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1. Introduction



Monte Carlo modeling of hadron therapy

A set of various models is needed to simulate propagation and

interaction of therapeutic ion beams in tissue-like media.

Now several general-purpose Monte Carlo particle transport
codes (FLUKA, Geant4, MCNP, PHITS and SHIELD-HIT) are

used for simulations in the field of hadron therapy.

For our study we decided
to use models from open-
access toolkit Geant4

Annual number of publications in
the field of hadron therapy,
where respective Monte Carlo
codes/tools were used.

Estimated from the Web of Science
(Thomson Reuters) database 2015.
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Geant4 is a rapidly developing toolkit for nuclear,
particle, space and medical physics

Geant4 collaboration _1 Papers based on Geant4 published
each year (ISI, 10.10.12)

Sta Ford

, s
S _.-r_:,_(v; i o
& & E, B
Fam T FLAE - A |
T iy
*gz;_ A ml sor) 1 PEE D | 4
e s
R
o

200 4
180 -
160 4
140 -
120 4
100 -
g licivin 5]
— o
: 20 -

o =

Geant4: ATLAS @LHC
http://geant4.cern.ch/geant4/



Geant4 toolkit

* Geant4 (for GEometry ANd Tracking) is a platform for the
simulation of the propagation and interactions of particles in
the matter.

* Developed and maintained by the international Geant4
Collaboration with headquarters at CERN (Geneva).

* The source code (in C++) is freely available.

* It provides an abundant set of physical models to handle
diverse interactions of particles with matter over a wide
energy range.

It includes a complete set of tools for handling geometry,
tracking, detector response, visualization and user interface.

* The user should build his own application using the relevant
components of the toolkit.

Agostinelli S et al. 2003 GEANT4—a simulation toolkit, Nucl. Instrum. Methods
A 506 (2003) 250-303; has more than 7000 citations in Google database!
#



Monte Carlo for Heavy Ion Therapy
(MCHIT) GEANT4-based application

created at FIAS

® Uses FIAS expertise in heavy-ion physics (QMD and SMM);

® GEANT4 toolkit accumulates rich experience of international
nuclear community over decades;

® GEANT4-based models are used now for modeling a rich verity
of physical processes relevant to ion-beam therapy;

®Works with simple phantoms and beam-line elements;

®Simulations are done on event-by-event basis.

MCHIT@FIAS
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2. Models included in MCHIT



Relevant physical interactions In ion-
beam cancer therapy

1. Coulomb scattering and ionizations arethe most
frequent interaction processes for ions along their g
way to the tumour. described bv Bethe-Bloch formula
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2. Nuclear collisions attenuate the beam
particles and create secondary nuclei inside the
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Artist's view of a nucleus-nucleus collision

Spectator A*
knock-out
nucleons
O
O
@ O
@
O

O

B

Statistical
Fast stage 10%° — 10-%2 % decay

S
Spectator B*\

In MCHIT we use G4 Light-lon Binary Cascade and
QMD models to simulate the fast collision stage, and Fermi
break-up model to describe the decay of excited light nuclei.




Our simulations are mostly done
with:

*Intra-Nuclear Cascade (INC liege) model:

- considers nucleus-nucleus collisions as a set of individual nucleon-nucleon
collisions in the participant zone

- estimates the excitation energy of residual nuclei as the sum of energies of holes
(knocked-out nucleons) and particles (trapped nucleons)

- Pauli-blocking 1s applied to NN collisions leading to occupied levels

- local density approximation and scalar potentials for nucleons

*Quantum Molecular Dynamics (QMD) model:

- each nucleon 1s represented as a Gaussian wave packet.

- propagation with scattering term which takes into account Pauli principle
- self-consistent potentials

Both models are combined to de-excitation codes of Geant4 to
simulate further decays of hot (pre)fragments



Decay of residual nuclei: sequential
evaporation vs simultaneous break-up?




De-excitation of residual nuclei

The mass, charge and excitation energy of excited residual nucler are
determined from the dynamical stage event-by-event.

Decay channels for heavy residual nucler are generated by Monte Carlo
method, according to the Evaporation Model or Statistical
Multifragmentation Model (SMM).

Fermi break-up model is used to simulate decays of highly excited ligh
nuclei up to 1°0, all fragmentation channels are included
(this model works stable and has been validated before)

These models are verified by numerous experiments. They are
used in nuclear physics community for decades



3. MCHIT-based simulations
of ion-beam therapy



12C break-up
processes in water
simulated with

MCHIT

grazing collision on oxygen
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on hydrogen
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One '%C break-up event simulated
with MCHIT on macro scale




Models at work, BIC vs QMD: energy spectra

GSI experiment:
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Models at work, BIC vs QMD: angular distributions
//' detectors: particle ID,

water i ~  energy, angle
phantom N

AN

GSI experiment:

120
e .
% QMD is better
i compared to BIC
2 10
>
5
=
S
<

GS/ data: E. Haetner et al.,
PMB 58, 8265 (2013)

P ; i ; ; i 2 R U T SO S
107236 "8 10 LS B S S e —
Angle [degree] Angle [degree]



Importance of nuclear fragmentation
reactions in carbon therapy

100 events of 2C @ 330 AMeV in water cube (30 cm)?

fragments and protons in blue, electrons in red, dots are interaction points

Electromagnetic interactions EM interactions + hadronic elastic
only scattering and fragmentation reactions




Precise dose calculations have to
account for fragmentation reactions,

. . [ )
without nuclear fragmentation otherwise...
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the dose would be largely overestimated
at deep penetrations. The fragmentation

of nuclei leads to the reduction of energy
deposition on the way to the Bragg peak
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Precise dose calculations must account
for fragmentation reactions!

without nuclear fragmentation
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Dose tails beyond the Bragg peak,
produced by the light secondary
fragments (n, p, He,...), should be
accurately accounted for 1111 the
treatment planning (~10% effect!).

with nuclear fragmentation
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Secondary fragments: models at
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200 A MeV '2C in water
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Radial distributions of dose for different depths

300A MeV “2C in water g
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300 A MeV '°C in water
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MCHIT can be used for calculating 3D
dose distributions for specific fragments

beam of 3 mm FWHM

MCHIT results for
volume energy
deposition (in MeV/mm?)
per beam particle

Note different dose
scales for each fragment




Dose distributions for different beams:
p, 3He, C, Ne. Ni
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Tons heavier than Ne are not suitable for irradiation of

deeply-sitting tumors, they are destroyed on the way!
I. Pshenichnov, I. Mishustin, W. Greiner, Compartive study of depth-dose distributions for
beams of light and heavy nuclei in tissue-like media, Nucl. Inst. Meth. B 266 (2008) 1094



Dose distribution monitoring with Positron-
Emision Tomography (PET)
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PET monitoring of delivered dose

1n situ

1n silico

——]

®Dose delivered to patient

® Measured distribution of
positron-emitting nuclei
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Thorough treatment planning and precise
dose delivery are crucial for success

Full 3D and 4D (with accounting for
organ movement during irradiation)
treatment planning; .
Thin (pencil-like, ~3 mm FWHM) be ams
applied from different directions; /
Active beam scanning technlque
variation of beam energy and ﬂl
Optimization of blologlcal dg)se
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Conclusions

* MCHIT can be used as a complementary software for
simulations beyond the capabilities of traditional
treatment planning systems to deal with:

— broad spectrum of incident particles and their energies;

— not only mean characteristics, but also their statistical fluctuations;

--various targets from single cells to tissue samples and realistic phantoms;

--benchmarking Monte Carlo simulations against of treatment planning
software based on other methods (e.g. tabulated exp. data);

* Existing physical models allow quantitative description
of energy deposition in tissue-like media;

* The important next step is to extend calculations on the
micro-meter scales to evaluate the biological dose.



Main conclusion:

Further progress in the field of particle therapy
is only possible via cooperation of physicists,
biologists and medical doctors!
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