

ICNFP2016 Kolymbari

SEARCHES FOR SUPERSYMMETRY AT THE LHC

Christian Autermann, on behalf of the ATLAS and CMS collaborations

RWTH Aachen University, Germany

SPONSORED BY THE

Federal Ministry of Education and Research

Overview

Motivation and Introduction of New Physics beyond the Standard Model

Direct Inclusive Searches for strong-production of New Physics

- 0 leptons
- ≥1 lepton
- "Natural-SUSY"
- stop, sbottom searches

Gauge-mediated SUSY breaking

photons or tau final states

More Specialized Searches

• Di-lepton mass-edge, Z-resonance: A glimpse of signal?

Conclusion

ICNFP2016 Christian Autermann

Standard Model

- Remarkably well understood
 - background processes for searches for new physics
- New physics often expected at higher scales (high pT, MET)
 - in the tails of SM backgrounds
- Data-driven background estimation techniques
 - normalized control samples, control regions, jet smearing, ...

New physics beyond the Standard Model

- Viable dark matter candidates ?
 - Implies new, stable, neutral, (lightest) particle (the "LSP") leading to missing transverse energy (MET) in the detectors
 - Corollary, limits from MET searches do not apply if the new theory has no LSP
- Unification of Gauge couplings at the GUT scale
- After the discovery of a Higgs Boson:
 - Hierarchy problem has become a real problem!
 - What mechanism is responsible for the Higgs mass?

Different ways to avoid massive fine-tuning

Minimal supersymmetric standard model (MSSM)

Generalization of lepton- & baryon number conservation: R-parity conservation

(-1) ^{3B+L+2S}

if conserved

- SUSY particles are only produced in pairs
- the lightest SUSY particle (LSP) is stable

- SUSY links Standard-Model particles with new supersymmetric partners with different spin
- Partners have same charges and couplings
 - solving the hierarchy problem
- Partners have different mass
 - Broken supersymmetry
 - reintroduce 'little hierarchy' problem, if masses are very different

120 new parameters

 reduced to ~few by particular breaking mechanism

What is the status of the search for Supersymmetry?

Nature (2015) 14474

LHCb,CMS: arXiv:1411.5729

B⁰, B⁰_s $\rightarrow \mu\mu$: Indirect searches

branching fraction to $\mu\mu$ has sensitivity to "new physics" like Supersymmetry

Month in Voor

10

Overview

Motivation and Introduction of New Physics beyond the Standard Model

- Direct Inclusive Searches for strong-production of New Physics
 - 0 leptons
 - ≥1 lepton
 - "Natural-SUSY"
 - stop, sbottom searches

Gauge-mediated SUSY breaking

photons or tau final states

More Specialized Searches

• Di-lepton mass-edge, Z-resonance: A glimpse of signal?

Conclusion

Strong production, 0-lepton final state

- Instrumental background
 - QCD multi-jet production
 - W/tt \rightarrow (e/ μ)+jets
- Irreducible backgrounds
 - Z**>**vv
 - W+jets→τ+jets
- → Typically estimated using data-driven methods

Final state

- Stable neutral New-Physics particle (the LSP)
 - missing transverse Energy (MET / MHT) :

$$\mathcal{H}_T = \left| -\sum_{i}^{jets} \vec{p}_T, i \right|$$

• Jets

- High multiplicity or
- High H_T (scalar sum jet p_T)

$$H_T = \sum_{i}^{jets} \left| \vec{p}_T, i \right|$$

- S_T , $m_{eff} = H_T + MET$
- Kinematic variables
 - MT2, "Razor", α_T using hemisphere algorithms

<u>Matrix / "ABCD"-method</u>: normalization to control region

13

Strong production, ≥ 0 leptons

- "Inclusive searches", fully hadronic final state
- "Bread & Butter" workhorse searches
- data-driven background estimation, or estimation scaled in data-control regions

latest 13 TeV results using up to 3.2 fb⁻¹ int. luminosity of 2015 data:

ATLAS-15-06	subm. to EPJC	0 – 6 jets
ATLAS-15-07	PLB 757 (2016) 334	7 – 10 jets
ATLAS-15-08	subm. to EPJC	0 – 6 jets, 1 lepton
<u>CMS-15-02</u>	PLB 758 (2016) 152	Jets + MHT
<u>CMS-15-03</u>	subm. to JHEP	M _{T2}
<u>CMS-15-04</u>	PAS	Razor
<u>CMS-15-06</u>	PAS	Inclusive, 1 lepton

 \rightarrow updates with the 2016 dataset planned for ICHEP

15

• ATLAS-15-07, PLB 757 (2016) 334, 7 – 10 jets

- many jets & b-tag multiplicities
- targeted at long decay chains
- complementary to 2-6 jets searches

• CMS-15-02, PLB 758 (2016) 152, Jets + MET

• CMS-15-03, subm to JHEP, MT2

• Transverse mass $m_T(\vec{p}_T, \vec{q}_T) = \sqrt{2p_T q_T - \vec{p}_T \vec{q}_T}$ (e.g. $W \rightarrow I\nu$ with $q_T \equiv E_t^{\text{miss}}$)

Binning in M_{T2} , H_T , N_j , N_b ; 172 exclusive signal regions in total

Results: Inclusive searches

Summary ATLAS & CMS

Results for simplified scenarios with longer decay chains shown as dashed lines

Overview

Motivation and Introduction of New Physics beyond the Standard Model

Direct Inclusive Searches for strong-production of New Physics

- 0 leptons
- ≥1 lepton
- "Natural-SUSY"
 - stop, sbottom searches

Gauge-mediated SUSY breaking

photons or tau final states

More Specialized Searches

• Di-lepton mass-edge, Z-resonance: A glimpse of signal?

Conclusion

Guidance from naturalness

- To avoid fine-tuning and maintain naturalness at least
 - m(gluino) ~< few TeV
 - m(stop), m(sbottom) ~< 1 TeV
 - Higgsino

~ 200 – 300 GeV

while the other sparticles can be inaccessible at higher scales.

 Searches for "Natural SUSY" guided by dedicated simplified model spectra:

22

Direct stop production

Natural SUSY requires the 3rd generation squarks to be light

 Several different kinematic regions & blind spots

ATLAS-15-02, subm. to PRD	single lepton
ATLAS-EXO-15-03, subm to PRD	monojet
ATLAS-CONF-16-09	dilepton
<u>CMS-PAS-16-01</u>	monojet
<u>CMS-PAS-15-02</u>	single lepton
<u>CMS-PAS-16-07</u>	Jet + MET
<u>CMS-PAS-16-11</u>	soft lepton

23

Decays of stop to on-shell t or W

- Highly energetic leptons from W (top) decays
- Experimental challenge to distinguish from Standard Model ttbar and WW

ATLAS-15-02, subm. to PRD (1 lepton)

- one isolated electron or muon
- MET > 200 GeV, m_T(I,MET)>30 GeV
- Three overlapping signal regions optimized for direct / gluino-mediated production
- Background estimates from data

24

Direct 3rd generation squark production: compresses spectra

- c-tagged selection
- mono-jet selection

CMS-14-06, subm. to PLB, (αT)

- + 75 exclusive signal bins in $H_{\rm T},\,N_{\rm j},\,N_{\rm b}$
- α_T > 0.55 to suppress QCD multijet
- Data driven background estimation techniques

Summary: Direct stop pair production

For clarity, only the most sensitive results wrt the contour envelope are shown

To improve in the difficult gap regions:

- clever new analyses techniques
- theory improvements on ttbar cross-section and angular distributions

crucial to distinguish SM ttbar from signal

Overview

Motivation and Introduction of New Physics beyond the Standard Model

Direct Inclusive Searches for strong-production of New Physics

- 0 leptons
- ≥1 lepton
- "Natural-SUSY"
- stop, sbottom searches
- Gauge-mediated SUSY breaking
 - photons or tau final states

More Specialized Searches

• Di-lepton mass-edge, Z-resonance: A glimpse of signal?

Conclusion

Gauge mediated supersymmetry breaking

- Gravitino is the lightest SUSY particle (LSP)
 - negligible mass \leftrightarrow prompt NLSP decay
- Next-to-lightest SUSY particle (NLSP) determines final state
 - Neutralino \rightarrow photons, Z-boson, H-boson in final state
 - sTau \rightarrow final states with au leptons

ATLAS-14-01, PRD 92(2015)72001	8 TeV, 20.3 fb ⁻¹	single-, diphoton
ATLAS-16-04, subm. to EPJC	13 TeV, 3.2 fb ⁻¹	diphoton
<u>ATLAS-14-04</u> , EPJC (2016) 76	8 TeV, 20 fb ⁻¹	ditau, 3 rd generation
ATLAS-14-05, PRD 93(2016)52002	8 TeV, 20 fb ⁻¹	ditau, EWK prod.
<u>CMS-PAS-15-12</u>	13 TeV, 2.3 fb ⁻¹	diphoton
<u>CMS-14-16</u> , PLB759 (2016) 479	8 TeV, 7.4 fb ⁻¹ *	EWK single-photon
<u>CMS-14-04</u> , PRD 92 (2015)072006	8 TeV, 19.7 fb ⁻¹	single-, diphoton
<u>CMS-PAS-14-22</u>	8 TeV, 20 fb ⁻¹	EWK ditau

(*) parked dataset

28

Strong production

- Gauge mediated supersymmetry breaking (GMSB)
- Simplified scenario:
 - strong production
 - bino-like neutralino NLSP

Overview

Motivation and Introduction of New Physics beyond the Standard Model

Direct Inclusive Searches for strong-production of New Physics

- 0 leptons
- ≥1 lepton
- "Natural-SUSY"
- stop, sbottom searches

Gauge-mediated SUSY breaking

- photons or tau final states
- More Specialized Searches
 - Di-lepton mass-edge, Z-resonance: A glimpse of signal?

Conclusion

Search for a dilepton mass edge

Upper mass edge: $M_{max} = M(\chi_2^0) - M(\chi_1^0)$

Signal: e⁺e⁻ or µ⁺µ⁻ Background: from eµ

Exiting excesses at 2.5 σ – 3.0 σ in 8 TeV data at CMS & ATLAS, respectively:

Dileptons: latest results

Conclusion

- Atlas & CMS have searched for New Physics using the 2012 data
- As more 13 TeV data becomes available, sensitivity on the SUSY phase space evolves fast
- Excellent performance of detectors Standard Model measurements and more complicated & specialized search analyses possible and worthwhile!
- Naturalness arguments promises New Physics at the TeV scale, the TeV scale is now in reach!

<u>References</u>

Atlas public results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u> CMS public results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u>

Additional Material

ATLAS SUSY Searches* - 95% CL Lower Limits

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb [−]	⁻¹] Mass limit	\sqrt{s} = 7, 8 TeV	$\sqrt{s} = 13 \text{ TeV}$	Reference
	$ \begin{array}{c} \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\lambda}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\lambda}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\lambda}_{1}^{0} (\text{compressed}) \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q (\ell \ell \ell \nu / \nu \nu) \tilde{\lambda}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{1} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell \ell \nu / \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\ell \text{INLSP}) \\ \text{GGM} (\text{hingsino-bino NLSP}) \\ \text{GGM} (\text{higgsino-bino NLSP}) \\ \text{GGM} (\text{higgsino-bino NLSP}) \\ \text{GGM} (\text{higgsino-bino NLSP}) \\ \text{GGM} (\text{higgsino NLSP}) \\ \text{Gravitino LSP} \\ \end{array} $	$\begin{array}{c} 0.3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 2 \ e, \mu \ (off-Z) \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 <i>b</i> 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 7-10 jets 0-2 jets 1 <i>b</i> 2 jets 2 jets 2 jets mono-jet	 Yes 	20.3 3.2 20.3 3.2 3.3 20 3.2 20.3 20.3 2	\$\bar{q}\$ \$\bar{g}\$ \$\bar{g}\$ <t< td=""><td>1.85 TeV m(q)=r m(k1)-n m(k1)-n m(k1)-n m(k1)-n m(k1)-n m(k1)-n target m(k1)-n target m(k1)-n target m(k1)-n target m(k1)-n target m(k1)-n target cr(NLS eV m(k1)-n eV m(k1)-n eV m(k1)-n eV m(k1)-n m(Z) m(Z)-n</td><td>n(\tilde{g}) = 0 GeV, m(1st gen. \tilde{q})=m(2^{sd} gen. \tilde{q}) = 0 GeV, m($\tilde{\xi}^{1}$)<5 GeV = 0 GeV = 0 GeV = 100 GeV = 100 GeV = 100 GeV = 59P<-0.1 mm = 950 GeV, cr(NLSP)<0.1 mm, μ<0 = 850 GeV, cr(NLSP)<0.1 mm, μ>0 = 9P)>430 GeV = 10x Ge</td><td>1507.05525 ATLAS-CONF-2015-062 <i>To appear</i> 1503.03290 ATLAS-CONF-2015-062 ATLAS-CONF-2015-062 1501.03555 1602.06194 1407.0603 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518</td></t<>	1.85 TeV m(q)=r m(k1)-n m(k1)-n m(k1)-n m(k1)-n m(k1)-n m(k1)-n target m(k1)-n target m(k1)-n target m(k1)-n target m(k1)-n target m(k1)-n target cr(NLS eV m(k1)-n eV m(k1)-n eV m(k1)-n eV m(k1)-n m(Z) m(Z)-n	n(\tilde{g}) = 0 GeV, m(1 st gen. \tilde{q})=m(2 ^{sd} gen. \tilde{q}) = 0 GeV, m($\tilde{\xi}^{1}$)<5 GeV = 0 GeV = 0 GeV = 100 GeV = 100 GeV = 100 GeV = 59P<-0.1 mm = 950 GeV, cr(NLSP)<0.1 mm, μ <0 = 850 GeV, cr(NLSP)<0.1 mm, μ >0 = 9P)>430 GeV = 10x Ge	1507.05525 ATLAS-CONF-2015-062 <i>To appear</i> 1503.03290 ATLAS-CONF-2015-062 ATLAS-CONF-2015-062 1501.03555 1602.06194 1407.0603 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518
§ med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}^0_1 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}^0_1 \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{t}\tilde{\chi}^0_1 \end{array}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	3.3 3.3 20.1	\$\tilde{g}\$	1.78 TeV $m(\tilde{\chi}_1^0)$ 1.76 TeV $m(\tilde{\chi}_1^0)$ = eV $m(\tilde{\chi}_1^0)$	≈800 GeV ⊧0 GeV <300 GeV	ATLAS-CONF-2015-067 To appear 1407.0600
direct production	$ \begin{array}{c} \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{1} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow t\tilde{\chi}_{1}^{1} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{1} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1} (natural GMSB) \\ \tilde{t}_{2}\tilde{t}_{2}, \ \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \ \tilde{t}_{2} \rightarrow \tilde{t}_{1} + h \end{array} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 0-2 \ e, \mu \\ 0 \\ r \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 \ e, \mu \end{matrix}$	2 <i>b</i> 0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets/1-2 <i>b</i> nono-jet/ <i>c</i> -ta 1 <i>b</i> 1 <i>b</i> 6 jets + 2 <i>b</i>	Yes Yes Yes Yes g Yes Yes Yes Yes	3.2 3.2 4.7/20.3 20.3 20.3 20.3 20.3 20.3 20.3	b1 840 GeV b1 325-540 GeV 7,117-170 GeV 200-500 GeV 7 90-198 GeV 205-715 GeV 7 90-245 GeV 745-785 GeV 7 150-600 GeV 745-785 GeV 7 290-610 GeV 745-785 GeV 7 320-620 GeV 320-620 GeV	$\begin{array}{c} m(\tilde{x}_{1}^{0}) \\ m(\tilde{x}_{1}^{0}) \\ m(\tilde{x}_{1}^{1}) \\ m(\tilde{x}_{1}^{0}) \\ \end{array}$	$ \begin{aligned} & (100 \text{GeV} \\ & = 50 \text{GeV}, m(\tilde{\chi}_1^0) = m(\tilde{\chi}_1^0) + 100 \text{GeV} \\ & = 2m(\tilde{\chi}_1^0), m(\tilde{\chi}_1^0) = 55 \text{GeV} \\ & = 1 \text{GeV} \\ & 150 \text{GeV} \\ & \times 150 \text{GeV} \\ & \times 200 \text{GeV} \\ & = 0 \text{GeV} \end{aligned} $	ATLAS-CONF-2015-066 1602.09058 1209.2102, 1407.0583 08616, ATLAS-CONF-20 1407.0608 1403.5222 1403.5222 1506.08616
direct	$ \begin{array}{c} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \tilde{\ell} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell} \chi_{1}^{0} (\tilde{\ell} \tilde{\nu}), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\mathcal{W}}_{1}^{0} \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\mathcal{W}}_{1}^{0} \hbar \tilde{\chi}_{1}, h \rightarrow b \tilde{b} / W W / \tau i \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\mathcal{W}}_{1}^{0} \hbar \tilde{\chi}_{1}, h \rightarrow b \tilde{b} / W B / \tau i \\ GGM (wino NLSP) weak prod. \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 4 \ e, \mu \\ 1 \ e, \mu + \gamma \end{array}$	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3		$\begin{array}{c} m(\tilde{\chi}_{1}^{0}) =\\ m(\tilde{\chi}_{1}^{0}) =\\ m(\tilde{\chi}_{1}^{0}) =\\ m(\tilde{\chi}_{1}^{0}) =\\ m(\tilde{\chi}_{1}^{0}) =m(\tilde{\chi}_{2}^{0}), m\\ m(\tilde{\chi}_{1}^{0}) =\\ m(\tilde{\chi}_{2}^{0}) =m(\tilde{\chi}_{2}^{0}), m\\ m(\tilde{\chi}_{2}^{0}) =m(\tilde{\chi}_{2}^{0}) =\\ m(\tilde{\chi}_{2}^{0}) =\\ \mathsf$	$\begin{array}{l} 0 \mbox{ GeV } \\ 0 \mbox{ GeV } (\vec{k}, \vec{\nu}) = 0.5(m(\vec{k}_1^+) + m(\vec{k}_1^0)) \\ 0 \mbox{ GeV } (m(\vec{\tau}, \vec{\nu}) = 0.5(m(\vec{k}_1^+) + m(\vec{k}_1^0)) \\ (\vec{k}_1^{0}) = 0, m(\vec{\ell}, \vec{\nu}) = 0.5(m(\vec{k}_1^+) + m(\vec{k}_1^0)) \\ -m(\vec{k}_2^0), m(\vec{k}_1^0) = 0, \mbox{ sleptons decoupled} \\ -m(\vec{k}_2^0), m(\vec{k}_1^0) = 0, \mbox{ sleptons decoupled} \\ \vec{k}_1^0 = 0, m(\vec{\ell}, \vec{\nu}) = 0.5(m(\vec{k}_2^0) + m(\vec{k}_1^0)) \\ m \end{array}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
particles	Direct $\tilde{x}_{1}^{\dagger} \tilde{x}_{1}^{-}$ prod., long-lived \tilde{x}_{1}^{\dagger} Direct $\tilde{x}_{1}^{\dagger} \tilde{x}_{1}^{-}$ prod., long-lived \tilde{x}_{1}^{\dagger} Stable, stopped \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}$, $\tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau$ GMSB, $\tilde{x}_{1}^{0} \rightarrow \gamma \tilde{\sigma}$, long-lived \tilde{x}_{1}^{0} $\tilde{g}_{\tilde{g}}, \tilde{x}_{1}^{0} \rightarrow \varphi \tilde{\sigma}$, long-lived \tilde{x}_{1}^{0} GGM $\tilde{g}_{\tilde{g}}, \tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G}$	$ \begin{array}{c} \overset{\text{E}}{\overset{\text{E}}}{\overset{\text{E}}{\overset{\text{E}}{\overset{\text{E}}{\overset{\text{E}}{\overset{\text{E}}{\overset{\text{E}}}{\overset{\text{E}}{\overset{\text{E}}{\overset{\text{E}}{\overset{\text{E}}{\overset{\text{E}}}{\overset{\text{E}}{\overset{\text{E}}}{\overset{\text{E}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}{\overset{\text{E}}}{\overset{\text{E}}}}{\overset{\text{E}}}}{\overset{\text{E}}}}{\overset{\text{E}}}{\overset{\text{E}}}{\overset{\text{E}}}}}}}}}}$	1 jet - 1-5 jets - - μ - ts -	Yes Yes - - Yes - -	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} m(\tilde{\xi}_{1}^{\pm}),\\ m(\tilde{\xi}_{1}^{\pm}),\\ m(\tilde{\xi}_{1}^{0})=\\ 54 \text{ TeV }\\ m(\tilde{\xi}_{1}^{0})=\\ m(\tilde{\xi}_{1}^{0})=\\ 10\text{ -tar}\\ 1 < r(\tilde{\xi}_{1}^{0})=\\ 1 < r(\tilde{\xi}$	$\begin{split} & m(\tilde{\xi}_1^0) \sim 160 \; MeV, \tau(\tilde{\chi}_1^+) = 0.2 \; ns \\ & m(\tilde{\chi}_1^0) \sim 160 \; MeV, \tau(\tilde{\chi}_1^+) < 15 \; ns \\ & s100 \; GeV, 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ & s100 \; GeV, \tau > 10 \; ns \\ & sp < 50 \\ & s250 \\$	1310.3675 1506.05332 1310.6584 <i>To appear</i> 1411.6795 1409.5542 1504.05162 1504.05162
	$ \begin{array}{c} LFV pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e\mu/e\tau/\mu\tau\\ Bilinear RPV CMSSM \\ \tilde{X}_1^{\dagger} \tilde{X}_1^{-}, \tilde{X}_1^{+} \rightarrow W \tilde{X}_1^{0}, \tilde{X}_1^{0} \rightarrow ee\tilde{v}_\mu, e\mu\tilde{v}, \\ \tilde{X}_1^{\dagger} \tilde{X}_1^{-}, \tilde{X}_1^{+} \rightarrow W \tilde{X}_1^{0}, \tilde{X}_1^{-} \rightarrow \tau\tau\tilde{v}_e, e\tau\tilde{v}_\tau \\ \tilde{g}_8, \tilde{g} \rightarrow qqq \\ \tilde{g}_8, \tilde{g} \rightarrow qq\bar{q} \\ \tilde{g}_8, \tilde{g} \rightarrow qq\bar{x}_1^{0}, \tilde{X}_1^{0} \rightarrow qqq \\ \tilde{g}_8, \tilde{g} \rightarrow f_1, \tilde{t}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell \end{array} $	$\begin{array}{c} e\mu, e\tau, \mu\tau\\ 2\ e, \mu\ (\text{SS})\\ 4\ e, \mu\\ 3\ e, \mu+\tau\\ 0\\ 2\ e, \mu\ (\text{SS})\\ 0\\ 2\ e, \mu\end{array}$	- 0-3 <i>b</i> - - 6-7 jets 6-7 jets 0-3 <i>b</i> 2 jets + 2 <i>b</i> 2 <i>b</i>	- Yes Yes - - Yes - -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	\$\vec{v}_r\$ 1.45 \$\vec{a}_1.\vec{s}_2\$ 760 GeV \$\vec{x}_1^+\$ 760 GeV \$\vec{x}_1^+\$ 450 GeV \$\vec{s}_2\$ 917 GeV \$\vec{s}_2\$ 980 GeV \$\vec{s}_2\$ 880 GeV \$\vec{t}_1\$ 320 GeV \$\vec{t}_1\$ 0.4-1.0 TeV	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} .11, \ \lambda_{132/133/233} = 0.07 \\ n(\tilde{g}), \ c\tau_{LSP} < 1 \ mm \\ 0.2 \times m(\tilde{k}_1^{+}), \ \lambda_{121} \neq 0 \\ 0.2 \times m(\tilde{k}_1^{+}), \ \lambda_{133} \neq 0 \\ B(b) = B(c) = 0.06 \\ 6600 \ \text{GeV} \\ 6600 \ \text{GeV} \\ 6600 \ \text{GeV} \\ \end{array}$	1503.04430 1404.2500 1405.5086 1502.05686 1502.05686 1502.05686 1404.2500 1601.07453 ATLAS-CONF-2015-015
er	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 510 GeV	m($\tilde{\chi}_{1}^{0}$)<	<200 GeV	1501.01325

Summary of CMS SUSY Results* in SMS framework

Probe *up to* the guoted mass limit