸

⊃ [U(1)Q]

→ SU(3)c+L+R
︸ ︷︷ ︸

⊃ [U(1)Q̃]

×Z2 (6)

Color indices α, β and flavor indices i, j run from 1 to 3,
Dirac indices are suppressed, and C is the Dirac charge-
conjugation matrix. Gauge symmetries are in square
brackets. ∆CFL is the CFL gap parameter. The Dirac
structure Cγ5 is a Lorentz singlet, and corresponds to
parity-even spin-singlet pairing, so it is antisymmetric in
the Dirac indices. The two quarks in the Cooper pair are
identical fermions, so the remaining color+flavor struc-

Alford, Schmitt, 

Rajagopal, Schaefer

hep-ph/0709.4635
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At zero temperature, gravitational pressure 
balanced by pressure of fluid


Einstein eqs (aka Tolman-Oppenheimer-Volkoff):


the center of neutron stars can actually be significant. This is the reason that we will focus
our attention to the dynamics of neutron stars.

Next we present our analysis of the potential e⇥ects of an adjustment mechanism of the
vacuum energy on the structure of neutron stars. We will present a toy model for a neutron
star, with just two regions: the inner core region corresponding to the QCD condensate
phase, where the vacuum is di⇥erent from that of low-temperature and low-density QCD,
and an outer core region in a more conventional phase with the same condensates that
appear all through space since the temperature of the Universe fell bellow about 150 MeV.
This ordinary condensate presumably contributes to the observed CC, and we are looking
for a di⇥erence in vacuum energies. This outer layer is usually treated as a perfect Fermi
fluid phase with no extra vacuum energy. Realistic neutron star simulations are of course
much more involved, with many more layers matched onto each other. We are essentially
neglecting the crust, the envelope and the atmosphere of the neutron star, and taking
oversimplified equations of state (EoS) in the inner and outer cores that contain nearly all
the mass. We are not attempting to present a precise description of the neutron stars, rather
to establish that the presence of the QCD-scale vacuum energy at the core of the neutron
star has a significant e⇥ect on the structure of the star, which would change significantly
if the vacuum energy in the core was not present. See ref. [4] for a review of the physics of
neutron stars.

We are assuming a static neutron star in equilibrium at close to zero temperature.
Gravitational pressure is balanced by the pressure of a perfect fluid, which undergoes a
phase transition at a critical pressure pcr. The general form of the metric of a static and
spherically symmetric spacetime is given by

ds2 = e�(r)dt2 � (1� 2GM(r)/r)�1 dr2 � r2d�2 . (2.1)

Einstein’s equations for a static and spherically symmetric configuration of a fluid with
pressure p(r) and energy density ⇤(r) are given by the Tolman-Oppenheimer-Volko⇥ equa-
tions:

M ⇥(r) = 4⇥r2⇤(r) , (2.2)

p⇥(r) = � p(r) + ⇤(r)

r2 (1� 2GM(r)/r)

�
GM(r) + 4⇥r3p(r)

⇥
, (2.3)

� ⇥(r) = � 2p⇥(r)

p(r) + ⇤(r)
, (2.4)

where ⇥ denotes di⇥erentiation with respect to the radial coordinate r. These are three
equations for four unknown functions: p(r), ⇤(r), M(r) and �(r). The extra equation
needed to solve the system is the EoS p = p(⇤) which is the only model dependent input
sensitive to the actual phase of the fluid in the various layers of the neutron star. The radius
of the neutron star, R, is determined by the condition of vanishing pressure p(R) = 0.
Outside the radius of the neutron star r > R the solution is matched to the Schwarzschild
solution in radial coordinates with total mass M(R).
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p0(r) = � p(r) + ⇢(r)
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Match critical pressure at boundary
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thus      also continuous


Toy model for neutron stars

We model the fluid and its corresponding EoS in the following way: as the pressure
increases toward the center of the neutron star, it eventually reaches a critical value pcr
at some critical surface r = rcr where the nucleons “freeze” into a new phase with a non-
vanishing vacuum energy �. There are therefore two EoS’s for the two di⇥erent regions:

p =p(�)(⇤) , ⇤ = ⇤(�) , p ⇤ pcr , r ⇥ rcr (2.5)

p =p(+)(⇤) , ⇤ = ⇤(+) , p < pcr , r ⇤ rcr . (2.6)

The usual Israel junction conditions of continuity of the induced metric and extrinsic cur-
vature at the critical surface require ⇥ ⇥(r) and M(r) to be continuous across the phase
transition. These in turn imply the continuity of the pressure4 p(r). The energy density
⇤ is in general discontinuous at rcr as is generically the case for phases separated by a
spacelike surface, such as the vapor-liquid phases of water.

In the inner core region r < rcr we take a polytropic fluid supplemented by a non-
vanishing vacuum energy �

p(�)(⇤) =pf (⇤)� � = K�⇤
��
f � � (2.7)

⇤(�) =⇤f + � (2.8)

where ⇤f and pf = K�⇤
��
f represent the ordinary matter partial density and pressure that

include e.g. the e⇥ect of binding energy but not the vacuum energy. Notice that K = 1/3
and � = 1 may be interpreted as the EoS of the bag model. In the outer core region,
r > rcr, we take another polytropic fluid described by K+ and �+ but no vacuum energy,
�+ = 0

p(+)(⇤) =pf (⇤) = K+⇤
�+
f (2.9)

⇤(+) =⇤f . (2.10)

The value �+ = 5/3 reproduces the small pressure and density limit of a perfect Fermi
fluid.

Notice that the vacuum energy can’t be too negative. Indeed, should � be smaller
than �pcrit, the matter partial pressure pf would become negative triggering an instability
of the fluid that would separate in more than two phases of matter. Thus one has the
condition

� > �pcr . (2.11)

One may expect also an upper bound on � by thermodynamical considerations. The
equilibrium between the phases requires dg = 0 where g is the Gibbs free energy density
g = (⇤ + p)/n � Ts and n is the total number density. It may be possible that such
equilibrium condition can not be satisfied by taking � at arbitrarily large values. This
upper bound is di⇤cult to be derived since dg = dp/n�sdT +µidYi and one would need to

4We are neglecting a possible localized surface tension on the layer separating the two phases, which
would allow for a small discontinuity in the pressure at the critical surface.
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Figure 4: R-M trajectories for a two-polytropic fluid with �� = 1 and �+ = 5/3, for various
values of the vacuum energy in the inner core, sign(�)|�|1/4 = �90MeV (red dotdashed),
�75MeV (brown dotted), 0MeV (black solid), 50MeV (blue dashed), and 100MeV (orange
dotdashed).

figures, in particular the reduction of the maximal mass with � for a given critical pressure,
can be understood by noticing that a larger value of � implies a higher matter pressure for
the same total pressure at the center. This makes the star end faster, and with a lower mass.

At this point it is important to take into consideration the fact that there is strong
observational evidence of neutron stars with masses above 2M⇥. Such large masses have
been taken as an indication in favor of pure hadronic neutron stars, given the di⇥culties
for EoS’s such as the MIT bag model to reproduce them.6 We are showing here that if the
vacuum energy, which is presumably included in the MIT bag model as part of the bag
constant, was to be relaxed towards negligible values, larger values of Mmax could easily be
obtained, improving consistency with observations. Nevertheless, it is certainly crucial that
a reliable EoS for the matter component is obtained, most likely from lattice simulations,
before extracting any conclusions in this regard.

With the expected improvement in quantity and quality of experimental data on neu-
tron stars, one might hope to obtain better lower bounds on the maximum mass of a
neutron star, along with crucial information on the associated radius. Up to date, radii
measurements have poor accuracy, and they have only been achieved for a handful of neu-
tron stars in binary systems, and inferred from X-ray measurements. A promising avenue

6See however Ref. [11] for a more refined EoS for quark matter including interactions, and from which
higher maximal masses can be obtained.
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Cosmological phase transitions


Case study: look at effect of PT’s on 
primordial gravitational waves

Vacuum energy of the Universe
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normalized to critical density


Approximate expression:
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A typical result:
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peaks near phase transition


Magnitude of peak set by the maximal 
ratio of vacuum energy to radiation
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case for QCD: large change in DOF 
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vacuum energy should change during 

phase transitions


Neutron stars: 

              VE can cause measurable deviation in 

maximal mass and M(R)


Primordial gravitational waves: 

hard to see in SM phase transitions,


 possible peaks in BSM or large steps for adjustment

Summary





inner core use polytropic with vacuum energy:


outer core just polytropic 


    for a Fermi fluid


vacuum energy can not be too negative:

otherwise partial pressure of QCD fluid negative

We model the fluid and its corresponding EoS in the following way: as the pressure
increases toward the center of the neutron star, it eventually reaches a critical value pcr
at some critical surface r = rcr where the nucleons “freeze” into a new phase with a non-
vanishing vacuum energy �. There are therefore two EoS’s for the two di⇥erent regions:

p =p(�)(⇤) , ⇤ = ⇤(�) , p ⇤ pcr , r ⇥ rcr (2.5)

p =p(+)(⇤) , ⇤ = ⇤(+) , p < pcr , r ⇤ rcr . (2.6)

The usual Israel junction conditions of continuity of the induced metric and extrinsic cur-
vature at the critical surface require ⇥ ⇥(r) and M(r) to be continuous across the phase
transition. These in turn imply the continuity of the pressure4 p(r). The energy density
⇤ is in general discontinuous at rcr as is generically the case for phases separated by a
spacelike surface, such as the vapor-liquid phases of water.

In the inner core region r < rcr we take a polytropic fluid supplemented by a non-
vanishing vacuum energy �

p(�)(⇤) =pf (⇤)� � = K�⇤
��
f � � (2.7)

⇤(�) =⇤f + � (2.8)

where ⇤f and pf = K�⇤
��
f represent the ordinary matter partial density and pressure that

include e.g. the e⇥ect of binding energy but not the vacuum energy. Notice that K = 1/3
and � = 1 may be interpreted as the EoS of the bag model. In the outer core region,
r > rcr, we take another polytropic fluid described by K+ and �+ but no vacuum energy,
�+ = 0

p(+)(⇤) =pf (⇤) = K+⇤
�+
f (2.9)

⇤(+) =⇤f . (2.10)

The value �+ = 5/3 reproduces the small pressure and density limit of a perfect Fermi
fluid.

Notice that the vacuum energy can’t be too negative. Indeed, should � be smaller
than �pcrit, the matter partial pressure pf would become negative triggering an instability
of the fluid that would separate in more than two phases of matter. Thus one has the
condition

� > �pcr . (2.11)

One may expect also an upper bound on � by thermodynamical considerations. The
equilibrium between the phases requires dg = 0 where g is the Gibbs free energy density
g = (⇤ + p)/n � Ts and n is the total number density. It may be possible that such
equilibrium condition can not be satisfied by taking � at arbitrarily large values. This
upper bound is di⇤cult to be derived since dg = dp/n�sdT +µidYi and one would need to

4We are neglecting a possible localized surface tension on the layer separating the two phases, which
would allow for a small discontinuity in the pressure at the critical surface.
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Figure 5: Right: Maximum mass with varying � for various values of pcr. Left: Maximum
mass contour lines in the vacuum energy and critical pressure plane.

that is expected to provide new data is the detection of gravitational waves from inspiralling
binary neutron stars [12]. From the properties of the gravitational wave signatures during
coalescence, di⇥erent competing models for the equation of state of the neutron star can be
distinguished from one another. Properties such as the mass-radius relationship, and the
response of the star to tidal forces are imprinted on the “chirp” gravitational wave signature
given o⇥ by the collapsing binary pair. Given input from theoretical studies of QCD at
high densities where the non-CFL phase is expected to occur, and of the nuclear superfluid
equation of state that describes the physics of the outer core, Advanced LIGO can thus test
whether or not there are BSM contributions to the equation of state that may be related to
dynamics responsible for the small observed value of the vacuum energy density. The most
challenging aspect of this program, however, is to obtain this theoretical input. Progress
on first-principles determination of the finite chemical potential portion of the QCD phase
diagram has been slow, as the typical tools for non-perturbative studies, i.e. the lattice,
are ill-suited for large baryon densities. Further development of experimental techniques to
determine properties of exotic phases of QCD, along with the aforementioned advances in
theoretical predictions are key to determine the gravitational properties of vacuum energy.

4 Conclusions

A major goal for the gravitational wave detector program should be to measure the e⇥ect of
vacuum energy at the electroweak phase transition, this will require a new experiment that
fills in the gap between eLISA and NANOgrav Since eLISA’s peak sensitivity is around

13

effect on maximum mass varying Λfor fixed pcr 



maximal mass can change significantly

depends very strongly on EoS parameters


a few radii known from X-ray measurements
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neutron star binaries
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As it is to be expected from the energy density carried by radiation.

There are two key points in order to understand the behavior of ⇥h. First, all the modes of

interest became super horizon, k ⇥ aH, during inflation, and once outside the horizon their power

spectrum �2
h froze to the value set by inflation, independent of k, Eq. (12). This means that once

a mode reenters the horizon (for the first time) at ⇤ = ⇤hc, it does it asymptotically with the same

power, irrespective of when it enters. Thus we will approximate [T (⇤hc, k)]2 ⌅ 1. Second, gravitons

are already decoupled from the thermal bath from the very start of the expansion. This is why,
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Deviation from radiation domination only during 
short period during PT...

QCD PT from lattice
5

Figure 3: Comparison of the thermodynamics of lattice QCD
and of a theory of free quarks and gluons. In all cases, three
quark species (u, d, and s) have been included. The curve
labeled “hotQCD” is based on Ref. [11], while the curve la-
beled “Wuppertal” is from Ref. [12]; see the main text for de-
tails. The free field theory curve was obtained by setting the
masses of all the quarks and gluons artificially to 500MeV.
This counter-factual assumption is made in order to obtain
the narrowest possible peak in Θ/T 4 in the vicinity of the
QCD transition, illustrating that interactions have a signifi-
cant effect beyond introducing dynamically generated masses.

the p4, asqtad, and stout-improved staggered fermion ac-
tions, see [11, 12] and references therein.) Going forward,
we will use the p4 results of [11]; not that we endorse
them as more accurate, but instead because they are the
most different from free field results, providing us with
an upper limit of how sharp the QCD transition might
plausibly be as a result of interactions.
In order to obtain a complete account of the visible

sector degrees of freedom in the vicinity of the QCD tran-
sition, we combine the energy density and pressure ob-
tained from (6) and (7) with free field treatments of all
the leptons, and also the c and b quark, where all par-
ticles are constrained to have the same temperature. A
free field treatment is obviously not perfect (particularly
for the c quark), but improved approximations would be
complicated.

V. THE ELECTROWEAK PHASE TRANSITION

It is far from obvious that the electroweak transi-
tion can be approximated by free field thermodynam-

ics. The masses of all observed Standard Model parti-
cles owe their existence to a non-zero Higgs expectation
value, φ = σ ≡ 246GeV. But this expectation value is
eventually driven to zero at high temperatures. An elec-
troweak scale contribution to the cosmological constant
accompanies this change in the Higgs expectation value.
Meanwhile, electroweak interactions introduce thermal
corrections to particle masses. Without accounting prop-
erly for these thermal corrections and other loop effects,
the Higgs mass itself, now known to be approximately
125GeV in vacuum [13, 14], would become imaginary
once the Higgs expectation value falls below the point
where the tree-level potential is concave up. One of the
main conclusions of this section, illustrated in Fig. 4, is
that, close to the peak of Θ/T 4, free field thermodynam-
ics based on the vacuum particle spectrum nevertheless
provides a decent approximation to the ring-improved
one-loop treatment of [15], which is the simplest account
of the electroweak transition that avoids obvious inconsis-
tencies such as imaginary masses. At substantially higher
temperatures, we will show that the ring-improved one-
loop treatment predicts a negative value of Θ/T 4.

A more modern understanding of the electroweak tran-
sition [16], based in part on lattice simulations, is that the
transition is not weakly first order, as predicted by the
ring-improved one-loop treatment, but is instead a cross-
over. If anything, we expect the full non-perturbative
results for the trace Θ of the stress tensor to be closer
to the free field results than the ring-improved one-loop
results are, though it is likely that the ring-improved one-
loop treatment is still a good guide well above and well
below the cross-over.

The treatment of [15] proceeds in three steps:

1. First one produces thermally improved formulas
for all the fields using self-energy diagrams. The
schematic form of these masses is m2(φ, T ) =
m2

tree(φ) + g2T 2, where g is a gauge coupling and
φ is the Higgs field expectation value. The precise
forms of all the masses are listed in table I.

2. Next one assembles an effective potential, correct
through one-loop order, as follows:

Caldwell & Gubser astro-ph.CO/1302.1201
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Figure 3: Left: Radius-Mass relation for a polytropic fluids in the inner core with (� =
4/3, K = k�1/3) and Fermi Fluid in the outer core, matched at pcr = 2k/3 ⇥ (200 MeV)4,
for � = 0 (solid black), (150 MeV)4 (dashed blue), (200 MeV)4 (dot-dashed orange),
(223 MeV)4 (dotted red). The turn-over in the low-mass and low-radius region corresponds
to stars with central pressure barely above the critical pressure. They are almost fully
Fermi fluids. Right: the same except it shows also a gray curve corresponding to �cr

3 E�ects of vacuum energy on primordial gravitational
waves

In the previous section we presented a potential experimental approach toward measuring
the gravitational e⇥ects of vacuum energy by identifying a system where it constitutes
a sizeable fraction of the total energy. The downside of this approach is that does not
directly test the picture on the evolution of the CC sketched in Fig. 1 and elaborated on in
Appendix A. In this section we investigate the e⇥ects of the changing CC on the propagation
of primordial gravitational waves. The reason why this might present some hope is that (as
we will see shortly) the e⇥ect of the leading radiation term is strongly suppressed, opening
the door for CC to be dominant in periods around the phase transitions.

Gravitational waves correspond to transverse traceless tensor perturbations hij (with
hi

i = 0, and ⇧khk
i = 0) of the metric in an expanding Universe

ds2 = a(⌅)2
�
d⌅ 2 � (⇥ij + hij)dxidxj

⇥
, (3.1)

where we have used conformal time ⌅ related to ordinary time t via a(⌅)d⌅ = dt. The
expansion equation in conformal time is given by

a⇥ = aȧ = a2H ,
a⇥⇥

a
= a2

⇤
ä

a
+

ȧ2

a2

⌅
=

4⇤G

3
a2T µ

µ . (3.2)

where H = ȧ/a is the Hubble scale wrt to time t, and ⇥ means derivative wrt to ⌅ . The
linearized Einstein equation for the tensor perturbations hij (assuming no anisotropic stress

8

! " #$ ## #%

#&$

#&'

%&$

%&'

(&$

)*+,-. !/0"

1
*.
.#
!
�

! " # $ % &' && &(

&)'

&)!

()'

()!

*)'

+,-./0 !12"

3
,0
0#
!
�

Figure 3: Left: Radius-Mass relation for a polytropic fluids in the inner core with (� =
4/3, K = k�1/3) and Fermi Fluid in the outer core, matched at pcr = 2k/3 ⇥ (200 MeV)4,
for � = 0 (solid black), (150 MeV)4 (dashed blue), (200 MeV)4 (dot-dashed orange),
(223 MeV)4 (dotted red). The turn-over in the low-mass and low-radius region corresponds
to stars with central pressure barely above the critical pressure. They are almost fully
Fermi fluids. Right: the same except it shows also a gray curve corresponding to �cr

3 E�ects of vacuum energy on primordial gravitational
waves

In the previous section we presented a potential experimental approach toward measuring
the gravitational e⇥ects of vacuum energy by identifying a system where it constitutes
a sizeable fraction of the total energy. The downside of this approach is that does not
directly test the picture on the evolution of the CC sketched in Fig. 1 and elaborated on in
Appendix A. In this section we investigate the e⇥ects of the changing CC on the propagation
of primordial gravitational waves. The reason why this might present some hope is that (as
we will see shortly) the e⇥ect of the leading radiation term is strongly suppressed, opening
the door for CC to be dominant in periods around the phase transitions.

Gravitational waves correspond to transverse traceless tensor perturbations hij (with
hi

i = 0, and ⇧khk
i = 0) of the metric in an expanding Universe

ds2 = a(⌅)2
�
d⌅ 2 � (⇥ij + hij)dxidxj

⇥
, (3.1)

where we have used conformal time ⌅ related to ordinary time t via a(⌅)d⌅ = dt. The
expansion equation in conformal time is given by
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in the perturbed Tµ�) is
h⇥⇥

ij + 2Hh⇥
ij �⇧2hij = 0 (3.3)

where H = a⇥/a is the Hubble parameter wrt conformal time ⌃ . The spatial Fourier
transform reads

hij =
⇤

⇤=+,�

⌅
d3k

(2⇤)3
⇥(⇤)
ij h(⇤)

k (⌃)eikx (3.4)

and the evolution equation for the rescaled modes (omitting the polarization index ⇧)

⌥k ⇥ ahk (3.5)

becomes

⌥⇥⇥
k + (k2 � a⇥⇥

a
)⌥k = ⌥⇥⇥

k +

�
k2 � 4⇤G

3
a2T µ

µ

⇥
⌥k = 0 . (3.6)

where in the second equality we used Eq. (3.2).

This basic evolution equation for the tensor modes is quite interesting since it shows
that during radiation domination the leading contribution to Tµ� cancels out in the trace.
For truly conformal radiation Tµ� = 0, since the equation of state parameter is w = 1

3 .
However, for radiation in the standard model the trace anomaly will generate a sub-leading
contribution from radiation, which has been calculated in great detail in [5]. A simplified
expression for SU(Nc) gauge theories with Nf flavors was provided in [6]:

⇥ ⇥ 1� 3w =
5

6⇤2

g4

16⇤2

(Nc + 5
4Nf )(

11
3 Nc � 2

3Nf )

2 + 7
2

NcNf

N2
c �1

(3.7)

For example the value for QCD around the TeV scale with �s ⇤ 0.1, Nc = 3, Nf = 6
corresponds to ⇥ ⇤ 6·10�3. Thus the total contribution is approximated by T µ

µ = ⇥⌅rad+4�,
where � can be as large as the energy density of the phase transitions happening in this era
(e.g. the EW phase transition). The full power spectrum for the tensor perturbation hk is
the same as the one for ⌥k except for the scale factor 1/a2 and an overall normalization (to
achieve canonical normalization):

Ph = 16⇤G
|⌥k|2

a2
(3.8)

The additional scale factor 1/a2 is actually crucial for understanding the qualitative features
of the spectrum. Due to this suppression ⌥ modes that do not grow with a will be strongly
suppressed. For wavelength k2 ⌅ 4⇥G

3 a2T µ
µ we just have a free wave equation for ⌥, and the

modes will be strongly suppressed. However when the T µ
µ term dominates, we have ⌅00

⌅ = a00

a
and thus we do find modes growing with a. Therefore the physical picture of the spectrum
is the following. The T µ

µ term sets an e⇥ective damping horizon for the gravitational waves

2⇤

D2
gw

=
4⇤G

3
a2T µ

µ ⇤
4⇤G
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a2(⇥⌅rad + 4� + ⌅mat) (3.9)
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in the perturbed Tµ�) is
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ij + 2Hh⇥
ij �⇧2hij = 0 (3.3)

where H = a⇥/a is the Hubble parameter wrt conformal time ⌃ . The spatial Fourier
transform reads

hij =
⇤

⇤=+,�

⌅
d3k

(2⇤)3
⇥(⇤)
ij h(⇤)

k (⌃)eikx (3.4)

and the evolution equation for the rescaled modes (omitting the polarization index ⇧)

⌥k ⇥ ahk (3.5)

becomes

⌥⇥⇥
k + (k2 � a⇥⇥

a
)⌥k = ⌥⇥⇥

k +

�
k2 � 4⇤G

3
a2T µ

µ

⇥
⌥k = 0 . (3.6)

where in the second equality we used Eq. (3.2).

This basic evolution equation for the tensor modes is quite interesting since it shows
that during radiation domination the leading contribution to Tµ� cancels out in the trace.
For truly conformal radiation Tµ� = 0, since the equation of state parameter is w = 1

3 .
However, for radiation in the standard model the trace anomaly will generate a sub-leading
contribution from radiation, which has been calculated in great detail in [5]. A simplified
expression for SU(Nc) gauge theories with Nf flavors was provided in [6]:

⇥ ⇥ 1� 3w =
5

6⇤2

g4

16⇤2

(Nc + 5
4Nf )(

11
3 Nc � 2

3Nf )

2 + 7
2

NcNf

N2
c �1

(3.7)

For example the value for QCD around the TeV scale with �s ⇤ 0.1, Nc = 3, Nf = 6
corresponds to ⇥ ⇤ 6·10�3. Thus the total contribution is approximated by T µ

µ = ⇥⌅rad+4�,
where � can be as large as the energy density of the phase transitions happening in this era
(e.g. the EW phase transition). The full power spectrum for the tensor perturbation hk is
the same as the one for ⌥k except for the scale factor 1/a2 and an overall normalization (to
achieve canonical normalization):

Ph = 16⇤G
|⌥k|2

a2
(3.8)

The additional scale factor 1/a2 is actually crucial for understanding the qualitative features
of the spectrum. Due to this suppression ⌥ modes that do not grow with a will be strongly
suppressed. For wavelength k2 ⌅ 4⇥G

3 a2T µ
µ we just have a free wave equation for ⌥, and the

modes will be strongly suppressed. However when the T µ
µ term dominates, we have ⌅00

⌅ = a00

a
and thus we do find modes growing with a. Therefore the physical picture of the spectrum
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satisfies a very simple equation:

Einstein equation:

Propagation of primordial gw’s



The energy density is then


energy density per log scale 

normalized to critical density


Approximate expression:

Energy density in 

gravitational waves

When considering primordial perturbations created during inflation, it is convenient to define the

transfer function T (⇤, k) such that

hk(⇤) � hP
k T (⇤, k) (11)

where the primordial amplitude from inflation hP
k has a (approximately) constant power,

(�P
h )2 =

4k3

2�2
|hP

k |2 ⌅ 2

�2

H2
�

M2
P

(12)

which remains constant once the modes exit the horizon during inflation. H� is the Hubble constant

at horizon exit. We then have

(�h)
2 = (�P

h )2T 2(⇤, k) (13)

Furthermore, we can write

⇥h(⇤) =
1

32�Ga2(⇤)

�
d ln k(�P

h )2T �2(⇤, k) (14)

It is then customary to work with the energy density per logarithmic scale, normalized to the critical

density,

⇥h(⇤, k) � ⇥̃h(⇤, k)

⇥c(⇤)
, ⇥̃h(⇤, k) =

d⇥h(⇤, k)

d ln k
(15)

where ⇥̃h(⇤, k) = d⇥h(⇤, k)/d ln k and ⇥c = 3H2(⇤)/8�G. Therefore one has

⇥h(⇤, k) =
(�P

h )2

12

1

H2(⇤)

1

a2(⇤)
T �2(⇤, k) (16)

It will be convenient for the arguments below to approximate T � above assuming that the wave

modes are deep inside the horizon k⇤ ⇤ 1 (or k ⇤ aH), in which case

T �2(⇤, k) ⌅ k2 T 2(⇤, k) (17)

As it is to be expected from the energy density carried by radiation.

There are two key points in order to understand the behavior of ⇥h. First, all the modes of

interest became super horizon, k ⇥ aH, during inflation, and once outside the horizon their power

spectrum �2
h froze to the value set by inflation, independent of k, Eq. (12). This means that once

a mode reenters the horizon (for the first time) at ⇤ = ⇤hc, it does it asymptotically with the same

power, irrespective of when it enters. Thus we will approximate [T (⇤hc, k)]2 ⌅ 1. Second, gravitons

are already decoupled from the thermal bath from the very start of the expansion. This is why,

once they are inside the horizon, and in the absence of sources, the evolution of the energy density

2

⌦h(⌧, k) '
(�P

h )
2

12H2(⌧)a4(⌧)
k2a2(⌧hc)

⌦h(⌧, k) ⌘
⇢̃h(⌧, k)

⇢c(⌧)
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a00
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a00

a

�00

�
=

a00

a

Propagation of primordial gw’s



      Naive horizon


larger than Hubble horizon


when entering this “naive horizon” 

velocity of solution still very large 


expands until reaches actual 

Hubble horizon


need rate of entering actual horizon                  

a00

a
=

4�G

3
a2Tµ

µ

Propagation of primordial gw’s



  


Traditional description: changing number of 
rel. degrees of freedom in equilibrium


Assuming entropy is conserved:


S =
�+ p

T
a3 = const.

�+ p / g⇤T
4

given that H2a4 ⇧ a and a2(⇤hc) ⇧ (aH)�4(⇤hc) ⌅ 1/k4. Again, the proportionality factor is the

same for any mode k that entered during matter domination, thus �h(⇤ > ⇤eq, k < keq)/�h(⇤ >

⇤eq, k⇥ < keq) ⌅ (k⇥/k)2. Actually, the proportionality factor is the same as for the modes that

entered during radiation domination, thus

�h(⇤ > ⇤eq, k < keq)

�h(⇤ > ⇤eq, k > keq)
⌅ 1

(⇤eqk)2
(23)

Notice that, as expected, for modes that enter at matter-radiation equality, k⇤eq = 1, the ratio is

one.

2.3 Case 3

Let us consider a departure from pure radiation, due to quantum interactions, that is the trace

anomaly. In such a case p = ⌅⇥ with ⌅ = (1 � �)/3, � parametrizing the departure from pure

radiation. Then it follows H2 ⇧ ⇥ ⇧ a�(4��) and a ⇧ ⇤ 1/(1��/2). For a mode entering the horizon

during this epoch

�h(⇤ < ⇤eq, k > keq) ⇧
k2a2(⇤hc)

a�
⇧ 1

(k⇤)�
(24)

given that H2a4 ⇧ a� ⇧ ⇤ � and a2(⇤hc) ⇧ (aH)�2/(1��/2)(⇤hc) ⌅ 1/k2+�, for �⇤ 1. This also implies

that, after matter-radiation equality, two di⇥erent modes that entered during radiation domination

will have a relative spectral density

�h(⇤ > ⇤eq, k > keq)

�h(⇤ > ⇤eq, k⇥ > keq)
⌅

�
k⇥

k

⇥�

(25)

for � ⇤ 1. Given � > 0, modes that entered the horizon before will be more damped than those

that entered after.

2.4 Case 4

Let us now consider a localized departure from pure radiation, at a given time ⇤t, due to a reduction

of the relativistic degrees of freedom in thermal equilibrium,

g⇥,a ⇥ g⇥(⇤ > ⇤t) ⌃= g⇥(⇤ < ⇤t) ⇥ g⇥,b (26)

Assuming that entropy per unit comoving volume is conserved, s(T )a3(T ) = ct., and given that

s(T ) = (⇥ + p)/T , it follows a ⇧ T�1g�1/3
⇥ . Therefore H2 ⇧ ⇥ ⇧ g�1/3

⇥ a�4 (and a ⇧ ⇤), before or

after the phase transition (but not during), the only di⇥erence being in g⇥. Then, even though the

4

a / T�1g�1/3
⇤

Effect of Phase Transition



Depends on adjustment time scale


If very quick: VE set to zero always

hard to make any distinction in QCD & EW  


alternative: adjustment time scale 
somewhat larger than that of PT


period where VE dominates

brief inflation after PT

Effect of adjustment mechanism



Unaffected - 
enters at same 

time

Some of the modes that entered will leave again


Some modes will only enter later

a H

k

Effect of short inflation

τ



Enters - leaves - 
re-enters

Some of the modes that entered will leave again


Some modes will only enter later

a H

k

Effect of short inflation

τ



Effect of short inflation

τ

Enters later than 
w/o inflation


unsuppressed by 
inflation

Some of the modes that entered will leave again


Some modes will only enter later

k

a H



1.×10-8 1.×10-7 1.×10-6

0.1

0.01

0.001

0.0001

1.×10-8 1.×10-7 1.×10-6

0.1

0.01

0.001

0.0001

k in Hz

Ω
(k
)

large changes if the relaxation is slow 
compared to phase transition

Effect of short inflation

10 tQCD

5 tQCD

  tQCD


