
Invenio Development
Practices

How to Contribute

Tibor Šimko
@tiborsimko

Invenio User Group Workshop 2015
Geneva, Switzerland, 12–15 October 2015

@tiborsimko 1 / 46



Life cycle of a bug report

@tiborsimko 2 / 46



Step 1 of 6: Reporting

@tiborsimko 3 / 46



Step 1 of 6: Reporting

An issue in the morning
A feature request in the evening
What else?

— after Ekon

@tiborsimko 4 / 46



invenio-unapi

@tiborsimko 5 / 46



invenio-records

@tiborsimko 6 / 46



Here is how to reproduce . . .

@tiborsimko 7 / 46



Reporting tips

1 If it ain’t on GitHub, it does not exist.

2 Watch notifications in interested repositories.

3 Check existing issues before submitting.

4 Describe concrete steps how to reproduce a problem.
– what you did
– what was the outcome
– what you expected instead

5 Submit a test case. Submit a use case.

6 Get involved! Comment and advise on other issues.

7 Join Invenio chat room.

@tiborsimko 8 / 46



Step 2 of 6: Triaging

@tiborsimko 9 / 46



Step 2 of 6: Triaging

No milestone
No assignee
A lonely feeling

— after Yosa Buson (1716-1784)

@tiborsimko 10 / 46



Issues, milestones, labels, humans

@tiborsimko 11 / 46



Triage process

who?
– 9 persons reachable at @inveniosoftware/triagers
– distributed triage team representing “technology” and “services”
– community presence and volunteering

when?
– ongoing triage of incoming issues
– once-a-week live triage brainstorms

how?
– github labels, milestones, assigness
– priorities and roadmaps

@tiborsimko 12 / 46



Triaging tips

1 Every issue should have an assignee.

2 Every issue should have a milestone.

3 Use additional type and priority labels.

4 Use additional service labels to provide overview.

5 Silent since a month? Ping responsible.

6 Nobody in sight to work on this? Discuss and triage.

7 No time to realistically tackle this? “Someday” or close.

8 No reply? Ping @inveniosoftware/triagers.

@tiborsimko 13 / 46



Step 3 of 6: Developing

@tiborsimko 14 / 46



Step 3 of 6: Developing

Mutable defaults
The Master
Is full of regrets

— after Yosa Buson (1716-1784)

@tiborsimko 15 / 46



Contributing documentation

http://invenio.readthedocs.org/

@tiborsimko 16 / 46



Contributing translations

@tiborsimko 17 / 46



Contributing code

@tiborsimko 18 / 46



The Zen of Python / Tim Peters
>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

@tiborsimko 19 / 46



Python Anti-Patterns

http://docs.quantifiedcode.com/python-anti-patterns/

@tiborsimko 20 / 46



Code with style

pep8 · pep257 · flake8 · isort

@tiborsimko 21 / 46



Sensible commit history

@tiborsimko 22 / 46



Local kwalitee check 1 of 2

$ kwalitee check message <sha1a..sha1b>

@tiborsimko 23 / 46



Local kwalitee check 2 of 3

$ kwalitee check files <sha1a..sha1b>

@tiborsimko 24 / 46



Local kwalitee check 3 of 3

$ kwalitee prepare release <sha1a..sha1b>

@tiborsimko 25 / 46



TPoCP / Gerald Weinberg

@tiborsimko 26 / 46



Egoless Programming

1 Understand and accept that you will make mistakes.
2 You are not your code.
3 No matter how much "karate" you know, someone else will always

know more.
4 Don’t rewrite code without consultation.
5 Treat people who know less than you with respect, deference, and

patience.
6 The only constant in the world is change.
7 The only true authority stems from knowledge, not from position.
8 Fight for what you believe, but gracefully accept defeat.
9 Don’t be "the guy in the room".

10 Critique code instead of people.

@tiborsimko 27 / 46



Re-read CONTRIBUTING.rst
1 Before starting any wider-impact changes, submit a ticket and use

a discussion channel.
2 Publish your code under GNU General Public License.
3 Choose good starting point to build your topical branch upon.
4 Make things easily configurable and reusable by others.
5 Create logically separate commits for logically separate things.
6 Use sensible commit messages and stamp them with QA and

ticket directives.
7 Include test cases with the code.
8 Include documentation with the code.
9 Check the overall code kwalitee.

10 Send the code for review and integration.
11 Help improving overall development, deployment, and operational

bandwidth.
12 Share thoughts, needs, requirements, solutions, "howto" recipes

with others.
@tiborsimko 28 / 46



Step 4 of 6: Reviewing

@tiborsimko 29 / 46



Step 4 of 6: Reviewing

Ecce pull request!
Undocumented features
Still shivering

— after Akutagawa Ryunosuke (1892-1927)

@tiborsimko 30 / 46



Code reviews

@tiborsimko 31 / 46



Code coverage

@tiborsimko 32 / 46



Thinking forward

@tiborsimko 33 / 46



Reviewing tips

1 Every PR should preserve or increase code coverage.
If it ain’t green, it ain’t finished.

2 Check it as a black box. Input, magic, output.
If it ain’t documented, it ain’t finished.

3 Check it as a white box. Implementation details.
If it ain’t styled, it ain’t finished.

4 Check it as a release news. Messages only.
If it does not announce anything, it may not be finished.

@tiborsimko 34 / 46



Step 5 of 6: Integrating

@tiborsimko 35 / 46



Step 5 of 6: Integrating

Covered with tests
Instantly I’d like to merge
In this dream of ours!

— after Ochi Etsujin (1656?-1739?)

@tiborsimko 36 / 46



Inter-module relations

@tiborsimko 37 / 46



Inter-service relations

@tiborsimko 38 / 46



Integrating tips
1 Check the signature karma.

If it ain’t signed, it ain’t finished.

2 Check the counter-signature karma.
If it ain’t counter-signed, it ain’t finished.

– Reviewed-by

– :shipit:

– cross-team signatures

3 Check it from the helicopter.
If it ain’t green, it ain’t finished.
If it ain’t understandable, it ain’t documented.

4 Check its neighbourhoods.
If it changes pre-existing tests, beware of compatibility.
If it removes API-like functions, check outside usage.

@tiborsimko 39 / 46



Step 6 of 6: Releasing

@tiborsimko 40 / 46



Step 6 of 6: Releasing

The old repository
A tag jumps in
Plop

— after Matsuo Basho (1644-1694)

@tiborsimko 41 / 46



Structured release notes

@tiborsimko 42 / 46



Structured release notes

commit label release notes section

SECURITY Security fixes
INCOMPATIBLE Incompatible changes
NEW New features
BETTER Improved features
FIX Bug fixes
NOTE Notes
(AMENDS) (amending past messages)
(missing) (developers only)

@tiborsimko 43 / 46



Releasing tips

1 Cross-check CI green lights.

2 Cross-check Read The Docs documentation builds.

3 Cross-check demo site builds.

4 check-manifest

5 Check author list. Add newcomers.

6 Update I18N message catalogs.

7 Update version number. Generate release notes.

8 Push a pre-release to testpypi. Try a test install from there.

9 Tag it. Push it. Bump it.

10 Add release notes on GitHub. Tweet it. Post it.

@tiborsimko 44 / 46



Community

#IUGW2012

If you want to go fast, go alone.
If you want to go far, go together.

(after projecthydra.org)

@tiborsimko 45 / 46



Thanks for flying Invenio

Happy hacking

inveniosoftware.org

@tiborsimko 46 / 46


