
Automatic translation 

from CUDA to C++

Luca Atzori, Vincenzo Innocente, Felice Pantaleo, Danilo Piparo

31 August, 2015



Goals

Running CUDA code on CPUs. Why?

Performance portability!

• A major challenge faced today by developers on heterogeneous high 

performance computers.

• We want to write the best possible code using the best possible frameworks and

run it on the best possible hardware.

• Our code should run well even after the translation on a platform that does not

needs to have an NVIDIA graphic card.

• CUDA is an effective data-parallel programming model for more than just GPU 

architectures?



CUDA Computational Model

3

• Data-parallel model of 
computation
– Data split into a 1D, 2D, 

3D grid of blocks

– Each block can be 1D, 
2D, 3D in shape

– More than 512 
threads/block

• Built-in variables:
– dim3 threadIdx
– dim3 blockIdx
– dim3 blockDim
– dim3 gridDim

Device

Grid 1

Block

(0,0,0)

Block

(1,0,0)
Block

(2,0,0)

Block

(2,1,0)

Block

(0,1,0)

Block (0,1,0)

Block

(1,1,0)



Mapping

The mapping of the computation is NOT straightforward.

• Conceptually easiest implementation: spawn a CPU thread for every 

GPU thread specified in the programming model.

• Quite inefficient: 

• mitigates the locality benefits

• incurs a large amount of scheduling overhead



Mapping

Translating the CUDA program such that the mapping of programming constructs 

maintains the locality expressed in the programming model with existing operating 

system and hardware features.

• CUDA blocks execution is asynchronous

• Each CPU thread should be scheduled to a single core for locality

• Maintain the ordering semantics imposed by potential barrier synchronization points

CUDA C++

block std::thread / Task asynchronous

thread
sequential unrolled for loop

(can be vectorized)

synchronous

(barriers)



Source-to-source translation

Why don’t just find a way to compile it for x86?

• Because having the output source code would be nice!

• We would like to analyze the obtained code:

• further optimizations

• debugging

• We don’t want to focus only on x86



Working with ASTs

What is an Abstract Syntax Tree?

A tree representation of the abstract syntactic 

structure of source code written in a 

programming language.

Why regular expression tools 

aren’t powerful enough?

Almost all programming languages are 

(deterministic) context free languages, a 

superset of regular languages.

while (x < 10) { x := x + 1; }

while

x 10 x +

:=<

x 1



Clang

• Clang is a compiler front end for the C, C++, Objective-C and 

Objective-C++ programming languages. It uses LLVM as its 

back end.

• “Clang’s AST closely resembles both the written C++ code and 

the C++ standard.”

• This makes Clang’s AST a good fit for refactoring tools.

Clang handles CUDA syntax!



Vector addition: host translation

int main(){
...

sum<<<numBlocks, numThreadsPerBlock>>>(in_a, in_b, out_c);
...

}

int main() {
...

for(i = 0; i < numBlocks; i++)
sum(in_a, in_b, out_c, i);

...
}



Vector addition: kernel translation

__global__ void sum(int* a, int* b, int* c){
...

c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];
...

}

void sum(int* a, int* b, int* c, dim3 blockIdx, dim3 blockDim){
dim3 threadIdx;

...
//Thread_Loop
for(threadIdx.x.=0; threadIdx.x < blockDim.x; threadIdx.x++){
c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x];

}
...

}

Not built-in variables

anymore!The loops enumerate the values of the previously implicit threadIdx



Example: Stencil

• Consider applying a 1D stencil to a 1D array of 
elements
– Each output element is the sum of input elements 

within a radius

• Fundamental to many algorithms
– Standard discretization methods, interpolation, 

convolution, filtering

• If radius is 3, then each output element is the sum 
of 7 input elements:

radius radius



Sharing Data Between Threads

Terminology: within a block, threads 

share data via shared memory

Declare using __shared__, allocated 

per block

Data is not visible to threads in 

other blocks



Implementing with shared memory

• Cache data in shared memory

– Read (blockDim.x + 2 * radius) input elements from global 

memory to shared memory

– Compute blockDim.x output elements

– Write blockDim.x output elements to global memory

blockDim.x output elements

halo on left halo on right

Each block needs a halo of radius elements at each boundary



Stencil kernel

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int global_id = threadIdx.x + blockIdx.x * blockDim.x;

int local_id = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[local_id] = in[global_id];

if (threadIdx.x < RADIUS) {

temp[local_id - RADIUS] = in[global_id - RADIUS];

temp[local_id + BLOCK_SIZE] = 

in[global_id + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();



Stencil kernel

// Apply the stencil

int result = 0;

for(int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[local_id + offset];

// Store the result

out[global_id] = result;

}



Stencil: CUDA kernel

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int global_id = threadIdx.x + blockIdx.x * blockDim.x;

int local_id = threadIdx.x + radius;

// Read input elements into shared memory

temp[local_id] = in[global_id];

if (threadIdx.x < RADIUS) {

temp[local_id – RADIUS] = in[global_id – RADIUS];

temp[local_id + BLOCK_SIZE] = in[global_id + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();

// Apply the stencil

int result = 0;

for(int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[local_id + offset];

// Store the result

out[global_id] = result;

}



Stencil: kernel translation (1)

void stencil_1d(int *in, int *out, dim3 blockDim, dim3 blockIdx) {

int temp[BLOCK_SIZE + 2 * RADIUS];

int global_id; 

int local_id; 

THREAD_LOOP_BEGIN{

global_id = threadIdx.x + blockIdx.x * blockDim.x;

local_id = threadIdx.x + radius;

// Read input elements into shared memory

temp[local_id] = in[global_id];

if (threadIdx.x < RADIUS) {

temp[local_id – RADIUS] = in[global_id – RADIUS];

temp[local_id + BLOCK_SIZE] = in[global_id + BLOCK_SIZE];

}

}THREAD_LOOP_END

THREAD_LOOP_BEGIN{

// Apply the stencil

int result = 0;

for(int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[local_id + offset];

out[global_id] = result; // Store the result

}THREAD_LOOP_END

}

A thread loop 

implicitly introduces 

a barrier 

synchronization 

among logical 

threads at its 

boundaries



Stencil: kernel translation (2)

void stencil_1d(int *in, int *out, dim3 blockDim, dim3 blockIdx) {

int temp[BLOCK_SIZE + 2 * RADIUS];

int global_id[]; 

int local_id[]; 

THREAD_LOOP_BEGIN{

global_id[tid] = threadIdx.x + blockIdx.x * blockDim.x;

local_id[tid] = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[local_id[tid]] = in[global_id[tid]];

if (threadIdx.x < RADIUS) {

temp[local_id[tid] - RADIUS] = in[global_id[tid] - RADIUS];

temp[local_id[tid] + BLOCK_SIZE] = in[global_id[tid] + BLOCK_SIZE];

}

}THREAD_LOOP_END

THREAD_LOOP_BEGIN{

// Apply the stencil

int result = 0;

for(int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[local_id[tid] + offset];

out[global_id[tid]] = result; // Store the result

}THREAD_LOOP_END

}

We create an array of 

values for each local 

variable of the former 

CUDA threads.

Statements within 

thread loops access 

these arrays by loop 

index .



Benchmark

Used source code Time (ms) Slowdown wrt CUDA

CUDA¹ 3.41406 1

Translated TBB² 9.41103 2.76

Native sequential³ 22.451 6.58

Native TBB² 14.129 4.14

1 – Not optimized CUDA code, memory copies included

2 - We wrapped the call to the function in a TBB parallel for

3 - Not optimized, naive implementation

Intel® Core™ i7-4771 CPU @ 3.50GHz

NVIDIA® Tesla K40 Kepler GK110B



Conclusion

• One of the most challenging aspects was obtaining the ASTs

from CUDA source code

• Solved including CUDA headers at compile time

• Now we can match all CUDA syntax

• At the moment: kernel translation almost completed. 

• Interesting results, but still a good amount of work to do.



Future work

• Handle CUDA API in the host code (i.e. cudaMallocManaged)

• Atomic operations in the kernel

• Adding vectorization pragmas



Thank you

GitHub https://github.com/HPC4HEP/CUDAtoCPP

References

Felice Pantaleo, “Introduction to GPU programming using CUDA”

https://github.com/HPC4HEP/CUDAtoCPP


(Backup) Example: __syncthread inside a while 

statement

while(j>0){

foo();

__syncthreads();

bar();
}

bool newcond [];
thread_loop {

newcond [tid] = (j[tid]>0);
}
LABEL: thread_loop{

if(newcond[tid]) { foo(); }
}
thread_loop{

if(newcond[tid] { bar(); }
}
thread_loop{

newcond[tid] = (j[tid]>0);
if(newcond[tid]) go = true;

}
if(go) gotoLABEL


