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Life cycle of a bug report
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Step 1 of 6: Reporting
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Step 1 of 6: Reporting

An issue in the morning
A feature request in the evening
What else?

— after Ekon
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invenio-unapi
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invenio-records
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Here is how to reproduce . . .

@tiborsimko 7 / 46



Reporting tips

1 If it ain’t on GitHub, it does not exist.

2 Watch notifications in interested repositories.

3 Check existing issues before submitting.

4 Describe concrete steps how to reproduce a problem.
– what you did
– what was the outcome
– what you expected instead

5 Submit a test case. Submit a use case.

6 Get involved! Comment and advise on other issues.

7 Join Invenio chat room.
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Step 2 of 6: Triaging
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Step 2 of 6: Triaging

No milestone
No assignee
A lonely feeling

— after Yosa Buson (1716-1784)
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Issues, milestones, labels, humans
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Triage process

who?
– 9 persons reachable at @inveniosoftware/triagers
– distributed triage team representing “technology” and “services”
– community presence and volunteering

when?
– ongoing triage of incoming issues
– once-a-week live triage brainstorms

how?
– github labels, milestones, assigness
– priorities and roadmaps
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Triaging tips

1 Every issue should have an assignee.

2 Every issue should have a milestone.

3 Use additional type and priority labels.

4 Use additional service labels to provide overview.

5 Silent since a month? Ping responsible.

6 Nobody in sight to work on this? Discuss and triage.

7 No time to realistically tackle this? “Someday” or close.

8 No reply? Ping @inveniosoftware/triagers.
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Step 3 of 6: Developing
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Step 3 of 6: Developing

Mutable defaults
The Master
Is full of regrets

— after Yosa Buson (1716-1784)
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Contributing documentation

http://invenio.readthedocs.org/
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Contributing translations
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Contributing code

@tiborsimko 18 / 46



The Zen of Python / Tim Peters
>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!
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Python Anti-Patterns

http://docs.quantifiedcode.com/python-anti-patterns/
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Code with style

pep8 · pep257 · flake8 · isort
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Sensible commit history
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Local kwalitee check 1 of 2

$ kwalitee check message <sha1a..sha1b>
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Local kwalitee check 2 of 3

$ kwalitee check files <sha1a..sha1b>

@tiborsimko 24 / 46



Local kwalitee check 3 of 3

$ kwalitee prepare release <sha1a..sha1b>
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TPoCP / Gerald Weinberg
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Egoless Programming

1 Understand and accept that you will make mistakes.
2 You are not your code.
3 No matter how much "karate" you know, someone else will always

know more.
4 Don’t rewrite code without consultation.
5 Treat people who know less than you with respect, deference, and

patience.
6 The only constant in the world is change.
7 The only true authority stems from knowledge, not from position.
8 Fight for what you believe, but gracefully accept defeat.
9 Don’t be "the guy in the room".

10 Critique code instead of people.
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Re-read CONTRIBUTING.rst
1 Before starting any wider-impact changes, submit a ticket and use

a discussion channel.
2 Publish your code under GNU General Public License.
3 Choose good starting point to build your topical branch upon.
4 Make things easily configurable and reusable by others.
5 Create logically separate commits for logically separate things.
6 Use sensible commit messages and stamp them with QA and

ticket directives.
7 Include test cases with the code.
8 Include documentation with the code.
9 Check the overall code kwalitee.

10 Send the code for review and integration.
11 Help improving overall development, deployment, and operational

bandwidth.
12 Share thoughts, needs, requirements, solutions, "howto" recipes

with others.
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Step 4 of 6: Reviewing

@tiborsimko 29 / 46



Step 4 of 6: Reviewing

Ecce pull request!
Undocumented features
Still shivering

— after Akutagawa Ryunosuke (1892-1927)
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Code reviews
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Code coverage
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Thinking forward
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Reviewing tips

1 Every PR should preserve or increase code coverage.
If it ain’t green, it ain’t finished.

2 Check it as a black box. Input, magic, output.
If it ain’t documented, it ain’t finished.

3 Check it as a white box. Implementation details.
If it ain’t styled, it ain’t finished.

4 Check it as a release news. Messages only.
If it does not announce anything, it may not be finished.
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Step 5 of 6: Integrating
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Step 5 of 6: Integrating

Covered with tests
Instantly I’d like to merge
In this dream of ours!

— after Ochi Etsujin (1656?-1739?)
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Inter-module relations
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Inter-service relations
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Integrating tips
1 Check the signature karma.

If it ain’t signed, it ain’t finished.

2 Check the counter-signature karma.
If it ain’t counter-signed, it ain’t finished.

– Reviewed-by

– :shipit:

– cross-team signatures

3 Check it from the helicopter.
If it ain’t green, it ain’t finished.
If it ain’t understandable, it ain’t documented.

4 Check its neighbourhoods.
If it changes pre-existing tests, beware of compatibility.
If it removes API-like functions, check outside usage.
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Step 6 of 6: Releasing
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Step 6 of 6: Releasing

The old repository
A tag jumps in
Plop

— after Matsuo Basho (1644-1694)
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Structured release notes

@tiborsimko 42 / 46



Structured release notes

commit label release notes section

SECURITY Security fixes
INCOMPATIBLE Incompatible changes
NEW New features
BETTER Improved features
FIX Bug fixes
NOTE Notes
(AMENDS) (amending past messages)
(missing) (developers only)
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Releasing tips

1 Cross-check CI green lights.

2 Cross-check Read The Docs documentation builds.

3 Cross-check demo site builds.

4 check-manifest

5 Check author list. Add newcomers.

6 Update I18N message catalogs.

7 Update version number. Generate release notes.

8 Push a pre-release to testpypi. Try a test install from there.

9 Tag it. Push it. Bump it.

10 Add release notes on GitHub. Tweet it. Post it.
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Community

#IUGW2012

If you want to go fast, go alone.
If you want to go far, go together.

(after projecthydra.org)
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Thanks for flying Invenio

Happy hacking

inveniosoftware.org
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