New results on $b ightarrow c au ar{ u}$ and ϵ_K

Zoltan Ligeti

(ligeti@berkeley.edu)

Lawrence Berkeley Lab

June 12–17, 2016

Flavor: new/old players besides LHC(b)

- Belle II is approaching time to make genuine predictions is shrinking recent months: e^{\pm} circulated in SuperKEKB rings (~ 0.5 A, 1576 bunches)
- NA62 this year: ~ 200 days run, at SM level ~ 50 events in $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
- Interesting to think about:
 - What can be done with 10 100 times more data, that has not been done?
 - What important / useful theory predictions have not been made?
 - New ideas? Room for major developments?
 Order of magnitude more data always triggered new ideas & methods

sc final focus, Dec. 25, 2015

IL M

ί. 1 28 Dec. 26, 2015

- $B \to D^{(*)} \tau \bar{\nu}$ is currently the most significant deviation from the SM
 - MFV models, leptoquarks [M. Freytsis, ZL, J. Ruderman, PRD 92 (2015) 054018, arXiv:1506.08896] "deconstructed ambulance chasing"
 - Suppress $e \& \mu$ instead of enhancing τ ?
 - $B \rightarrow D^{**} \ell \bar{\nu}$ decays

[M. Freytsis, ZL, J. Ruderman, to appear]

[F. Bernlochner, ZL, to appear]

Time permitting...

• One slide on future uncertainty of $\sin 2\beta$

[ZL & Robinson, PRL 115 (2015) 251801, 1507.06671]

- ϵ_K probes highest scales among $\Delta F = 2$, sensitive to many BSM models
 - SM prediction uncertainty $\sim 10\%$ vs. exp. uncertainty $\sim 0.5\%$ [ZL, F. Sala, 1602.08494]

The most significant deviation from the SM

• Belle & LHCb results on the anomaly seen by BaBar in $R(X) = \frac{\Gamma(B \to X \tau \bar{\nu})}{\Gamma(B \to X(e/\mu)\bar{\nu})}$

SM predictions fairly robust: heavy quark symmetry + lattice QCD, only R(D) [1503.07237, 1505.03925]

- Next: LHCb result for R(D)? Use more τ decays? $\Lambda_b \to \Lambda_c^{(*)} \tau \nu$? $B_s \to D_s^{(*)} \tau \nu$?
- Need NP at fairly low scales (leptoquarks, W', etc.), likely visible in LHC Run 2
- Question we asked: can MFV new physics explain the data?

SM predictions fairly robust

• Measurements + heavy quark symmetry + lattice QCD All form factors = lsgur-Wise function + $O(\Lambda_{QCD}/m)$ corrections

[BaBar, 0705.4008]

Tension with SM is model independent

- Use OPE for inclusive $B \to X_c \tau \bar{\nu}$ to get model independent constraints on SM
- Learn from inclusive = \sum exclusive
 - $R(X_c) = 0.222 \pm 0.003$

[Freytsis, ZL, Ruderman, update of earlier results]

$$\mathcal{B}(B^- \to X_c \ell \bar{\nu}) = (10.92 \pm 0.16)\%$$

Predict:
$$\mathcal{B}(B^- \to X_c \tau \bar{\nu}) = (2.42 \pm 0.05)\%$$

vs. LEP: $\mathcal{B}(b \to X \tau^+ \nu) = (2.41 \pm 0.23)\%$

- The $R(D^{(*)})$ data imply: $\mathcal{B}(\bar{B} \to D^* \tau \bar{\nu}) + \mathcal{B}(\bar{B} \to D \tau \bar{\nu}) = (2.78 \pm 0.25)\%$
- SM estimate $\mathcal{B}(B \to D^{**} \tau \bar{\nu}) \gtrsim 0.15\%$ (four 1*P* states) details later
- Tension $\gtrsim 2\sigma$, based on calculation of SM inclusive rate + minimal assumptions Complementary to comparison with SM calculation of $R(D^{(*)})$

Operator analysis

Consider redundant set of operators

• Fits to different fermion orderings convenient to understand allowed mediators

Usually only the first 5 operators considered, related by Fierz

from dim-6 terms, others from dim-8 only $\downarrow\downarrow$

	Operator	8	Fierz identity	Allowed Current	$\delta \mathcal{L}_{ ext{int}}$
\mathcal{O}_{V_L}	$(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$			$(1,3)_0$	$(g_q ar q_L oldsymbol{ au} \gamma^\mu q_L + g_\ell ar \ell_L oldsymbol{ au} \gamma^\mu \ell_L) W'_\mu$
\mathcal{O}_{V_R}	$(\bar{c}\gamma_{\mu}P_{R}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$			500 K 000 B	
\mathcal{O}_{S_R}	$(\bar{c}P_Rb)(\bar{\tau}P_L\nu)$			(1,2)	$(), \overline{a}, d, \phi +), \overline{a}, u = i\pi, \phi^{\dagger} +), \overline{b}, a = \phi$
\mathcal{O}_{S_L}	$(\bar{c}P_Lb)(\bar{\tau}P_L\nu)$			$/^{(1,2)_{1/2}}$	$(\lambda_d q_L u_R \phi + \lambda_u q_L u_R u_2 \phi^* + \lambda_\ell \epsilon_L e_R \phi)$
\mathcal{O}_T	$(\bar{c}\sigma^{\mu\nu}P_Lb)(\bar{\tau}\sigma_{\mu\nu}P_L\nu)$				
\mathcal{D}'_V	$(\bar{\tau}\gamma_{\mu}P_{L}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	Ov. l	$(3,3)_{2/3}$	$\lambdaar{q}_Loldsymbol{ au}\gamma_\mu\ell_Loldsymbol{U}^\mu$
VL				(3,1)	$(\lambda \bar{a}_{x} \alpha \ell_{x} + \tilde{\lambda} \bar{d}_{p} \alpha \ell_{p}) II^{\mu}$
\mathcal{O}_{V_R}	$(\bar{\tau}\gamma_{\mu}P_{R}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	\longleftrightarrow	$-2\mathcal{O}_{S_R}$	$/^{(3,1)_{2/3}}$	$(\lambda q_L \gamma_\mu e_L + \lambda a_R \gamma_\mu e_R) O^{-1}$
\mathcal{O}_{S_R}'	$(\bar{\tau}P_Rb)(\bar{c}P_L\nu)$	\longleftrightarrow	$-\frac{1}{2}\mathcal{O}_{V_R}$		
\mathcal{O}_{S_L}'	$(\bar{\tau}P_Lb)(\bar{c}P_L\nu)$	\longleftrightarrow -	$-\frac{1}{2}\mathcal{O}_{S_L} - \frac{1}{8}\mathcal{O}_T$	$(3,2)_{7/6}$	$(\lambda ar{u}_R \ell_L + ar{\lambda} ar{q}_L i au_2 e_R) R$
\mathcal{D}_T'	$(\bar{\tau}\sigma^{\mu\nu}P_Lb)(\bar{c}\sigma_{\mu\nu}P_L\nu)$	\longleftrightarrow -	$-6\mathcal{O}_{S_L} + \frac{1}{2}\mathcal{O}_T$	2	
\mathcal{O}_{V_L}''	$(\bar{\tau}\gamma_{\mu}P_{L}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L} u)$	\longleftrightarrow	$-{\cal O}_{V_R}$		
\mathcal{O}_{V_R}''	$(\bar{\tau}\gamma_{\mu}P_{R}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L} u)$	\longleftrightarrow	$-2\mathcal{O}_{S_R}$	$(\bar{3},2)_{5/3}$	$(\lambda ar{d}_R^c \gamma_\mu \ell_L + ilde{\lambda} ar{q}_L^c \gamma_\mu e_R) V^\mu$
\mathcal{D}_{S_R}''	$(\bar{\tau}P_Rc^c)(\bar{b}^cP_L\nu)$	\longleftrightarrow	$\frac{1}{2}\mathcal{O}_{V_L}\Big\langle$	$(\bar{3},3)_{1/3}$	$\lambdaar{q}_L^c i au_2 oldsymbol{ au} \ell_L oldsymbol{S}$
\mathcal{O}_{S_L}''	$(\bar{\tau}P_Lc^c)(\bar{b}^cP_L\nu)$	\longleftrightarrow -	$-\frac{1}{2}\mathcal{O}_{S_L} + \frac{1}{8}\mathcal{O}_T$	$\rangle (\bar{3},1)_{1/3}$	$(\lambda \bar{q}_L^c i \tau_2 \ell_L + \tilde{\lambda} \bar{u}_R^c e_R) S$
\mathcal{D}_T''	$\left(\bar{\tau}\sigma^{\mu\nu}P_Lc^c\right)\left(\bar{b}^c\sigma_{\mu\nu}P_L\nu\right)$	\longleftrightarrow -	$-6\mathcal{O}_{S_L} - \frac{1}{2}\mathcal{O}_T$		

BaBar statements from q^2 spectrum results

BaBar studied consistency of rates with 2HDM, and $d\Gamma/dq^2$ with several models

- Found that type-II 2HDM gave nearly as bad fit to the data as the SM
- $d\Gamma/dq^2$ has additional discriminating power (no other distribution measured yet)
- No public info on bin-to-bin correlations, eyeball which solutions are (dis)favored

Fits to a single operator

- In HQET limit, we confirmed "classic" paper (one minor typo) [Goldberger, hep-ph/9902311]
- Large coefficients, $\Lambda = 1 \text{ TeV}$ in plots \Rightarrow fairly light mediators (obvious: 20–30% of a tree-level rate)

Fits to two operators

Solution marked \bigotimes ruled out by the q^2 spectrum

....

Operator fits \rightarrow viable / sensible models

- Good fits for several mediators: scalar, "Higgs-like" $(1,2)_{1/2}$ vector, "W'-like" $(1,3)_0$ "scalar leptoquark" $(\overline{3},1)_{1/3}$ or $(\overline{3},3)_{1/3}$ "vector leptoquark" $(3,1)_{2/3}$ or $(3,3)_{2/3}$
- If there is NP within reach, its flavor structure must be highly non-generic Surprising if only BSM operator had $(\bar{b}c)(\bar{\tau}\nu)$ structure
- Minimal flavor violation (MFV) is probably a useful starting point Global $U(3)_Q \times U(3)_u \times U(3)_d$ flavor sym. broken by $Y_u \sim (\mathbf{3}, \mathbf{\overline{3}}, \mathbf{1}), \ Y_d \sim (\mathbf{3}, \mathbf{1}, \mathbf{\overline{3}})$
- Which BSM scenarios can be MFV? [Freytsis, ZL, Ruderman, 1506.08896] Not scalars, nor vectors, possibly viable LQ: scalar $S(1, 1, \overline{3})$ or vector $U_{\mu}(1, 1, 3)$

Bounds: $b \to s\nu\bar{\nu}$, $D^0 \& K^0$ mixing, $Z \to \tau^+\tau^-$, LHC contact int., $pp \to \tau^+\tau^-$, etc.

Survey of MFV model

- Scalars: Need $C_{S_L}/C_{S_R} \sim \mathcal{O}(1)$ Hard to avoid y_c suppression or $\mathcal{O}(1)$ coupling to 1st generation
- Vectors: Rescaling the SM operator (O_{V_L}) gives good fit to the data Flavor singlet excluded by LHC, simplest charges don't work w/o assumptions If dynamics allows $W'\bar{Q}_L^3 Q_L^3$, but not $W'\bar{Q}_L^i Q_L^i$, viable models exist; beyond MFV [Greljo, Isidori, Marzocca, 1506.0170]
- Leptoquarks: Viable MFV models exist
 - Simplest choices leptoquarks could be electroweak $SU(2)_L$ singlets or triplets: scalars: $S \sim (\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1})$, $(\mathbf{1}, \overline{\mathbf{3}}, \mathbf{1})$, $(\mathbf{1}, \mathbf{1}, \overline{\mathbf{3}})$ vectors: $U_{\mu} \sim (\mathbf{3}, \mathbf{1}, \mathbf{1})$, $(\mathbf{1}, \mathbf{3}, \mathbf{1})$, $(\mathbf{1}, \mathbf{1}, \mathbf{3})$
- Possibly viable: $S(\mathbf{1}, \mathbf{1}, \overline{\mathbf{3}})$ and $U_{\mu}(\mathbf{1}, \mathbf{1}, \mathbf{3}) \Rightarrow$ consider in more detail

Both can be electroweak singlets or triplets

The $S(1,1,\overline{3})$ scalar LQ

• Interactions terms for electroweak singlet:

$$\mathcal{L} = S(\lambda Y_d^{\dagger} \bar{q}_L^c i \tau_2 \ell_L + \tilde{\lambda} Y_d^{\dagger} Y_u \bar{u}_R^c e_R)$$

= $S_i(\lambda y_{d_i} V_{ji}^* \bar{u}_{Lj}^c e_L - \lambda y_{d_i} \bar{d}_{Li}^c \nu_L + \tilde{\lambda} y_{d_i} y_{u_j} V_{ji}^* \bar{u}_{Rj}^c e_R)$

Integrating out S, contribution to $R(X_c)$ via: $(m_{S_3} \neq m_{S_1} = m_{S_2})$

$$-\frac{V_{cb}^*}{m_{S_3}^2} \Big(\lambda^2 y_b^2 \,\mathcal{O}_{S_R}^{\prime\prime} + \lambda \tilde{\lambda} y_c y_b^2 \,\mathcal{O}_{S_L}^{\prime\prime}\Big)$$

[electroweak triplet has no $\tilde{\lambda}$ term]

- Can fit $R(D^{(*)})$ data if $y_b = O(1)$ Check $Z\tau^+\tau^-$ constraints, etc.
- Leptons: (i) τ alignment, charge LQ and 3rd gen. leptons opposite under U(1)_τ
 (ii) lepton MFV, (1, 3) under U(3)_L × U(3)_e [constraints differ]
- LHC Run 1 bounds on pair-produced LQ decaying to $t\tau$ or $b\nu$, $m_{S_3} \gtrsim 560 \,\mathrm{GeV}$

Many signals, tests, consequences

- LHC: several extensions to current searches would be interesting
 - Extend \tilde{t} and \tilde{b} searches to higher prod. cross section
 - Search for $t \to b \tau \bar{\nu}$, $c \tau^+ \tau^-$ nonresonant decays
 - Search for states on-shell in *t*-channel, but not in *s*-channel
 - Search for $t\tau$ resonances
- Low energy probes:
 - Firm up $B \to D^{(*)} \tau \bar{\nu}$ rate and kinematic distributions; Cross checks w/ inclusive
 - Smaller theor. error in $[d\Gamma(B \to D^{(*)}\tau\bar{\nu})/dq^2]/[d\Gamma(B \to D^{(*)}l\bar{\nu})/dq^2]$ at same q^2
 - Improve bounds on $\mathcal{B}(B\to K^{(*)}\nu\bar\nu)$
 - $\mathcal{B}(D \to \pi \nu \bar{\nu}) \sim 10^{-5}$ possible, maybe BES III; enhanced $\mathcal{B}(D \to \mu^+ \mu^-)$
 - $\mathcal{B}(B_s \to \tau^+ \tau^-) \sim 10^{-3}$ possible

How strange models might be viable?

 $(\overline{q}q)(\overline{l}l)$ $(\overline{l}q)(\overline{q}l)$ 100 100 50 50 $10 \frac{\chi^2_{\rm SM}}{\chi^2_{\rm SM}}$ 10 $\boldsymbol{\chi}^2$ $\boldsymbol{\chi}^2$ 0.5 0.5 $0.1 \frac{\Lambda = 1 \text{ TeV}}{-2} \frac{C'_{S_L}, C'_T, C''_{S_L}, C''_T}{1}$ 0.1^L 3 C_i C_i

Viable option: modify the SM four-fermion operator

All papers enhance the τ mode compared to the SM

Can one suppress the *e* and μ modes instead?

Good fit with: $V_{cb}^{(\mathrm{exp})} \sim V_{cb}^{(\mathrm{SM})} \times 0.9$ $V_{ub}^{(\mathrm{exp})} \sim V_{ub}^{(\mathrm{SM})} \times 0.9$

What about $e - \mu$ (non)universality?

• How well is the difference of the e and μ rates constrained?

Parameters	De sample	$D\mu$ sample	combined result		
$ ho_D^2$	$1.22 \pm 0.05 \pm 0.10$	$1.10 \pm 0.07 \pm 0.10$	$1.16 \pm 0.04 \pm 0.08$		
$\rho_{D^*}^2$	$1.34 \pm 0.05 \pm 0.09$	$1.33 \pm 0.06 \pm 0.09$	$1.33 \pm 0.04 \pm 0.09$		
R_1	$1.59 \pm 0.09 \pm 0.15$	$1.53 \pm 0.10 \pm 0.17$	$1.56 \pm 0.07 \pm 0.15$		
R_2	$0.67 \pm 0.07 \pm 0.10$	$0.68 \pm 0.08 \pm 0.10$	$0.66 \pm 0.05 \pm 0.09$		
$\mathcal{B}(D^0\ell\overline{\nu})(\%)$	$2.38 \pm 0.04 \pm 0.15$	$2.25 \pm 0.04 \pm 0.17$	$2.32 \pm 0.03 \pm 0.13$		
$\mathcal{B}(D^{*0}\ell\overline{\nu})(\%)$	$5.50 \pm 0.05 \pm 0.23$	$5.34 \pm 0.06 \pm 0.37$	$5.48 \pm 0.04 \pm 0.22$		
χ^2 /n.d.f. (probability)	416/468 (0.96)	488/464 (0.21)	2.0/6 (0.92)		

[BaBar, 0809.0828 — similar results in Belle, 1010.5620]

- 10% difference allowed... wrong statements...
- Can difference be constrained better? How much better?

Reaching the 1% level on ratio might be possible (but challenging) at Belle II

Γ_1	$e^+ u_e$ anything	$(10.86 \pm 0.16)\%$
Γ_2	$\overline{p}e^+ u_e$ anything	$< 5.9 imes 10^{-4}$
Γ_3	$\mu^+ u_\mu$ anything	$(10.86 \pm 0.16)\%$
Γ_4	$\ell^+ u_\ell$ anything	$(10.86 \pm 0.16)\%$

Not excluded?

- LQ pair production
- top decays
- *t*-channel non-resonant l^+l^- production
- LEP $Z \rightarrow l^+ l^-$, HERA LQ production
- $c\bar{c}e^+e^-$ contact interaction / compositness
- Strongest constraint from ϵ_K :

- $B \overline{B}$ mixing, $K \overline{K}$ mixing, $D \overline{D}$ mixing
- $B \to X_s \nu \bar{\nu}, K \to \pi \nu \bar{\nu}$
- $D \rightarrow l^+ l^-$ at tree level
- $B^- \to \mu \bar{\nu}$ at tree level
- $B_s
 ightarrow \mu^+ \mu^-$ and $K_L
 ightarrow \mu^+ \mu^-$ at one loop

$$|\epsilon_K|_{\rm SM} = \frac{G_F^2 m_W^2 m_K f_K^2}{6\sqrt{2} \pi^2 \Delta m_K} \hat{B}_K \kappa_\epsilon |V_{cb}|^2 \lambda^2 \bar{\eta} \Big[|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \Big]$$

 $|\epsilon_K|_{\mathrm{exp}} = (2.23 \pm 0.01) \times 10^{-3}$ VS. $|\epsilon_K|_{\mathrm{SM}} = (1.81 \pm 0.28) \times 10^{-3}$ [Brod & Gorbahn, 2011]

- Uncertainties big enough to allow for 5-10% enhancement of $|V_{cb}|$
- The $R(D^{(*)})$ excess may shrink and be significant; can also make cocktails...
- Even an enhancement much smaller than today can become 5σ in the future

$$B o D^{**} au ar{
u}$$

Particle	$s_l^{\pi_l}$	J^P	m (MeV)	Γ (MeV)
D_0^*	$\frac{1}{2}^{+}$	0^+	2320	265
D_1^*	$\frac{1}{2}^+$	1^+	2427	384
D_1	$\frac{3}{2}^{+}$	1^{+}	2421	34
D_{2}^{*}	$\frac{3}{2}^{+}$	2^{+}	2462	48

Why bother...?

• $B \to D^{**} \tau \bar{\nu}$: rates to narrow D_1, D_2^* measurable? No predictions [Bernlochner, ZL, soon] In $B_s \to D_s^{**} \ell \bar{\nu}$ case, all $4 D_s^{**}$ states are narrow \Rightarrow LHCb?

	an in second	R(D) [%]	$R(D^*)$ [%]	Correlation
	$D^{(*(*))}\ell\nu$ shapes	4.2	1.5	0.04
Largest systematic uncertainty	D^{**} composition	1.3	3.0	-0.63
Largeot of otomatic arroutanty	Fake D yield	0.5	0.3	0.13
	Fake ℓ yield	0.5	0.6	-0.66
May matter for tensions between inclu-	D_s yield	0.1	0.1	-0.85
cive and evalueive $ V $ and $ V $ deter	Rest yield	0.1	0.0	-0.70
Sive and exclusive $ v_{cb} $ and $ v_{ub} $ deter-	Efficiency ratio f^{D^+}	2.5	0.7	-0.98
minations	Efficiency ratio f^{D^0}	1.8	0.4	0.86
	Efficiency ratio $f_{\text{eff}}^{D^{*+}}$	1.3	2.5	-0.99
Complementary sensitivity to NP	Efficiency ratio $f_{\text{eff}}^{D^{*0}}$	0.7	1.1	0.94
	CF double ratio g^+	2.2	2.0	-1.00
	CF double ratio g^0	1.7	1.0	-1.00
Complementary experimentally	Efficiency ratio $f_{\rm wc}$	0.0	0.0	0.84
	$M_{ m miss}^2$ shape	0.6	1.0	0.00
Decay rates not probibitively small	$o'_{\rm NB}$ shape	3.2	0.8	0.00
Decay rates not prohibitively small	Lepton PID efficiency	0.5	0.5	1.00
	Total	7.1	5.2	-0.32

[Belle, 1507.03233]

Some model independent results

• At $w \equiv v \cdot v' = 1$, the $O(\Lambda_{QCD}/m_{c,b})$ matrix element is determined by masses and leading order Isgur-Wise function [Leibovich, Ligeti, Stewart, Wise, hep-ph/9703213, hep-ph/9705467]

Kinematic range: $1 \leq w \lesssim 1.3$ and in the τ case $1 \leq w \lesssim 1.2$

Meson masses:
$$m_{H_{\pm}} = m_Q + \bar{\Lambda}^H - \frac{\lambda_1^H}{2m_Q} \pm \frac{n_{\mp} \lambda_2^H}{2m_Q} + \dots \qquad n_{\pm} = 2J_{\pm} + 1$$

For example:

$$\frac{\langle D_1(v',\epsilon)|V^{\mu}|B(v)\rangle}{\sqrt{m_{D_1}m_B}} = f_{V_1}\epsilon^{*\mu} + (f_{V_2}v^{\mu} + f_{V_3}v'^{\mu})(\epsilon^* \cdot v)$$

$$\sqrt{6} f_{V_1}(w) = (1 - w^2) \tau(w) - 4 \frac{\bar{\Lambda}' - \bar{\Lambda}}{m_c} \tau(w) + \mathcal{O}\left(\frac{w - 1}{m_{c,b}}\right) + \dots$$

• These "known" $\mathcal{O}(\Lambda_{\text{QCD}}/m_{c,b})$ terms are numerically very important

• No expressions in the literature for $B \to D^{**} \tau \bar{\nu}$ rates at all — fixing this...

Preliminary predictions of spectra

Study all uncertainties, including effects neglected in LLSW

• As for $B \to D^{(*)} \ell \bar{\nu}$, heavy quark symmetry relates the extra form factor in the τ mode to those with e, μ — finalizing the uncertainties

Complementary sensitivity — e.g., type-II 2HDM

• 2HDM just for illustration — explore influence of all possible non-SM operators

Theory uncertainty of $\sin 2eta$

SU(3) and the uncertainty in $\sin 2\beta$

- Hadronic uncertainty: $|V_{ub}V_{us}/(V_{cb}V_{cs})| \times ("P/T") \simeq 0.02 \times (ratio of matrix elem.)$ Claims of large effects, many proposals, encouraging experimental bounds Diagrammatic assumptions, sizes of matrix elements; e.g., no SU(3) rel. btw $B_s \rightarrow \psi \phi$ and $\psi \rho$
- An SU(3) relation, w/o dynamical assumptions 0.8[ZL & Robinson, PRL 115 (2015) 251801, 1507.06671] $\sin 2\beta = \frac{S_{K_S} - \lambda^2 S_{\pi^0} - 2(\Delta_K + \lambda^2 \Delta_\pi) \tan \gamma \cos 2\beta}{1 + \lambda^2}$ 0.6 1 $\Delta_{h=K,\pi} = \frac{\Gamma(B_d \to J/\psi h^0) - \Gamma(B^+ \to J/\psi h^+)}{\bar{\Gamma}(B_d \to J/\psi h^0) + \bar{\Gamma}(B^+ \to J/\psi h^+)}$ 0.40.2Cancels $|V_{ub}|$ contamination in SU(3) limit Challenge: measuring $\Delta_{K,\pi}$ [Jung, 1510.03423] 0.20.40.6
 - 2σ tension: fluctuation in $\Delta_K = -(4.3 \pm 2.4) \times 10^{-2}$? isospin violation?

0

0.8

 $\bar{
ho}$

1

Theory uncertainty of ϵ_K

[ZL, F. Sala, 1602.08494]

Very high scale sensitivity

• ϵ_K has played a leading role constraining both general and specific models

 $|\epsilon_K|_{\mathrm{exp}} = (2.23 \pm 0.01) \times 10^{-3}$ VS. $|\epsilon_K|_{\mathrm{SM}} = (1.81 \pm 0.28) \times 10^{-3}$ [Brod & Gorbahn, 2011]

• Besides SM operator,
$$O_1 = (\bar{d}_L \gamma_\mu s_L)^2$$

four others possible:

$$O_{2} = (\bar{d}_{R}s_{L})^{2}, \quad O_{3} = (\bar{d}_{R}^{\alpha}s_{L}^{\beta})(\bar{d}_{R}^{\beta}s_{L}^{\alpha}),$$
$$O_{4} = (\bar{d}_{R}s_{L})(\bar{d}_{L}s_{R}), \quad O_{5} = (\bar{d}_{R}^{\alpha}s_{L}^{\beta})(\bar{d}_{L}^{\beta}s_{R}^{\alpha})$$
$$\mathcal{L}_{\mathrm{NP}} = \mathcal{L}_{\mathrm{SM}} + \sum_{j} \frac{C_{j}}{\Lambda_{j}^{2}}O_{i}$$

 ϵ_K give the strongest $\Delta F = 2$ constraint (Plot for Im C_K shows Λ_j for $C_j = i$)

ϵ_K — convention independently

$$\begin{split} |K_{S,L}\rangle &= p|K^{0}\rangle \pm q|\overline{K}^{0}\rangle \qquad K_{L} = K_{\text{heavy}}, \quad K_{S} = K_{\text{light}} \\ \\ \text{Time evolution: } i \frac{d}{dt} \left(\frac{K^{0}}{\overline{K}^{0}}\right) &= \left(M - i \frac{\Gamma}{2}\right) \left(\frac{K^{0}}{\overline{K}^{0}}\right) \\ \\ \Delta m_{K} &= 2|M_{12}| + \mathcal{O}(\phi^{2}), \qquad \Delta \Gamma_{K} = -2|\Gamma_{12}| + \mathcal{O}(\phi^{2}) \end{split}$$

• Fully convention independently:

$$\epsilon_K = e^{i\phi_\epsilon} \sin \phi_\epsilon \frac{\operatorname{Im}(-M_{12}/\Gamma_{12})}{2|M_{12}/\Gamma_{12}|} + \mathcal{O}\left(\epsilon_K^2, |\epsilon'|\right) \qquad \phi_\epsilon = \arctan \frac{2\,\Delta m_K}{-\Delta\Gamma_K} \simeq 43.5^\circ$$

• Usually written as:
$$\epsilon_K = e^{i\phi_\epsilon} \sin \phi_\epsilon \left(\frac{\operatorname{Im} M_{12}}{\Delta m_K} + \xi\right) \qquad \xi = \frac{\operatorname{Im} (A_0 e^{-i\delta_0})}{\operatorname{Re} (A_0 e^{-i\delta_0})}$$

(since Γ_{12} dominated by A_0 because of $\Delta I = 1/2$ rule)

Valid in phase conventions: $\{ \arg M_{12}, \arg \Gamma_{12} \} \leq \mathcal{O}(|\epsilon_K|) \pmod{\pi}$

Calculating ϵ_K

• The standard expression for the SM prediction:

Poor convergence of η_{cc} : 1, 1.38, 1.87 $\Rightarrow \eta_{cc} = 1.87 \pm 0.76$

[Brod, Gorbahn 1108.2036]

• κ_{ϵ} include all contributions other than the short-distance $\Delta s = 2$

$$\kappa_{\epsilon} = \sqrt{2} \sin \phi_{\epsilon} \left(1 + \rho \frac{\xi}{\sqrt{2} |\epsilon_K|} \right) \simeq 0.94 \pm 0.02 \qquad \text{[Buras, Guadagnoli, Isidori, 1002.3612]}$$

To use or not to use measured ϵ' to predict ϵ_K ? What's assumed about NP?

Lattice estimates don't agree well (or NP?) — reflected in tension for ϵ'

• $(\Delta m_K)^{\text{LD}}$ uncertain: importance of 2π state between lattice and χ PT in tension

Compare SM CKM fits

• The ϵ_K regions are fairly different (widths of bands):

Phase choices for M_{12} and Γ_{12}

Change phases to minimize / study uncertainty in the actual computation?

$$|\epsilon_K|_{\text{new}} = \kappa_\epsilon|_{\text{new}} C_\epsilon \widehat{B}_K |V_{cb}|^2 \lambda^2 \,\bar{\eta} \left[|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_t, x_c) \right]$$

Make $\lambda_c = V_{cd}V_{cs}^*$ real \Rightarrow no η_{cc} term \Rightarrow square bracket increases, κ_{ϵ} decreases Im M_{12}^{SD} increases, κ_{ϵ} decreases

		η_{CC}	η_{ct}	k_{ϵ}	m_t	m_{c}	$ V_{cb} $	$ar\eta$	$ar{ ho}$	$ \Delta \epsilon_K/\epsilon_K $
	tree-level inputs	7.3%	4.0%	1.1%	1.7%	0.8 %	11.1%	10.4%	5.4%	18.4%
USUAI EVAI.	SM CKM fit inputs	7.4%	4.0%	1.7%	1.7%	0.8 %	4.2%	2.0%	0.8%	10.1%
Our ovaluation	tree-level inputs	—	3.4%	5.2%	1.5%	1.2%	9.5%	8.9%	4.5%	15.6%
Our evaluation	SM CKM fit inputs	—	3.4%	5.9%	1.5%	1.2%	3.6%	1.7%	0.7%	8.3%

- Future: $\Delta |V_{cb}| \rightarrow 0.3 \times 10^{-3}$, then η_{cc} even more important, $|\Delta \epsilon_K / \epsilon_K|_{V_{cb}} \sim 2.5\%$
- Can this ultimately yield better synergy with lattice QCD calculations? N.B.: Christ et al. [1212.5931] remove λ_c , to be left with $\lambda_t^2 \& \lambda_t \lambda_u$ terms in $\text{Im}M_{12} \Rightarrow$ then tt part depends on m_c

Final comments

Conclusions

- $B \to D^{(*)}\tau\bar{\nu}$: amusing if NP shows up in an operator w/o much SM suppression
- There are good operator fits, and (somewhat) sensible MFV leptoquark models Pretty wild scenarios also viable...
- Extensions of current LHC searches may cover much of the parameter space
- Measurements of $b \to c\tau \bar{\nu}$ will improve in the next decade by order of magnitude (Even if central values change, plenty of room for significant deviations from SM)
- ϵ_K : sensitive to some of the highest scales Importance of uncertainties of η_{cc} somewhat overlooked — can be "removed" $\Delta \epsilon_K|_{SM}$ slightly reduced — Future: understand LD contributions better? Synergy w/ lattice?

Bonus slides

- Scalars: Need comparable values of C_{S_L} and C_{S_R}
 - If H^{\pm} flavor singlet, $C_{S_L} \propto y_c$, so cannot fit $R(D^{(*)})$ keeping y_t perturbative
 - If H^{\pm} is charged under flavor (combination of *Y*-s, to couple to quarks & leptons), to generate $C_{S_L} \sim C_{S_R}$, some $\mathcal{O}(1)$ coupling to 1st generation quarks unavoidable Bounds on 4q or $2q2\ell$ operators exclude it
- Vectors: Rescaling the SM operator (O_{V_L}) gives good fit to the data Flavor singlet w/ W-like couplings: $m_{W'} \gtrsim 1.8 \text{ TeV} \iff 0.2 \sim g^2 |V_{cb}| (1 \text{ TeV}/m_{W'})^2$ Couplings to u, d suppressed for $(\bar{\mathbf{3}}, \mathbf{3}, \mathbf{1})$ and $(\bar{\mathbf{3}}, \mathbf{1}, \mathbf{3})$ under $U(3)_Q \times U(3)_u \times U(3)_d$ $(\bar{\mathbf{3}}, \mathbf{3}, \mathbf{1})$: $b \rightarrow c$ transitions suppressed by y_c , too small $(\bar{\mathbf{3}}, \mathbf{1}, \mathbf{3})$: can fit data if $y_b = \mathcal{O}(1)$, but excluded by tree-level FCNC via W'^0 (If dynamics allows $W'\bar{Q}_L^3 Q_L^3$, but not $W'\bar{Q}_L^i Q_L^i$, viable models exist; beyond MFV [Greljo, Isidori, Marzocca, 1506.0170])

MFV leptoquarks

• Assign charges under flavor sym.:

[viable MFV LQs: Freytsis, ZL, Ruderman]

 $U(3)_Q \times U(3)_u \times U(3)_d$

• Simplest choices — leptoquarks could be electroweak $SU(2)_L$ singlets or triplets: scalars: $S \sim (\overline{\mathbf{3}}, \mathbf{1}, \mathbf{1})$, $(\mathbf{1}, \overline{\mathbf{3}}, \mathbf{1})$, $(\mathbf{1}, \mathbf{1}, \overline{\mathbf{3}})$ vectors: $U_\mu \sim (\mathbf{3}, \mathbf{1}, \mathbf{1})$, $(\mathbf{1}, \mathbf{3}, \mathbf{1})$, $(\mathbf{1}, \mathbf{1}, \mathbf{3})$

 $S(\bar{\mathbf{3}},\mathbf{1},\mathbf{1})$ and $U_{\mu}(\mathbf{3},\mathbf{1},\mathbf{1})$ give large $pp \to \tau^+\tau^-$, excluded by Z' searches

 $S(\mathbf{1}, \mathbf{\overline{3}}, \mathbf{1})$ and $U_{\mu}(\mathbf{1}, \mathbf{3}, \mathbf{1})$ give y_c suppressed $B \to D^{(*)} \tau \overline{\nu}$ contributions \Rightarrow too large couplings, or too light leptoquarks

• Possibly viable: $S(\mathbf{1}, \mathbf{1}, \mathbf{\overline{3}})$ and $U_{\mu}(\mathbf{1}, \mathbf{1}, \mathbf{3}) \Rightarrow$ consider in more detail Both can be electroweak singlets or triplets

Constraints from $b
ightarrow s
u ar{
u}$

• With three Yukawa spurion insertions, one can write:

$$\delta \mathcal{L}' = \lambda' S Y_d^{\dagger} Y_u Y_u^{\dagger} \, \bar{q}_L^c i \tau_2 \ell_L$$

• Generates four-fermion operator:

$$rac{V_{tb}^*V_{ts}}{2m_{S_3}^2}\,y_t^2y_b^2\,\lambda^\prime\lambda\,(ar b_L\gamma^\mu s_L\,ar
u_L\gamma_\mu
u_L)$$

- Current limits on $B \to K \nu \bar{\nu}$ imply: $\lambda' / \lambda \lesssim 0.1$ some suppression of λ' required
- Electroweak singlet vector LQ is the only one of the four models w/o this constraint (E.g., vector triplet has $\lambda' \bar{q}_L Y_u Y_u^{\dagger} Y_d \tau \gamma_{\mu} \ell_L U^{\mu}$ term)

• If central values & patterns change, more "mainstream" MFV models may fit

