New results on $b \to c\tau\bar{\nu}$ and ϵ_K

Zoltan Ligeti

(ligeti@berkeley.edu)

Lawrence Berkeley Lab

June 12–17, 2016

Flavor: new/old players besides LHC(b)

- Belle II is approaching time to make genuine predictions is shrinking recent months: e^{\pm} circulated in SuperKEKB rings (~ 0.5 A, 1576 bunches)
- NA62 this year: ~ 200 days run, at SM level ~ 50 events in $K^+ \to \pi^+ \nu \bar{\nu}$
- Interesting to think about:
	- **–** What can be done with 10 − 100 times more data, that has not been done?
	- **–** What important / useful theory predictions have not been made?
	- **–** New ideas? Room for major developments? **–** Order of magnitude more data always triggered new ideas & methods

sc final focus, Dec. 25, 2015

TA

-st O lò. $\sqrt{25}$ **Dec. 26, 2015**

- $B \to D^{(*)}\tau\bar{\nu}$ is currently the most significant deviation from the SM
	- MFV models, leptoquarks [M. Freytsis, ZL, J. Ruderman, PRD 92 (2015) 054018, arXiv:1506.08896] **–** MFV models, leptoquarks "deconstructed ambulance chasing"
	- **–** Suppress $e \& \mu$ instead of enhancing $τ$? $[$ M. Freytsis, ZL, J. Ruderman, to appear]
	- $\mathbf{P} \rightarrow D^{**} \ell \bar{\nu}$ decays **decays F. Bernlochner, ZL, to appear**

Time permitting...

• One slide on future uncertainty of $\sin 2\beta$ [ZL & Robinson, PRL 115 (2015) 251801, 1507.06671]

- ϵ_K probes highest scales among $\Delta F = 2$, sensitive to many BSM models
	- **–** SM prediction uncertainty ∼ 10% vs. exp. uncertainty ∼ 0.5% [ZL, F. Sala, 1602.08494]

The most significant deviation from the SM

• Belle & LHCb results on the anomaly seen by BaBar in $R(X) = \frac{\Gamma(B \to X \tau \bar{\nu})}{\Gamma(B \to X \tau \bar{\nu})}$ $\Gamma(B \to X(e/\mu)\bar{\nu})$

SM predictions fairly robust: heavy quark symmetry $+$ lattice QCD, only $R(D)$ [1503.07237, 1505.03925]

- Next: LHCb result for $R(D)$? Use more τ decays? $\Lambda_b \to \Lambda_c^{(*)} \tau \nu$? $B_s \to D_s^{(*)} \tau \nu$?
- \bullet Need NP at fairly low scales (leptoquarks, W' , etc.), likely visible in LHC Run 2
- Question we asked: can MFV new physics explain the data?

SM predictions fairly robust

 $Measurements + heavy quark symmetry + lattice QCD$ All form factors = Isgur-Wise function $+ \mathcal{O}(\Lambda_{\rm QCD}/m)$ corrections

[BaBar, 0705.4008]

Tension with SM is model independent

- Use OPE for inclusive $B \to X_c \tau \bar{\nu}$ to get model independent constraints on SM
- Learn from inclusive $=$ \sum exclusive
	-
	- $R(X_c) = 0.222 \pm 0.003$ [Freytsis, ZL, Ruderman, update of earlier results]

$$
\mathcal{B}(B^- \to X_c \ell \bar{\nu}) = (10.92 \pm 0.16)\%
$$

Predict:
$$
\mathcal{B}(B^- \to X_c \tau \bar{\nu}) = (2.42 \pm 0.05)\%
$$

vs. LEP: $\mathcal{B}(b \to X \tau^+ \nu) = (2.41 \pm 0.23)\%$

- The $R(D^{(*)})$ data imply: $\mathcal{B}(\bar{B} \to D^* \tau \bar{\nu}) + \mathcal{B}(\bar{B} \to D \tau \bar{\nu}) = (2.78 \pm 0.25)\%$
- SM estimate $\mathcal{B}(B \to D^{**}\tau\bar{\nu}) \gtrsim 0.15\%$ (four 1P states) details later
- Tension $\gtrsim 2\sigma$, based on calculation of SM inclusive rate + minimal assumptions Complementary to comparison with SM calculation of $R(D^{(*)})$

Operator analysis

Consider redundant set of operators

• Fits to different fermion orderings convenient to understand allowed mediators

Usually only the first 5 operators considered, related by Fierz from dim-6 terms, others from dim-8 only

⇓

BaBar statements from q ² **spectrum results**

• BaBar studied consistency of rates with 2HDM, and $d\Gamma/dq^2$ with several models

- Found that type-II 2HDM gave nearly as bad fit to the data as the SM
- \bullet d $\Gamma/\mathrm{d}q^2$ has additional discriminating power (no other distribution measured yet)
- No public info on bin-to-bin correlations, eyeball which solutions are (dis)favored

Fits to a single operator

- In HQET limit, we confirmed "classic" paper (one minor typo) [Goldberger, hep-ph/9902311]
- Large coefficients, $\Lambda = 1 \text{ TeV}$ in plots \Rightarrow fairly light mediators (obvious: 20–30% of a tree-level rate)

Fits to two operators

Solution marked \otimes ruled out by the q^2 spectrum

 $\frac{1}{2}$

Operator fits → **viable / sensible models**

- Good fits for several mediators: scalar, "Higgs-like" $(1,2)_{1/2}$ vector, "W'-like" $(1,3)_0$ "scalar leptoquark" $(\bar{3}, 1)_{1/3}$ or $(\bar{3}, 3)_{1/3}$ "vector leptoquark" $(3, 1)_{2/3}$ or $(3, 3)_{2/3}$
- If there is NP within reach, its flavor structure must be highly non-generic Surprising if only BSM operator had $(\bar{b}c)(\bar{\tau}\nu)$ structure
- Minimal flavor violation (MFV) is probably a useful starting point Global $U(3)_Q \times U(3)_u \times U(3)_d$ flavor sym. broken by $Y_u \sim (3,\bar{3},1), Y_d \sim (3,1,\bar{3})$
- Which BSM scenarios can be MFV? Freytsis, ZL, Ruderman, 1506.088961 Not scalars, nor vectors, possibly viable LQ: scalar $S(1,1,\overline{3})$ or vector $U_\mu(1,1,3)$

Bounds: $b \to s \nu \bar{\nu}$, D^0 & K^0 mixing, $Z \to \tau^+ \tau^-$, LHC contact int., $pp \to \tau^+ \tau^-$, etc.

Survey of MFV model

- Scalars: Need $C_{S_L}/C_{S_R} \sim \mathcal{O}(1)$ Hard to avoid y_c suppression or $\mathcal{O}(1)$ coupling to 1st generation
- Vectors: Rescaling the SM operator (O_{V_L}) gives good fit to the data Flavor singlet excluded by LHC, simplest charges don't work w/o assumptions If dynamics allows $W'\bar Q_L^3 Q_L^3$, but not $W'\bar Q_L^i Q_L^i$, viable models exist; beyond MFV [Greljo, Isidori, Marzocca, 1506.0170]
- Leptoquarks: Viable MFV models exist

Simplest choices — leptoquarks could be electroweak $SU(2)_L$ singlets or triplets: scalars: $S \sim (\bar{3}, 1, 1), (1, \bar{3}, 1), (1, 1, \bar{3})$ vectors: $U_{\mu} \sim (3, 1, 1), (1, 3, 1), (1, 1, 3)$

• Possibly viable: $S(1,1,\overline{3})$ and $U_{\mu}(1,1,3) \Rightarrow$ consider in more detail

Both can be electroweak singlets or triplets

The $S(1,1,\overline{3})$ scalar LQ

• Interactions terms for electroweak singlet:

$$
\mathcal{L} = S(\lambda Y_d^{\dagger} \bar{q}_L^c i\tau_2 \ell_L + \tilde{\lambda} Y_d^{\dagger} Y_u \bar{u}_R^c e_R)
$$

= $S_i(\lambda y_{d_i} V_{ji}^* \bar{u}_{Lj}^c e_L - \lambda y_{d_i} \bar{d}_{Li}^c \nu_L + \tilde{\lambda} y_{d_i} y_{u_j} V_{ji}^* \bar{u}_{Rj}^c e_R)$

Integrating out S, contribution to $R(X_c)$ via: $\neq m_{S_1} = m_{S_2}$

$$
-\displaystyle\frac{V_{cb}^*}{m_{S_3}^2}\Big(\lambda^2y_b^2\,\mathcal{O}_{S_R}''+\lambda\tilde\lambda y_cy_b^2\,\mathcal{O}_{S_L}''\Big)
$$

[electroweak triplet has no λ term]

- Can fit $R(D^{(*)})$ data if $y_b = \mathcal{O}(1)$ Check $Z\tau^+\tau$ Check $Z\tau^+\tau^-$ constraints, etc.
- Leptons: (i) τ alignment, charge LQ and 3rd gen. leptons opposite under $U(1)_{\tau}$ (ii) lepton MFV, $(1,\bar{3})$ under $U(3)_L \times U(3)_e$ [constraints differ]
- LHC Run 1 bounds on pair-produced LQ decaying to $t\tau$ or $b\nu$, $m_{S_3} \gtrsim 560\,\mathrm{GeV}$

Many signals, tests, consequences

- LHC: several extensions to current searches would be interesting
	- $-$ Extend \tilde{t} and \tilde{b} searches to higher prod. cross section
	- $-$ Search for $t\to b\tau\bar\nu, \, c\tau^+\tau^-$ nonresonant decays
	- **–** Search for states on-shell in t-channel, but not in s-channel
	- **–** Search for tτ resonances
- Low energy probes:
	- $-$ Firm up $B\to D^{(*)}\tau\bar\nu$ rate and kinematic distributions; Cross checks w/ inclusive
	- $-$ Smaller theor. error in $[{\rm d}\Gamma(B\to D^{(*)}\tau\bar\nu)/{\rm d} q^2]/[{\rm d}\Gamma(B\to D^{(*)}l\bar\nu)/{\rm d} q^2]$ at same q^2
	- **–** Improve bounds on $\mathcal{B}(B \to K^{(*)} \nu \bar{\nu})$
	- $-$ *B*(*D* → πν $\bar{\nu}$) $\sim 10^{-5}$ possible, maybe BES III; enhanced *B*(*D* → $\mu^+ \mu^-$)
	- $\mathcal{B}(B_s\to \tau^+\tau^-)\sim 10^{-3}$ possible

How strange models might be viable?

-4 -3 -2 -1 0 1 2 0.1 0.5 1 5 10^{2} $\chi^{2}_{\rm SM}$ 50 100 *Ci* \mathbb{R}^2 $(\overline{q}q)(\overline{l})$ 1σ 2σ 3σ $\Lambda = 1 \text{ TeV}$ *c_{V_L*}, *C_{V_R*}, *C_{S_L*}, *C_{S_R*}, *C_T* $0.1 \frac{\Lambda = 1 \text{ TeV}}{-2}$ -1 0 1 2 3 0.5 1 5 10 50 100 *Ci* \approx $(\overline{l}q)(\overline{q}l)$ 1σ 2σ 3σ $\chi^2_{\rm SM}$ 2

• Viable option: modify the SM four-fermion operator

• All papers enhance the τ mode compared to the SM

Can one suppress the e and μ modes instead?

Good fit with: $V_{cb}^{\rm (exp)} \sim V_{cb}^{\rm (SM)} \times 0.9$ $V_{ub}^{\rm (exp)} \sim V_{ub}^{\rm (SM)} \times 0.9$

What about $e - \mu$ (non)universality?

 \bullet How well is the difference of the e and μ rates constrained?

Parameters	De sample	$D\mu$ sample	combined result
$\rho_D^2 \over \rho_{D^*}^2$		$1.22 \pm 0.05 \pm 0.10$ $1.10 \pm 0.07 \pm 0.10$ $1.16 \pm 0.04 \pm 0.08$	
		$1.34 \pm 0.05 \pm 0.09$ $1.33 \pm 0.06 \pm 0.09$ $1.33 \pm 0.04 \pm 0.09$	
R_1		$1.59 \pm 0.09 \pm 0.15$ $1.53 \pm 0.10 \pm 0.17$ $1.56 \pm 0.07 \pm 0.15$	
R_2		$0.67 \pm 0.07 \pm 0.10$ $0.68 \pm 0.08 \pm 0.10$ $0.66 \pm 0.05 \pm 0.09$	
$\mathcal{B}(D^0\ell\overline{\nu})(\%)$		$2.38 \pm 0.04 \pm 0.15$ $2.25 \pm 0.04 \pm 0.17$ $2.32 \pm 0.03 \pm 0.13$	
$\mathcal{B}(D^{*0}\ell\overline{\nu})(\%)$		$5.50 \pm 0.05 \pm 0.23$ $5.34 \pm 0.06 \pm 0.37$ $5.48 \pm 0.04 \pm 0.22$	
χ^2 /n.d.f. (probability) 416/468 (0.96)		488/464(0.21)	2.0/6(0.92)

[BaBar, 0809.0828 — similar results in Belle, 1010.5620]

- 10% difference allowed... wrong statements...
- Can difference be constrained better? How much better?

Reaching the 1% level on ratio might be possible (but challenging) at Belle II

Not excluded?

- LQ pair production
- top decays
- *t*-channel non-resonant l^+l^- production
- LEP $Z \rightarrow l^+l^-$, HERA LQ production
- $c\bar{c}e^+e^-$ contact interaction / compositness
- Strongest constraint from ϵ_K :
- $B \overline{B}$ mixing, $K \overline{K}$ mixing, $D \overline{D}$ mixing
- \bullet B \rightarrow $X_s\nu\bar{\nu}$, $K \rightarrow \pi \nu \bar{\nu}$
- $D \rightarrow l^+l^-$ at tree level
- $B^- \to \mu \bar{\nu}$ at tree level
- $B_s \to \mu^+ \mu^-$ and $K_L \to \mu^+ \mu^-$ at one loop

$$
|\epsilon_K|_{\rm SM} = \frac{G_F^2 m_W^2 m_K f_K^2}{6\sqrt{2} \pi^2 \Delta m_K} \hat{B}_K \kappa_{\epsilon} |V_{cb}|^2 \lambda^2 \bar{\eta} \Big[|V_{cb}|^2 (1 - \bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \Big]
$$

 $|\epsilon_K|_{\rm exp}=(2.23\pm 0.01)\times 10^{-3}$ VS. $|\epsilon_K|_{\rm SM}=(1.81\pm 0.28)\times 10^{-3}$ [Brod & Gorbahn, 2011]

- $-$ Uncertainties big enough to allow for $5-10\%$ enhancement of $|V_{cb}|$
- **–** The R(D(∗)) excess may shrink and be significant; can also make cocktails...
- Even an enhancement much smaller than today can become 5σ in the future

$$
\boxed{B \to D^{**} \tau \bar{\nu}}
$$

Why bother...?

• $B \to D^{**} \tau \bar{\nu}$: rates to narrow D_1, D_2^* measurable? No predictions [Bernlochner, ZL, soon] In $B_s\to D_s^{**}\ell\bar\nu$ case, all $4\ D_s^{**}$ states are narrow \Rightarrow LHCb?

[Belle, 1507.03233]

Some model independent results

• At $w \equiv v \cdot v' = 1$, the $\mathcal{O}(\Lambda_{\rm QCD}/m_{c,b})$ matrix element is determined by masses and leading order Isgur-Wise function [Leibovich, Ligeti, Stewart, Wise, hep-ph/9703213, hep-ph/9705467]

Kinematic range: $1 \leq w \lesssim 1.3$ and in the τ case $1 \leq w \lesssim 1.2$

$$
\text{Meson masses:} \qquad m_{H_{\pm}} = m_Q + \bar{\Lambda}^H - \frac{\lambda_1^H}{2m_Q} \pm \frac{n_{\mp} \lambda_2^H}{2m_Q} + \dots \qquad n_{\pm} = 2J_{\pm} + 1
$$

For example:

$$
\frac{\langle D_1(v',\epsilon)|V^{\mu}|B(v)\rangle}{\sqrt{m_{D_1}m_B}}=f_{V_1}\epsilon^{*\mu}+(f_{V_2}v^{\mu}+f_{V_3}v'^{\mu})(\epsilon^*\cdot v)
$$

$$
\sqrt{6} f_{V_1}(w) = (1 - w^2) \, \tau(w) - 4 \, \frac{\bar{\Lambda}' - \bar{\Lambda}}{m_c} \, \tau(w) + \mathcal{O}\left(\frac{w - 1}{m_{c,b}}\right) + \ldots
$$

• These "known" $\mathcal{O}(\Lambda_{\rm QCD}/m_{c,b})$ terms are numerically very important

• No expressions in the literature for $B \to D^{**} \tau \bar{\nu}$ rates at all — fixing this...

Preliminary predictions of spectra

Study all uncertainties, including effects neglected in LLSW

• As for $B \to D^{(*)}\ell\bar{\nu}$, heavy quark symmetry relates the extra form factor in the τ mode to those with e, μ — finalizing the uncertainties

Complementary sensitivity — e.g., type-II 2HDM

• 2HDM just for illustration — explore influence of all possible non-SM operators

Theory uncertainty of sin 2β

SU(3) **and the uncertainty in** sin 2β

- Hadronic uncertainty: $|V_{ub}V_{us}/(V_{cb}V_{cs})| \times ("P/T") \simeq 0.02 \times$ (ratio of matrix elem.) Claims of large effects, many proposals, encouraging experimental bounds Diagrammatic assumptions, sizes of matrix elements; e.g., no $SU(3)$ rel. btw $B_s \to \psi \phi$ and $\psi \rho$
- An $SU(3)$ relation, w/o dynamical assumptions [ZL & Robinson, PRL 115 (2015) 251801, 1507.06671] $\sin 2\beta =$ $S_{K_S} - \lambda^2 S_{\pi^0} - 2(\Delta_K + \lambda^2 \Delta_\pi) \tan \gamma \cos 2\beta$ $1 + \lambda^2$ $\Delta_{h=K,\pi} =$ $\bar{\Gamma}(B_d \to J/\psi h^0) - \bar{\Gamma}(B^+ \to J/\psi h^+)$ $\bar{\Gamma}(B_d \to J/\psi h^0) + \bar{\Gamma}(B^+ \to J/\psi h^+)$ Cancels $|V_{ub}|$ contamination in $SU(3)$ limit Challenge: measuring $\Delta_{K,\pi}$ [Jung, 1510.03423] ¯*η* $$ 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
	- 2σ tension: fluctuation in $\Delta_K = -(4.3 \pm 2.4) \times 10^{-2}$? isospin violation?

Theory uncertainty of ϵ_K

[ZL, F. Sala, 1602.08494]

Very high scale sensitivity

 \bullet ϵ_K has played a leading role constraining both general and specific models

 $|\epsilon_K|_{\rm exp}=(2.23\pm 0.01)\times 10^{-3}$ VS. $|\epsilon_K|_{\rm SM}=(1.81\pm 0.28)\times 10^{-3}$ [Brod & Gorbahn, 2011]

\n- Besides SM operator,
$$
O_1 = (\bar{d}_L \gamma_\mu s_L)^2
$$
 four others possible:
\n

$$
O_2 = (\bar{d}_R s_L)^2, O_3 = (\bar{d}_R^{\alpha} s_L^{\beta})(\bar{d}_R^{\beta} s_L^{\alpha}),
$$

\n
$$
O_4 = (\bar{d}_R s_L)(\bar{d}_L s_R), O_5 = (\bar{d}_R^{\alpha} s_L^{\beta})(\bar{d}_L^{\beta} s_R^{\alpha})
$$

\n
$$
\mathcal{L}_{\rm NP} = \mathcal{L}_{\rm SM} + \sum_j \frac{C_j}{\Lambda_j^2} O_i
$$

 ϵ_K give the strongest $\Delta F = 2$ constraint (Plot for $\text{Im}C_K$ shows Λ_j for $C_j = i$)

ϵ_K — convention independently

\n- \n
$$
|K_{S,L}\rangle = p|K^0\rangle \pm q|\overline{K}^0\rangle
$$
\n $K_L = K_{\text{heavy}}, \quad K_S = K_{\text{light}}$ \n
\n- \n Time evolution: \n $i \frac{d}{dt} \left(\frac{K^0}{K^0} \right) = \left(M - i \frac{\Gamma}{2} \right) \left(\frac{K^0}{K^0} \right)$ \n $\Delta m_K = 2|M_{12}| + \mathcal{O}(\phi^2), \quad \Delta \Gamma_K = -2|\Gamma_{12}| + \mathcal{O}(\phi^2)$ \n
\n

• Fully convention independently:

$$
\epsilon_K = e^{i\phi_{\epsilon}} \sin \phi_{\epsilon} \frac{\text{Im}(-M_{12}/\Gamma_{12})}{2 \, |M_{12}/\Gamma_{12}|} + \mathcal{O}\left(\epsilon_K^2, |\epsilon'|\right) \qquad \phi_{\epsilon} = \arctan \frac{2 \, \Delta m_K}{-\Delta \Gamma_K} \simeq 43.5^{\circ}
$$
\n
$$
\text{(Im} \, M_{12} \qquad \text{Im} \, (A_2 \, e^{-i\delta_0})
$$

• Usually written as:
$$
\epsilon_K = e^{i\phi_{\epsilon}} \sin \phi_{\epsilon} \left(\frac{\text{Im} M_{12}}{\Delta m_K} + \xi \right)
$$
 $\xi = \frac{\text{Im} (A_0 e^{-i\delta_0})}{\text{Re} (A_0 e^{-i\delta_0})}$

(since Γ_{12} dominated by A_0 because of $\Delta I = 1/2$ rule)

Valid in phase conventions: $\{ \arg M_{12} \, , \, \arg \Gamma_{12} \} \leq \mathcal{O}(|\epsilon_K|) \pmod{\pi}$

Calculating ϵ_K

• The standard expression for the SM prediction:

$$
|\epsilon_K| = \kappa_{\epsilon} C_{\epsilon} \widehat{B}_K |V_{cb}|^2 \lambda^2 \bar{\eta} \left[|V_{cb}|^2 (1 - \bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_t, x_c) - \eta_{cc} x_c \right]
$$

75(1)% 43(6)% -18(7)%
(NLO) (NNLO)

Poor convergence of η_{cc} : 1, 1.38, 1.87 $\Rightarrow \eta_{cc} = 1.87 \pm 0.76$ [Brod, Gorbahn 1108.2036]

• κ_{ϵ} include all contributions other than the short-distance $\Delta s = 2$

$$
\kappa_{\epsilon} = \sqrt{2} \sin \phi_{\epsilon} \left(1 + \rho \frac{\xi}{\sqrt{2} |\epsilon_K|} \right) \simeq 0.94 \pm 0.02
$$
 [Buras, Guadagnoli, Isidori, 1002.3612]

To use or not to use measured ϵ' to predict ϵ_K ? What's assumed about NP?

Lattice estimates don't agree well (or NP?) — reflected in tension for ϵ'

 \bullet $(\Delta m_K)^{\rm LD}$ uncertain: importance of 2π state between lattice and χ PT in tension

Compare SM CKM fits

• The ϵ_K regions are fairly different (widths of bands):

Phase choices for M_{12} **and** Γ_{12}

• Change phases to minimize / study uncertainty in the actual computation?

$$
|\epsilon_K|_{\text{new}} = \kappa_{\epsilon}|_{\text{new}} C_{\epsilon} \widehat{B}_K |V_{cb}|^2 \lambda^2 \bar{\eta} \left[|V_{cb}|^2 (1 - \bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_t, x_c) \right]
$$

Make $\lambda_c = V_{cd} V_{cs}^*$ real \Rightarrow no η_{cc} term \Rightarrow square bracket increases, κ_ϵ decreases ${\rm Im} M_{12}^{\rm SD}$ increases, κ_{ϵ} decreases

- Future: $\Delta|V_{cb}|\rightarrow 0.3\times 10^{-3}$, then η_{cc} even more important, $|\Delta\epsilon_K/\epsilon_K|_{V_{cb}}\sim 2.5\%$
- Can this ultimately yield better synergy with lattice QCD calculations? N.B.: Christ et al. [1212.5931] remove λ_c , to be left with λ_t^2 & $\lambda_t\lambda_u$ terms in ${\rm Im}M_{12}\Rightarrow$ then tt part depends on m_c

Final comments

Conclusions

- $B \to D^{(*)}\tau\bar{\nu}$: amusing if NP shows up in an operator w/o much SM suppression
- There are good operator fits, and (somewhat) sensible MFV leptoquark models Pretty wild scenarios also viable...
- Extensions of current LHC searches may cover much of the parameter space
- Measurements of $b \to c\tau\bar{\nu}$ will improve in the next decade by order of magnitude (Even if central values change, plenty of room for significant deviations from SM)
- ϵ_K : sensitive to some of the highest scales Importance of uncertainties of η_{cc} somewhat overlooked — can be "removed" $\Delta \epsilon_K$ |_{SM} slightly reduced — Future: understand LD contributions better? Synergy w/ lattice?

Bonus^l **slides**

- Scalars: Need comparable values of C_{S_L} and C_{S_R}
	- If H^\pm flavor singlet, $C_{S_L} \propto y_c$, so cannot fit $R(D^{(*)})$ keeping y_t perturbative
	- If H^{\pm} is charged under flavor (combination of Y-s, to couple to quarks & leptons), to generate $C_{S_L} \sim C_{S_R},$ some $\mathcal{O}(1)$ coupling to 1st generation quarks unavoidable Bounds on $4q$ or $2q2\ell$ operators exclude it
- Vectors: Rescaling the SM operator (O_{V_L}) gives good fit to the data Flavor singlet w/ W-like couplings: $m_{W'} \gtrsim 1.8 \,\mathrm{TeV} \Longleftrightarrow 0.2 \sim g^2 |V_{cb}| (1 \,\mathrm{TeV}/m_{W'})^2$ Couplings to u, d suppressed for $(\bar{3},3,1)$ and $(\bar{3},1,3)$ under $U(3)_Q \times U(3)_u \times U(3)_d$ $(\bar{3},3,1): b \rightarrow c$ transitions suppressed by y_c , too small $(\overline{3},1,3)$: can fit data if $y_b = \mathcal{O}(1)$, but excluded by tree-level FCNC via $W^{\prime 0}$ (If dynamics allows $W'\bar Q_L^3 Q_L^3$, but not $W'\bar Q_L^i Q_L^i$, viable models exist; beyond MFV [Greljo, Isidori, Marzocca, 1506.0170])

MFV leptoquarks

• Assign charges under flavor sym.: [viable MFV LQs: Freytsis, ZL, Ruderman]

 $U(3)_Q \times U(3)_u \times U(3)_d$

Simplest choices — leptoquarks could be electroweak $SU(2)_L$ singlets or triplets: scalars: $S \sim (\bar{3}, 1, 1), (1, \bar{3}, 1), (1, 1, \bar{3})$ vectors: $U_{\mu} \sim (3, 1, 1), (1, 3, 1), (1, 1, 3)$

 $S(\bar{\bf 3},{\bf 1},{\bf 1})$ and $U_\mu({\bf 3},{\bf 1},{\bf 1})$ give large $pp\to \tau^+\tau^-$, excluded by Z' searches

 $S(\mathbf{1},\mathbf{\bar{3}},\mathbf{1})$ and $U_\mu(\mathbf{1},\mathbf{3},\mathbf{1})$ give y_c suppressed $B\to D^{(*)}\tau\bar\nu$ contributions \Rightarrow too large couplings, or too light leptoquarks

• Possibly viable: $S(1,1,\overline{3})$ and $U_{\mu}(1,1,3) \Rightarrow$ consider in more detail Both can be electroweak singlets or triplets

Constraints from $b \rightarrow s \nu \bar{\nu}$

• With three Yukawa spurion insertions, one can write:

$$
\delta \mathcal{L}' = \lambda' S Y_d^{\dagger} Y_u Y_u^{\dagger} \, \bar{q}_L^c i \tau_2 \ell_L
$$

Generates four-fermion operator:

$$
\frac{V_{tb}^* V_{ts}}{2 m_{S_3}^2}\, y_t^2 y_b^2\, \lambda' \lambda\, (\bar b_L \gamma^\mu s_L\, \bar\nu_L \gamma_\mu \nu_L)
$$

- Current limits on $B \to K \nu \bar{\nu}$ imply: $\lambda'/\lambda \lesssim 0.1$ some suppression of λ' required
- Electroweak singlet vector LQ is the only one of the four models w/o this constraint (E.g., vector triplet has $\lambda' \bar{q}_L Y_u Y_u^\dagger Y_d \tau \gamma_\mu \ell_L U^\mu$ term)
- If central values & patterns change, more "mainstream" MFV models may fit

