What could we learn about high energy particle physics from cosmological observations at largest spatial scales?

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

5th International Conference on New Frontiers in Physics

Orthodox Academy of Crete (OAC)
Kolymbari, Crete, Greece
The main message

- Physics at the highest energy scales may be probed with observations at the largest spatial scales (just somewhat smaller than the size of the visible Universe)

- However, we are not (yet) ready to make the tests realistic (theory)
Universe is expanding

\[\lambda_{\text{abs.}} / \lambda_{\text{em.}} \equiv 1 + z \]

Doppler redshift \(Z \) of light

\[L \propto a(t) \]

Hubble parameter

\[H(t) = \frac{\dot{a}(t)}{a(t)} \]
Universe is homogeneous and isotropic

2dF Galaxy Redshift Survey

106688 Galaxies
Universe is occupied by “thermal” photons

the spectrum (shape and normalization!) is thermal

\[T_0 = 2.726 \text{ K} \]

\[n_\gamma = 411 \text{ cm}^{-3} \]
Conclusions from observations

The Universe is homogeneous, isotropic, hot and expanding...

- Interval between events gets modified

\[\Delta s^2 = c^2 \Delta t^2 - a^2(t) \Delta x^2 \]

- In GR expansion is described by the Friedmann equation

\[\left(\frac{\dot{a}}{a} \right)^2 = H^2(t) = \frac{8\pi}{3} G \rho_{\text{energy}} \]

\[\rho_{\text{density}} = \rho_{\text{matter}} + \rho_{\text{radiation}} + \ldots \]

- \(\rho_{\text{matter}} \propto 1/a^3(t) \), \(\rho_{\text{radiation}} \propto 1/a^4(t) \), \(\rho_{\text{curvature}} \propto 1/a^2(t) \)

- In the past, the matter density was higher, our Universe was “hotter”, and was filled with electromagnetic plasma
Present knowledge about the past: back to 2-3 MeV

past stages
- deceleration/acceleration: $\ddot{a} = 0$
- reionization
- recombination
- RD/MD equality
- nucleosynthesis
- neutrino decoupling

observables
- SN Ia, CMB, clusters
- CMB, quasars, stars
- CMB, BAO
- cold gas clouds

$H^2 \propto \rho_\gamma + \rho_\nu$
New Physics in Cosmology: any energy scales...

Cosmology constrains the time-scale, rather than energy-scale

$$\Gamma \sim H \propto T^2 / M_{Pl}$$

- Dark matter (if particles) be produced by $T \gg 1$ eV
- Dark energy be present by $T \gg 5$ K
- Baryon asymmetry be generated by $T \gg 1$ MeV
Inhomogeneous Universe

Large Scale Structure

CMB anisotropy
These inhomogeneities (matter perturbations) originate from the initial matter density (scalar) perturbations

\[\frac{\delta \rho}{\rho} \sim \frac{\delta T}{T} \sim 10^{-4}, \text{ which are} \]

adiabatic

\[\delta \left(\frac{n_B}{s} \right) = \delta \left(\frac{n_{DM}}{s} \right) = \delta \left(\frac{n_L}{s} \right) \]

Gaussian

\[\langle \frac{\delta \rho}{\rho} (\mathbf{k}) \frac{\delta \rho}{\rho} (\mathbf{k'}) \rangle \propto \left(\frac{\delta \rho}{\rho} (\mathbf{k}) \right)^2 \times \delta(\mathbf{k} + \mathbf{k'}) \]

flat spectrum

\[\langle \left(\frac{\delta \rho}{\rho} (\mathbf{x}) \right)^2 \rangle = \int_0^{\infty} \frac{dk}{k} \mathcal{P}_S(k) \quad \mathcal{P}_S(k) \approx \text{const} \]

LSS and CMB

\[\mathcal{P}_S \equiv A_S \times \left(\frac{k}{k_*} \right)^{n_s-1} \quad A_S \approx 2.5 \times 10^{-9}, \quad n_s \approx 0.97 \]
General facts and key observables

TODAY

- 2.7 K
- 4.4 K
- 0.26 eV
- 0.8 eV
- 50 keV
- 1 MeV
- 2.5 MeV
- 200 MeV
- 100 GeV
- Electroweak phase transition
- Baryogenesis
- Hot Universe
- Reheating
- Inflation

14 by

- 7.7 by
- 370 ty
- 50 ty
- 5 min
- 1 s
- 0.1 s
- 10 μs
- 0.1 ns

1.7 K

- Dark matter production
- Confinement ↔ free quarks

Accelerated expansion
Matter domination
Radiation domination
Primordial nucleosynthesis
Neutrino decoupling
QCD transition

Dmitry Gorbunov (INR)
High energy physics from cosmology
07.07.2016, ICNFP2016
Quantum fluctuations of wavelength λ of a free massless field φ have 3-momenta $q \sim 1/\lambda$ and an amplitudes of $\delta \varphi_\lambda \sim q$ (inflaton and gravitons !!)

Evolution at inflation

- **inside horizon:** $q > H$
 $q \propto 1/a \Rightarrow \delta \varphi_\lambda \propto q \propto 1/a$

- **outside horizon:** $q < H$
 $q \propto a \Rightarrow \delta \varphi_\lambda = \text{const} = H_{\text{infl}}/2\pi$!!

- got “classical” fluctuations:
 $\delta \varphi_\lambda = \delta \varphi_\lambda^{\text{quantum}} \times e^{N_e}$

scalar modes $\delta \phi_\lambda \sim H_{\text{infl}}$
tensor modes $\delta g_{\mu\nu} \sim h \sim H_{\text{infl}}/M_{Pl}$

Later at normal stage

$H \propto 1/t$, $q/H \nearrow$, modes “enter horizon”
All bosons fluctuate including the SM Higgs $\phi \sim H/2\pi$

Thus we either constrain inflation, $H \lesssim \ldots 10^{10}$ GeV \ldots and hence GW, that is r or ask for NP at a lower scale
Probing the matter power spectrum

\[\delta \phi \rightarrow \frac{\delta \rho}{\rho} \sim \frac{H^2}{\dot{\phi}} \propto \frac{V^{3/2}}{V'}, \quad h \sim \frac{H}{M_{Pl}} \propto V^{1/2} \]

upper limit on the inflation scale
from the absence of tensor modes (relic Gravity Waves)

\[V^{1/4} \lesssim 10^{16} \text{ GeV} \]
Probing the inflaton dynamics

\[A_S \rightarrow \frac{V^{3/2}}{V'}, \quad n_S \rightarrow \frac{V''}{V}, \left(\frac{V'}{V} \right)^2, \quad r \equiv \frac{A_T}{A_S} \rightarrow \left(\frac{V'}{V} \right)^2 \]
Planck 2015 favors flat inflaton potentials

$$r = \frac{A_T}{A_S} \propto \frac{\dot{\phi}^2}{H^2 M_{Pl}^2} \propto \left(\frac{V'}{V} \right)^2 \ll 1$$
Inflationary models and quantum corrections

perturbations $\delta T/T \sim 10^{-4}$ fix $\mu \approx 10^{13}$ GeV

R^2-inflation by A. Starobinsky (1980)

$$V(\phi) = \frac{3\mu^2 M_P^2}{4} \left(1 - \exp\left(-\sqrt{2/3}\phi/M_P\right)\right)^2,$$

- large fields:
 - exponentially flat
 - protected by the shift invariance
 $$\phi \rightarrow \phi + \text{const}$$

- small fields:
 - polynomial potential
 - protected by the renormalizability
 $$\phi^2 + \phi^4$$

- no way to match them at
 $$\phi \sim M_P$$
Inflationary models and quantum corrections

- Inflationary predictions are robust
- But we cannot test them with low energy particle physics experiment
- Including physics at reheating
- Similar observation for many other models: Higgs-flation, α-attractor, etc

- Large fields:
 - Exponentially flat
 - Protected by the shift invariance
 - $\phi \rightarrow \phi + \text{const}$

- Small fields:
 - Polynomial potential
 - Protected by the renormalizability
 - $\phi^2 + \phi^4$

- No way to match them at $\phi \sim M_P$

\[
V/\mu^2M_P^2 = \frac{3M_P^2\mu^2}{4} \left(1 - e^{-\#\phi/M_P} \right)
\]

\[
\mu^2\phi^2/2
\]
Summary

- The Universe was as hot as 2-3 MeV and most probably (much) hotter
- DM and BAU imply New Physics
 - but cosmology does not point at a particular scale
- Inflation must save the EW vacuum,
 - which can suggest New Physics
 - (it is difficult to prove, because a new collider is needed to pin down m_t and m_h)
- Inhomogeneities of the largest sizes
 - can allow us to probe physics at the highest energies.
 - However, (most) models are nonrenormalizable,
 - hence no direct connection between low- and high-energy model parameters
Quantum corrections to R^2...

\[S^{JF} = -\frac{M^2_P}{2} \int \sqrt{-g} d^4x \left(R - \frac{R^2}{6 \mu^2} \right) + \ldots \xi R^2 \log R , \]

Jordan Frame \rightarrow Einstein Frame [scale invariance \rightarrow shift invariance] \hspace{1cm} A. Starobinsky (1980)

\[g_{\mu\nu} \rightarrow \tilde{g}_{\mu\nu} = \chi g_{\mu\nu} , \quad \chi = \exp \left(\sqrt{2/3} \phi / M_P \right) . \]

\[S^{EF} = \int \sqrt{-\tilde{g}} d^4x \left[-\frac{M^2_P}{2} \tilde{R} + \frac{1}{2} \tilde{g}^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - \frac{3 \mu^2 M^2_P}{4} \left(1 - \frac{1}{\chi(\phi)} \right)^2 \right] + S_{\text{matter}} , \]

generation of perturbations $\sim 10^{-5}$

\[\frac{1}{2} \dot{\phi}^2 \sim \frac{1}{2} (\partial_i \phi)^2 \sim M^4_P \gg V(\phi) \]

Dmitry Gorbunov (INR) High energy physics from cosmology 07.07.2016, ICNFP2016 21 / 19
Quantum corrections to the Higgs-inflation

\[S = \int d^4x \sqrt{-g} \left(-\frac{M_P^2}{2} R - \xi H^\dagger H R + \mathcal{L}_{SM} \right) \]

In a unitary gauge \(H^T = \left(0, (h + v)/\sqrt{2} \right) \) (and neglecting \(v = 246 \) GeV)

\[S = \int d^4x \sqrt{-g} \left(-\frac{M_P^2 + \xi h^2}{2} R + \frac{(\partial_\mu h)^2}{2} - \frac{\lambda h^4}{4} \right) \]

slow roll behavior due to modified kinetic term even for \(\lambda \sim 1 \)

Go to the Einstein frame:

\[(M_P^2 + \xi h^2) R \rightarrow M_P^2 \tilde{R} \]

\[g_{\mu\nu} = \Omega^{-2} \tilde{g}_{\mu\nu}, \quad \Omega^2 = 1 + \frac{\xi h^2}{M_P^2} \]

with canonically normalized \(\chi \):

\[\frac{d\chi}{dh} = \frac{M_P \sqrt{M_P^2 + (6\xi + 1)\xi h^2}}{M_P^2 + \xi h^2}, \quad U(\chi) = \frac{\lambda M_P^4 h^4(\chi)}{4(M_P^2 + \xi h^2(\chi))^2}. \]

we have a flat potential at large fields: \(U(\chi) \rightarrow \text{const} \quad @ \quad h \gg M_P / \sqrt{\xi} \)
Dark Matter Properties

(If) particles:
1. stable on cosmological time-scale
2. nonrelativistic long before RD/MD-transition (either Cold or Warm, $v_{RD/MD} \lesssim 10^{-3}$)
3. (almost) collisionless
4. (almost) electrically neutral

If were in thermal equilibrium: $M_X \gtrsim 1 \text{ keV}$

If not: for bosons

$$\lambda = \frac{2\pi}{(M_X v_X)}$$

in a galaxy $v_X \sim 0.5 \cdot 10^{-3}$ \quad $M_X \gtrsim 3 \cdot 10^{-22} \text{ eV}$

for fermions $M_X \gtrsim 750 \text{ eV}$

Pauli blocking:

$$f(p, x) = \frac{\rho_X(x)}{M_X} \cdot \frac{1}{\left(\sqrt{2\pi} M_X v_X\right)^3} \cdot e^{-\frac{p^2}{2M_X^2v_X^2}} \bigg|_{p=0} \leq \frac{g_X}{(2\pi)^3}$$

Dmitry Gorbunov (INR)
Astrophysical and cosmological data are in agreement

\[
\left(\frac{\dot{a}}{a} \right)^2 = H^2(t) = \frac{8\pi}{3} G \rho_{\text{density}}
\]

\[
\rho_{\text{density}} = \rho_{\text{radiation}} + \rho_{\text{ordinary matter}} + \rho_{\text{dark matter}} + \rho_{\Lambda}
\]

\[
\rho_{\text{radiation}} \propto 1/a^4(t) \propto T^4(t), \quad \rho_{\text{matter}} \propto 1/a^3(t)
\]

\[
\rho_{\Lambda} = \text{const}
\]

\[
\frac{3H_0^2}{8\pi G} = \frac{\rho_{\text{energy}}(t_0)}{\rho_c} \equiv \rho_c \approx 0.53 \times 10^{-5} \text{ GeV} / \text{cm}^3
\]

- **radiation:** \(\Omega_\gamma \equiv \frac{\rho_\gamma}{\rho_c} = 0.5 \times 10^{-4} \)
- **Baryons (H, He):** \(\Omega_B \equiv \frac{\rho_B}{\rho_c} = 0.05 \)
- **Neutrino:** \(\Omega_\nu \equiv \frac{\sum \rho_\nu}{\rho_c} < 0.01 \)
- **Dark matter:** \(\Omega_{\text{DM}} \equiv \frac{\rho_{\text{DM}}}{\rho_c} = 0.27 \)
- **Dark energy:** \(\Omega_\Lambda \equiv \frac{\rho_\Lambda}{\rho_c} = 0.68 \)
Expansion: redshift z

$$\lambda_{\text{abs.}}/\lambda_{\text{em.}} \equiv 1 + z$$

$z \ll 1$ Hubble law: $z = H_0 r$

$$H_0 = h \cdot 100 \frac{\text{km}}{\text{s} \cdot \text{Mpc}}, \quad h \approx 0.68$$

Hubble Diagram for Cepheids (flow-corrected) standard candles