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Introduction

The discovery of radioactivity in the nineteenth century initialized the
study of the process of decay of radioactive elements. Experiments have
shown that the radioactive decay of the sample of radioactive elements is
a process extended in time, and that with the passage of time the number
of elements in the sample, which emits radioactive radiation, decreases.
These observations and assumption that the decay rate follows the laws
of probability led Rutherford and Sody to the formulation of radioactive
decay law as a function of time [1, 2, 3]. This radioactive decay law
allows to determine the number N(t) of atoms of the radioactive element
at the instant t knowing the initial number N0 = N(0) of them at initial
instant of time t0 = 0 and has the exponential form:

N(t) = N0 exp [−λt],

where λ > 0 is a constant. Since then, the belief that the decay law has
the exponential form has become common. The rise of Quantum
Mechanics led to an understanding that the radioactive decay similarly to
the process of emission of photons by excited atoms are time dependent
quantum processes.
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So the question arose how to describe such processes within the quantum
theory. Probably the most known attempt to solve this problem is the
Weisskopf–Wigner theory of spontaneous emission [4]. Considering the
excited atomic levels and applying the Shrödinger equation to describe
the time evolution Weisskopf and Wigner found that to a good
approximation the non–decay probability of the exited levels is a
decreasing function of time having exponential form. Further studies of
the quantum decay process showed that basic principles of the quantum
theory does not allow it to be described by an exponential decay law at
very late times [5, 6] and at initial stage of the decay process (see [6] and
references therein). Theoretical analysis shows that at late times the
survival probability (i. e. the decay law) should tends to zero as t → ∞
much more slowly than any exponential function of time and that as
function of time it has the inverse power–like form at this regime of time
[5, 6]. There was many unsuccessful attempts to verify experimentally
predicted deviations from the exponential form of the decay law at late
times regime (see eg. [7]). The first experimental evidence of deviations
of the decay law from exponential form at long time regime was reported
in [8].
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The early times properties of the decay process lead to the so called
Quantum Zeno Effect [9, 10], that is to slowing down sufficiently
frequently observed decay process up to stop it down in the case of the
continuously observed an unstable system. The experimental
confirmation of this effect was reported, e.g. in [11] and recently in [12].
All these results of theoretical and experimental researches caused that
there are rather widespread belief that a universal feature of the quantum
decay process is the presence of three time regimes of the decay process:
the early time (initial), exponential (or ”canonical”), and late time having
inverse–power law form [13]. This belief is reinforced by a numerous
presentations in the literature decay curves obtained for quantum models
of unstable systems. The typical form of such a decay curve one can find
in Fig. (1).
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Figure: (1) Decay curve obtained for ωBW (E) given by Eq. (20). Axes:
x = t/τ0 — time t is measured in lifetimes τ0, y — survival probabilities of a
logarithmic scale: P0(t) = |a0(t)|

2.

In this context, each experimental evidence of oscillating decay curve at
times of the order of life times is considered as an anomaly caused by a
new quantum effects or new interactions.
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As an example of such a situation one can recall the result of the GSI
experiment, where an oscillating decay rate of the ionized isotopes 140Pr
and 142Pm moving with relativistic velocity (γ ≃ 1.43, where γ is the
Lorentz factor) was observed [14, 15]. The question arises, if indeed in
the case of one component quantum unstable systems these oscillations
of the decay process at the ”exponential” regime are an anomaly, or
perhaps universal feature of quantum decay processes.

In the light of the mentioned results of the GSI experiment the another
question arises: Whether and how the oscillations depend on the motion
of the unstable quantum system. To find an answer to this question we
need to know how to describe the decay process of unstable quantum
systems in motion. This is quite general problem problem encountered by
researchers studying properties of moving unstable particles: Namely
physicists studying the decay processes are often confronted with the
problem of how to predict the form of the decay law of the particle
moving in respect to the rest reference frame of the observer knowing the
decay law of this particle decaying in its rest frame.
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From the standard, text book considerations one finds that if the decay
law of the unstable particle in rest has the exponential form

P0(t) = e−
Γ0 t
~ ,

then the decay law of the moving particle with momentum ~p 6= 0 is

Pp(t) = e
− Γ0 t

~ γ ,

where t denotes time, Γ0 is the decay rate (time t and Γ0 are measured
in the rest reference frame of the particle) and γ is the relativistic Lorentz

factor, γ ≡ 1/
√

1− β2, β = v/c , v = |~v | is the velocity of the particle,

~v = c~p/
√

~p2 +m2
0 c

2 and m0 – is the rest mass. This equality is the
classical physics relation. It is almost common belief that this equality is
valid also for any t in the case of quantum decay processes and does not
depend on the model of the unstable particles considered.
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For the proper interpretation of many accelerator experiments with high
energy unstable particles as well as of results of observations of
astrophysical processes in which a huge numbers of elementary particles
(including unstable one) are produced we should be sure that this belief
is supported by theoretical analysis of quantum models of decay
processes. The problem seems to be extremely important because from
some theoretical studies it follows that in the case of quantum decay
processes this relation is valid to a sufficient accuracy only for not more
than a few lifetimes τ0 = ~/Γ0 [16, 17, 18, 19]. On the other hand all
known tests of the relation

Pp(t) = e
− Γ0 t

~ γ ,

were performed for times of the order of τ0 (see, eg. [20, 21]) and for
times longer than a few lifetimes this relation was not tested till now.
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What is more it appears that this relation may not apply in the case of
the mentioned famous result of the GSI experiment. So we can see that
the problem requires a deeper analysis. In these considerations the basis
of such an analysis will be the formalism developed in [16, 17] where
within the quantum field theory the formula for the survival amplitude of
moving particles was derived. We will follow the method used in [19] and
we will analyze numerically properties survival probability for a model of
the unstable particle based on the Breit–Wigner mass distribution and
considered therein.
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So, in the following it will be shown that that in the case of unstable
systems in rest there is no time interval in which the survival probability
(decay law) could be a decreasing function of time of the purely
exponential form. We also show that even in the case of a single
component unstable system the decay curve has an oscillatory form with
a smaller or a large amplitude of oscillations depending on the model
considered. In the following it will also be shown that the relativistic
treatment of the problem within the Stefanovich–Shirokov theory [16, 17]
yields decay curves tending to zero as t → ∞ much slower than one
would expect using classical time dilation relation which confirms and
generalizes some conclusions drawn in [19]. Our results shows that
conclusions relating to the quantum decay processes of moving particles
based on the use of the classical physics time dilation relation need not
be universally valid.
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Unstable states: Preliminaries

The main information about properties of quantum unstable systems is
contained in their decay law, that is in their survival probability. Let the
reference frame O0 be the common inertial rest frame for the observer
and for the unstable system. Then if one knows that the system in the
rest frame is in the initial unstable state |φ〉 ∈ H, (H is the Hilbert space
of states of the considered system), which was prepared at the initial
instant t0 = 0, one can calculate its survival probability (the decay law),
P0(t), of the unstable state |φ〉 decaying in vacuum, which equals

P0(t) = |a0(t)|2, (1)

where a0(t) is the probability amplitude of finding the system at the time
t in the rest frame O0 in the initial unstable state |φ〉,
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a0(t) = 〈φ|φ(t)〉. (2)

and |φ(t)〉 is the solution of the Schrödinger equation for the initial
condition |φ(0)〉 = |φ〉, which has the following form within the system
units ~ = c = 1 used in the next parts of this talk:

i
∂

∂t
|φ(t)〉 = H |φ(t)〉. (3)

Here |φ〉, |φ(t)〉 ∈ H, and H denotes the total self–adjoint Hamiltonian
for the system considered. Note that if |φ〉 represents an unstable state
then it cannot be an eigenvector for H : In such a case the eigenvalue
equation H |φ〉 = ǫφ|φ〉 has no solutions for |φ〉 under considerations.
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There is |φ(t)〉 = U(t)|φ〉, where U(t) is unitary evolution operator and
U(0) = I is the unit operator. Thus a(t) ≡ 〈φ|U(t)|φ〉. The
one–parameter family of unitary operators U(t) forms group:
U(t1)U(t2) = U(t1 + t2). The the total Hamiltonian H of the system is
a generator of this group. This means that operators H and U(t) have
common eigenfunctions.

The rest reference frame O0 is defined using common solution of the
eigenvalue problem for H and the momentum operator P:

P|µ; p〉 = ~p|µ; p〉, (4)

and
H |µ; p〉 = E ′(µ, p) |µ; p〉, (5)

where µ ≡ E ′(µ, 0) and σc(H) is the continuous part of the spectrum of
the Hamiltonian H . Operators H and P act in the state space H.
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In the rest reference frame of the quantum unstable system O0, when
~p = 0, we have |µ; 0〉 = |µ; p = 0〉,

P|µ; 0〉 = 0, (6)

and
H |µ; 0〉 = µ |µ; 0〉, µ ∈ σc(H), (7)

Eigenvectors |µ; 0〉 are normalized as usual:

〈0;µ|µ′; 0〉 = δ(µ− µ′). (8)

Now we can model the unstable system in the rest system O0 as the

following wave–packet |φ0〉 ≡ |φ~p=0〉 def
= |φ〉,
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|φ0〉 ≡ |φ〉 =
∫ ∞

µ0

c(µ) |µ; 0〉 dµ, (9)

where expansion coefficients c(µ) are functions of the mass parameter µ,
that is of the rest mass µ. (Here µ0 is the lower bound of the spectrum
σc(H) of H). We require the state |φ0〉 to be normalized: So it has to be

∫ ∞

µ0

|c(µ)|2 dµ = 1. (10)

The expansion (9) and relation (7) allow one to find the amplitude a0(t)
and to write

a0(t) ≡
∫ ∞

µ0

ω(µ) e− i µ t dµ, (11)

where ω(µ) ≡ |c(µ)|2 > 0.
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So the amplitude a0(t), and thus the decay law P0(t) of the unstable
state |φ〉, are completely determined by the density of the mass (energy)
distribution ω(µ) for the system in this state [22] (see also:
[5, 6, 23, 24, 25, 26, 27]. From (11) and from the Riemann–Lebesque
lemma it follows that |a(t)| → 0 as t → ∞. It is because from the
normalization condition (10) it follows that ω(µ) is an absolutely
integrable function. (Note that this approach is also applicable in
Quantum Field Theory models [28, 29]).

Khalfin in [5] assuming that the spectrum of H must be bounded from
below, µ0 > −∞), and using the Paley–Wiener Theorem [30] proved that
in the case of unstable states there must be

|a0(t)| ≥ A exp [−b tq],

for |t| → ∞. Here A > 0, b > 0 and 0 < q < 1. Therefore the decay law
P0(t) of unstable states decaying in the vacuum, (1), can not be
described by an exponential function of time t if time t is suitably long,
t → ∞, and that for these lengths of time P0(t) tends to zero as t → ∞
more slowly than any exponential function of t. This this effect was
confirmed in experiment described in the Rothe paper [8].
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Note that the use of the Schrödinger equation (3) allows one to find that
within the problem considered.

i
∂

∂t
〈φ|φ(t)〉 = 〈φ|H |φ(t)〉. (12)

This relation leads to the conclusion that the amplitude a0(t) satisfies
the following equation

i
∂a0(t)

∂t
= h(t) a0(t), (13)

where

h(t) =
〈φ|H |φ(t)〉

a0(t)
, (14)

and h(t) is the effective Hamiltonian governing the time evolution in the
subspace of unstable states H‖ = PH, where P = |φ〉〈φ| (see [31] and
also [32, 33] and references therein).
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The subspace H⊖H‖ = H⊥ ≡ QH is the subspace of decay products.
Here Q = I− P . There is the following equivalent formula for h(t)
[31, 32, 33]:

h(t) ≡ 1

a0(t)

∂a0(t)

∂t
. (15)

If 〈φ|H |φ〉 exists then using unitary evolution operator U(t) and
projection operators P and Q the relation (14) can be rewritten as follows

h(t) = 〈φ|H |φ〉 +
〈φ|HQ U(t)|φ〉

a0(t)
. (16)

One meets the effective Hamiltonian h(t) when one starts with the
Schrödinger equation for the total state space H and looks for the
rigorous evolution equation for a distinguished subspace of states
H|| ⊂ H [31, 27].
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In general h(t) is a complex function of time and in the case of H‖ of
dimension two or more the effective Hamiltonian governing the time
evolution in such a subspace it is a non–hermitian matrix H‖ or
non-hermitian operator. There is

h(t) = µφ(t)−
i

2
γφ(t), (17)

and
µφ(t) = ℜ [h(t)], γφ(t) = − 2ℑ [h(t)], (18)

are the instantaneous mass (energy) µφ(t) and the instantaneous decay
rate, γφ(t) [31, 32, 33]. Here ℜ (z) and ℑ (z) denote the real and
imaginary parts of z respectively. The relations (13), (15) and (18) are
convenient when the density ω(µ) is given and one wants to find the
instantaneous mass µφ(t) and decay rate γφ(t): Inserting ω(µ) into (11)
one obtains the amplitude a0(t) and then using (15) one finds the h(t)
and thus µφ(t) and γφ(t).
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In closing this Section we should pay attention to another problem: The
state vector |φ〉 of the form (9) corresponding to a quantum unstable
system can not be an eigenvector of the Hamiltonian H , otherwise it
would be that

P0(t) = |〈φ|φ(t)〉|2 = |〈φ| exp [−itH ]φ〉|2 ≡ 1

for all times t. The fact that the vector |φ〉 describing the unstable
quantum system is not the eigenvector for H means that the mass
(energy) of this object is not defined. Simply the mass can not take the
exact constant value in this state |φ〉. In such a case quantum systems
are characterized by the mass (energy) distribution density ω(µ) and the
average mass

< m >=

∫ ∞

µ0

µω(µ) dµ

or by the instantaneous mass (energy) µφ(t) but not by the exact value
of the mass.
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The Breit–Wigner model

In general the spectral density ω(µ) has properties similar to the
scattering amplitude, i.e., it can be decomposed into a threshold factor, a
pole-function P(m) with a simple pole (often modeled by a
Breit-Wigner) and a smooth from factor F (µ). So, we can write

ω(µ) = Θ(µ− µ0) (µ− µ0)
αl P(µ)F (µ), (19)

where αl depends on the angular momentum l through αl = α+ l , [6]
(see equation (6.1) in [6]), 0 ≤ α < 1) and Θ(µ) is a step function:
Θ(µ) = 0 for µ ≤ 0 and Θ(µ) = 1 for µ > 0. The simplest choice is
to take α = 0, l = 0,F (µ) = 1 and to assume that P(µ) has a
Breit–Wigner form. It turns out that the decay curves obtained in this
simplest case are very similar in form to the curves calculated for more
general ω(µ) defined by (19) (see [23] and analysis in [6]). So to find the
most typical properties of the decay curve it is sufficient to make the
relevant calculations for ω(µ) modeled by the the Breit–Wigner
distribution of the energy density.
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The typical form of the survival probability P0(t) obtained in such a way
is presented in Fig (2). The calculations were made for ω(µ) having the
Breit–Wigner form ω(µ) ≡ ωBW (µ),

ωBW (µ) =
N

2π
Θ(µ− µ0 )

Γ0

(µ−m0 )2 + (Γ0

2
)2
, (20)

where N is a normalization constant.

Figure: (2) Decay curves obtained for ωBW (E) given by Eq. (20). Axes:
x = t/τ0 — time t is measured in lifetimes τ0, y — survival probabilities on a
logarithmic scale (The solid line: the decay curve P0(t) = |a0(t)|

2; The dotted
line: the canonical decay curve Pc(t) = |ac(t)|

2. The case sR = ER
Γ0

= 1000.
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The standard canonical form of the survival amplitude ac(t), is given by
the following relation,

ac(t) = exp [−i
t

~
(m0 −

i

2
Γ0)]. (21)

Γ0 is the decay rate and ~

Γ0
≡ 1

Γ0
= τ0 is the lifetime within the assumed

system of units ~ = c = 1 (time t and Γ0 are measured in the rest
reference frame of the particle).

The case ω(µ) = ωBW (µ) is the typical case considered in numerous
papers and used therein to model decay processes. Therefore it is very
important to analyze real form of the decay curves obtained using
ω(µ) = ωBW (µ) and this is why we consider this case in this paper.
What is more inserting, substituting into ωBW (µ) into (11) allows one to
find the analytical formula for the amplitude a0(t). The result is (see, eg.
[32, 33, 34]),
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a0(t) = N e−
i
~
(m0 − i Γ0

2 )t ×

×
{

1− i

2π

[

e
Γ0t
~ E1

(

− i

~
(mR +

i

2
Γ0)t

)

+(−1)E1

(

− i

~
(mR − i

2
Γ0)t

) ]}

, (22)

where E1(x) denotes the integral–exponential function defined according
to [35, 36] and mR = m0 − µ0.

It is convenient to consider the following function

ζ(t)
def
=

a0(t)

ac(t)
. (23)

There is

|ζ(t)|2 = P0(t)

Pc(t)
, (24)

where Pc(t) = |ac(t)|2 is the canonical exponential form of the decay
law. Analysis of properties of this function allows one to visualize all the
more subtle differences between P0(t) and Pc(t).
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For example, if one finds a time interval [t1, t2] such that ζ(t) = const
for t ∈ [t1, t2] this will mean that the survival probability P(t) has purely
exponential form in this time interval.

The function ζ(t) takes the following form in the case of the unstable
system modeled by ωBW (m):

ζ(t) ≡ N
{

1− i

2π

[

e
Γ0t
~ E1

(

− i

~
(mR +

i

2
Γ0)t

)

+(−1)E1

(

− i

~
(mR − i

2
Γ0)t

) ]}

. (25)

This function was used to find numerically |ζ(t)|2 for ω(m) = ωBW (m).
Results of numerical calculations are presented in Figs (3) and (4): It
turns out that in the case considered the form of |ζ(t)|2 and P0(t)

depend on the ratio sR
def
= mR

Γ0
≡ m0−µ0

Γ0
.
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Figure: (3) A comparison of decay curves obtained for ωBW (µ) given by Eq.
(20) with canonical decay curves. Axes: x = t/τ0 — time t is measured in

lifetimes τ0, y — The function f (t) = (|ζ(t)|2 − 1) = P0(t)
Pc (t)

− 1, where ζ(t) is

defined by the formula (23). The left panel: sR = 10. The right panel:
sR = 100. The lower panel: sR = 1000.
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Figure: (4) A comparison of decay curves obtained for ωBW (µ) given by Eq.
(20) with canonical decay curves. Axes: x = t/τ0 — time t is measured in

lifetimes τ0, y — The function f (t) = (|ζ(t)|2 − 1) = P0(t)
Pc (t)

− 1, where ζ(t) is

defined by the formula (23), P0(t) = |a0(t)|
2, Pc(t) = |ac(t)|

2. The case
sR = 1000.
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The derivative of ζ(t) given by (25) equals [32, 33]

∂ζ(t)

∂t
= i

N

2π

Γ0
~

e
Γ0

~
t E1

(

− i

~
(mR +

i

2
Γ0)t

)

. (26)

From the properties of the integral–exponential function E1(x) it follows

that the equation ∂ζ(t)
∂t

= 0 can be satisfied at most for some isolated
values of time t. So, from the formula (26) the conclusion follows:
Within the model considered there is no time interval in which
ζ(t) = const, that is, there is no time interval in which the survival
probability P0(t) has a pure exponential form. This conclusion explains
the results presented in Figs (3) and (4).
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Let us consider now the general case of ζ(t). From the definition (23) it
follows that the equivalent form of ζ(t) is

ζ(t) ≡ e+ i t
~
(m0 − i

2 Γ0) a0(t). (27)

Hence

∂ζ(t)

∂t
≡ i

~
(m0 −

i

2
Γ0) ζ(t) + e+ i t

~
(m0 − i

2 Γ0)
∂a(t)

∂t

=
i

~
(m0 −

i

2
Γ0) ζ(t) − i

~
h(t) ζ(t), . (28)

Let us use now the relation (16) and assume that 〈φ|H |φ〉 exists and
there exists instants 0 < t1 < t2 < ∞ of time t such that for any
t ∈ (t1, t2) there is

ζ(t) = ζ(t1) = ζ(t2) = const
def
= cφ 6= 0.

In this case there should be ∂ζ(t)
∂t

= 0 for all t ∈ (t1, t2). Taking into
account that by definition ζ(t) 6= 0 from (28) we conclude that it is
possible only and only if
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The general case

h(t) − (m0 −
i

2
Γ0) = 0, for t1 ≤ t ≤ t2, (29)

that is if and only if

h(t1) = h(t) = h(t2) = const
def
= ch 6= 0 for t1 ≤ t ≤ t2. (30)

Using (16) and the property |φ(t)〉 = U(t) |φ〉 one concludes that the
equality h(t1) = h(t) = ch can take place if

〈φ|HQ U(t1)|φ〉
a0(t1)

=
〈φ|HQ U(t)|φ〉

a0(t)
. (31)

we can replace the operator U(t) by the product U(t1)U(t − t1) ≡ U(t).
Taking into account the group properties of the one–parameter family of
unitary operators U(t) we can use in (31) U(t1)U(t − t1) ≡ U(t) instead
of U(t). Next keeping in mind that a0(t) 6= 0, a0(t1) 6= 0 and taking into

account that λ(t, t1)
def
= a0(t)

a0(t1)
is a complex function one can replace the

relation (31) by the following one
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〈φ|HQ U(t1)
[

λ(t, t1)|φ〉 − U(t − t1)|φ〉
]

= 0. (32)

This condition can be satisfied in two cases: The first one is

U(t − t1)|φ〉 − λ(t, t1)|φ〉 = 0, (33)

and the second one occurs when

[λ(t, t1)|φ〉 − U(t − t1)|φ〉] 6= 0

and

(〈φ|H)+ = H |φ〉 ⊥ Q U(t1) [λ(t, t1)|φ〉 − U(t − t1)|φ〉.
The first case means that h(t1) = h(t) = ch = const which by (30)

means that ∂ζ(t)
∂t

= 0 if and only if the vector |φ〉 representing an unstable
state of the system is an eigenvector for the unitary evolution operator
U(t). As we noted earlier the evolution operator U(t) and the total
Hamiltonian H of the system have common eigenvectors. This means

that h(t1) = h(t) = ch = const and thus ∂ζ(t)
∂t

= 0 for t ∈ (t1, t2) if and
only if the unstable state |φ〉 of the system is an eigenvector for H , which
is in contradiction with the property that the vector |φ〉 representing the
unstable state cannot be the eigenvector for the total Hamiltonian H .
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The second case: From the definition of the projectors P and Q it follows
that this case can be realized only if the vector H |φ〉 is proportional to
the vector |φ〉: H |φ〉 = αφ|φ〉, that is similarly to the first case ∂ζ(t)

∂t
= 0

if and only if the vector |φ〉 representing the unstable state of the system
considered is an eigenvector for the total Hamiltonian H , which is again
in clear contradiction with the condition that the vector |φ〉 representing
the unstable state cannot be the eigenvector for the total Hamiltonian H .

Taking into account implications of the above to possible realizations of
the relation (32) we conclude the supposition that such time interval
[t1, t2] can exist that h(t1) = h(t) = ch = const for t ∈ (t1, t2) and thus
ζ(t) = const = ζ(t1) = ζ(t2) for t ∈ (t1, t2) is false. So taking into
account the definition of ζ(t) the following conclusion follows: Within
the approach considered in this paper for any time interval [t1, t2] the
decay law can not be described by the exponential function of time. This
conclusion is the general one. It does not depend on models of quantum
unstable states and confirms the similar conclusion drawn earlier for the
Breit–Wigner model.

Krzysztof URBANOWSKI The true quantum face of the ”exponential” decay: Unstable systems in rest and



The general case

The another important conclusion is that at any time interval [t1, t2] the
effective Hamiltonian h(t) can not be constant. This means that at any
time interval [t1, t2] the instantaneous mass µφ(t) = ℜ [h(t)] and decay
rate γφ(t) = −2ℑ [h(t)] can not be constant in time:

µφ(t) 6= const., γφ(t) 6= const. (34)

In other words, as it follows from the above analysis the case
µφ(t) = const and γφ(t) = const can be realized only if the state |φ〉 is
an eigenvector for the total Hamiltonian H , that is if an only if there is
no any decay od the state |φ〉. Results of numerical calculations
performed for ω(µ) = ωBW (µ) and presented in Fig (5) confirm the
conclusion (34). In these Figures the function

κ(t) =
µφ(t)− µ0

m0 − µ0
, (35)

is presented and calculations were performed for
sR = mR

Γ0
= m0−µ0

Γ0
= 1000. This function illustrates a typical form of

time-varying µφ(t).

Krzysztof URBANOWSKI The true quantum face of the ”exponential” decay: Unstable systems in rest and



The general case





0.90 0.92 0.94 0.96 0.98 1.00

-3.× 10
-7

-2.× 10
-7

-1.× 10
-7

0

1.×10
-7

2.×10
-7

3.×10
-7





9.90 9.92 9.94 9.96 9.98 10.00

-2.× 10
-6

-1.× 10
-6

0

1.×10
-6

2.×10
-6

Figure: (5) The instantaneous mass mφ(t) as a function of time obtained for
ωBW (µ). Axes: y = κ(t)− 1, where κ(t) is defined by (35); x = t/τφ: Time is
measured in lifetimes. The horizontal dashed line represents the value of
µφ(t) = m0
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Summing up the oscillating decay curves of one component unstable
system can not be considered as something extraordinary or as anomaly:
It seems to be a universal feature of the decay process. The oscillatory
modulation of decay curves takes place even in the quantum unstable
system modeled by the Breit–Wigner distribution of the energy density.
In general, the oscillatory modulation of the survival probability and thus
the decay curves with model depending amplitude and oscillations period
takes place even in the case of one component unstable systems. From
results of the model calculations presented in Figs (3) and (4) it follows
that at the initial stage of the ”exponential” (or ”canonical”) decay
regime the amplitude of these oscillations may be much less than the
accuracy of detectors. Then with increasing time the amplitude of
oscillations grows (see Fig. (4)), which increases the chances of observing
them. This is a true quantum picture of the decay process at the
so–called ”exponential” regime of times.
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Moving unstable systems with constant momentum

In the case of moving quantum unstable systems we need the probability
amplitude ap(t) = 〈φp |φp(t)〉, which defines the survival probability

Pp(t) = |ap(t)|2.

There is
|φp(t)〉 def

= exp [−itH ] |φp〉
in ~ = c = 1 units. So we need the vector |φp〉 and eigenvalues E ′(µ, p)
solving Eq. (5). Vectors |φ〉, |φp〉 are elements of the same state space H
connected with the coordinate rest system of the observer O: We are
looking for the decay law of the moving particle measured by the observer
O. If to assume for simplicity that P = (P1, 0, 0) and that
~v = (v1, 0, 0) ≡ (v , 0, 0) then there is ~p = (p, 0, 0) for the eigenvalues ~p
of the momentum operator P. Let Λp,µ be the Lorentz transformation
from the reference frame O, where the momentum of the unstable
particle considered is zero, ~p = 0, into the frame O′ where the
momentum of this particle is ~p ≡ (p, 0, 0) 6= 0 and p ≥ 0, or,

equivalently, where its velocity equals ~v = ~vp,µ ≡ ~p
µγµ

, (where µ is the

rest mass and γµ ≡
√

p2 + (µ)2/µ).
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In this case the corresponding 4–vectors are:

℘ = (E/c , 0, 0, 0) ≡ (µ, 0, 0, 0) ∈ O
within the considered system of units, and

℘′ = (E ′/c , p, 0, 0) ≡ (E ′, p, 0, 0) = Λp,µ ℘ ∈ O′.

There is
℘′ · ℘′ ≡ (Λp,µ ℘) · (Λp,µ ℘) = ℘ · ℘

in Minkowski space, which is an effect of the Lorentz invariance. (Here
the dot ”·” denotes the scalar product in Minkowski space). Hence, in
our case:

℘′ · ℘′ ≡ (E ′)2 − p2 = µ2

because
℘ · ℘ ≡ µ2

and thus
(E ′)2 ≡ (E ′(µ, p))2 = p2 + µ2.

Another way to find E ′(µ, p) is to use the unitary representation,
U(Λp,µ), of the transformation Λp,µ, which acts in the Hilbert space H of
states |φ〉 ≡ |φ; 0〉, |φp〉 ∈ H.
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One can show that the vector U(Λp,µ)|µ; 0〉 is the common eigenvector
for operators H and P, that is that there is

|µ; p〉 ≡ U(Λp,µ)|µ; 0〉
(see, eg. [37]). Indeed, taking into account that operators H and P form
a 4–vector Pν ,

Pν = (P0,P) ≡ (P0,P1, 0, 0), and P0 ≡ H ,

we have
U−1(Λp,µ)PνU(Λp,µ) = Λp,µ; νλ Pλ,

where ν, λ = 0, 1, 2, 3 (see, e.g., [37], Chap. 4). From this general
transformation rule it follows that

U−1(Λp,µ)P0U(Λp,µ) = γµ (P0 + vµ P1)

≡ γµ(H + vµ P1), (36)

and

U−1(Λp,µ)P1U(Λp,µ) = γµ (vµP0 + P1)

≡ γµ(vµH + P1), (37)
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Based on the relation (36), one can show that that vectors U(Λp,µ)|µ; 0〉
are eigenvectors for the Hamiltonian H . There is

H U(Λp,µ)|µ; 0〉 = U(Λp,µ)U
−1(Λp,µ)H U(Λp,µ)|µ; 0〉

= γµ U(Λp,µ) (H + vµ P1) |µ; 0〉. (38)

The Lorentz factor γµ corresponds to the rest mass µ being the
eigenvalue for the vector |µ; 0〉. There are γµ 6= γµ′ and vµ 6= vµ′ for
µ 6= µ′. From (4), (6) it follows that P1 |µ; 0〉 = 0 for p = 0, which
means that using (7) the relation (38) can be rewritten as follows

H U(Λp,µ)|µ; 0〉 = µγµ U(Λp,µ)|µ; 0〉. (39)

Taking into account the form of the γµ forced by the condition p = const
one concludes that in fact the eigenvalue found, µγµ, equals

µγµ ≡
√

p2 + µ2.

This is exactly the same result as that at the conclusion following from
the Lorentz invariance mentioned earlier:

E ′(µ, p) =
√

p2 + µ2,

which shows that the above considerations are self–consistent.
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Similarly one can show that vectors U(Λp,µ)|µ; 0〉 are the eigenvectors of
the momentum operator P for the eigenvalue µγµ vµ ≡ p, that is that

U(Λp,µ)|µ; 0〉 ≡ |µ; p〉.

Using (37) one finds

P1 U(Λp,µ)|µ; 0〉 = U(Λp,µ)U
−1(Λp,µ)P1 U(Λp,µ)|µ; 0〉

= γµ U(Λp,µ) (vµ H + P1) |µ; 0〉. (40)

Again taking into account properties

P1 |µ; 0〉 = 0 and H |µ; 0〉 = µ|µ; 0〉

we conclude that

P1 U(Λp,µ)|µ; 0〉 = µγµvµ U(Λp,µ)|µ; 0〉
≡ p U(Λp,µ)|µ; 0〉, (41)

that is that U(Λp,µ)|µ; 0〉 ≡ |µ; p〉 which was to show.
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Thus finally we come to desired results:

H |µ; p〉 =
√

p2 + µ2 |µ; p〉 (42)

which replaces Eq. (5).

The moving quantum unstable particle φ with constant momentum, ~p,
can be modeled analogously as the quantum unstable system in the rest
frame (when ~p = 0) as the following wave–packet |φp〉,

|φp〉 =
∫ ∞

µ0

c(µ) |µ; p〉 dm, (43)

where expansion coefficients c(µ) are functions of the mass parameter µ,
that is of the rest mass µ, which is Lorentz invariant and therefore the
scalar functions c(µ) of µ are also Lorentz invariant and are the same as
in the rest reference frame O0.
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Now using (42) and the equation (43) we obtain the final, required
relation for the amplitude ap(t) (see [16, 17, 38]),

ap(t) =

∫ ∞

µ0

ω(µ) e− iµγµt dµ (44)

≡
∫ ∞

µ0

ω(µ) e− i
√

p2 + µ2 t dµ. (45)

This is the place when it should be explained why the Lorentz factor γµ
is used in (44) (and earlier in relations (36) — (41) instead of γµ = γ. In
the rest reference frame the unstable quantum system is modeled as the
wave packet given by the relation (9), that is as the following

wave–packet |φ0〉 ≡ |φ~p=0〉 def
= |φ〉,

|φ0〉 ≡ |φ〉 =
∫ ∞

µ0

c(µ) |µ; 0〉 dµ, (46)

Let us choose some eigenvalues of the spectrum σc(H) of H :
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µ1 < µ2 < . . . < µk < . . . < µn ∈ σc(H) = [µ0,∞),

These eigenvalues are connected with corresponding eigenvectors |µk ; 0〉
of H as follows:

O0 Op

µ1 ↔ |µ1; 0〉
U(Λp;µ1

)7−→ |µ1; p〉 ↔ p = µ1γµ1vµ1

µ2 ↔ |µ2; 0〉
U(Λp;µ2

)7−→ |µ2; p〉 ↔ p = µ2γµ2vµ2

. . . . . . . . . . . . . . . . . . . . .

µk ↔ |µk ; 0〉
U(Λp;µk

)7−→ |µk ; p〉 ↔ p = µkγµk
vµk

. . . . . . . . . . . . . . . . . . . . .

µn ↔ |µn; 0〉
U(Λp;µn )7−→ |µn; p〉 ↔ p = µnγµn

vµn

(47)

As it is seen from the above analysis each vector |µ; 0〉 numbered by
µ ∈ σc(H) can be transformed correctly in the vector |µ; p〉 connected
with the reference frame Op only if one takes into account that every
point µ from the spectrum of H , considered as the rest mass, has the
”own” Lorentz factor

γ =

√

µ2 + p2

µ
≡ γµ.
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(The reference frame Op was defined by condition ~p = const 6= 0, and
O0 = Op=0). In other words it is impossible to realize the above
transformations of vectors |µ; 0〉 assigned to a reference frame O0 to the
reference frame Op if ~v = const.

The above derivation of the expression for ap(t) is similar to that of [19].
It is based on [37] and it is reproduced here for the convenience of
listeners. This is a shortened and slightly changed, simplified version of
the considerations presented in [16] and mainly in [17] and more
explanations and more details can be found therein and in [39, 40], where
this formula was derived using the quantum field theory theory approach.

Note that the case ~v = const leads to the wrong result. Simply, if
~v = const then γ = const and also p = µγv = const provided that
µ = const but from (39) one finds that in such a case

H U(Λp,µ)|µ; 0〉 = µγ U(Λp,µ)|µ; 0〉 ≡ µγ|µ; p〉, (48)

which leads to the following expression for the amplitude ap(t):

Krzysztof URBANOWSKI The true quantum face of the ”exponential” decay: Unstable systems in rest and



Moving unstable systems with constant momentum

ap(t) =

∫ ∞

µ0

ω(µ) e− iµγ t dµ ≡ a0(γt). (49)

This gives the result

Pp(t) = |ap(t)|2 ≡ |a0(γt)|2 = P0(γt),

which was never met in experiments.

Inserting ω(µ) ≡ ωBW (µ) into (11) and into (45) one can find decay
curves (survival probabilities) P0(t) and Pp(t). Results of numerical
calculations are presented in Figs (2), (3) where calculations were
performed for µ0 = 0, E0/Γ0 ≡ m0/Γ0 = 1000 and
cp/Γ0 ≡ p/Γ0 = 1000. Values of these parameters correspond to
γ =

√
2, which is very close to γ from the experiment performed by the

GSI team [14, 15] and this is why such values of them were chosen in our
considerations. According to the literature for laboratory systems a
typical value of the ratio m0/Γ0 is m0/Γ0 ≥ O(103 − 106) (see eg. [41])
therefore the choice m0/Γ0 = 1000 seems to be reasonable minimum.
Results of numerical calculations are presented in Fig (6).
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Figure: (6) Decay curves obtained for ωBW (m) given by Eq. (20). Axes:
x = t/τ0 — time t is measured in lifetimes τ0, y — survival probabilities (panel
A: the logarithmic scales, (a) the decay curve Pp(t), (b) the decay curve
P0(t/γ), (c) the decay curve P0(t); panel B: (a) – Pp(t), (b) – P0(t/γ), (c) –
P0(t) ).
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Similarly to the case of quantum unstable systems in rest one can
calculate the ratio Pp(t)/Pc(t/γ) in the case of moving particles.
Results of numerical calculations of this ratio are presented in Figures (7)
and (8), and calculations were performed for ω(µ) = ωBW (µ) and for
µ0 = 0, m0/Γ0 = 1000, cp/Γ0 ≡ p/Γ0 = 1000 and γ =

√
2.
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Figure: (7) Axes: x = t/τ0 — time t is measured in lifetimes τ0, y — Ratio of
probabilities — Solid line: Pp(t)/Pc(t/γ); Dashed line P0(t/γ)/Pc(t/γ).
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Figure: (8) Axes:x = t/τ0 — time t is measured in lifetimes τ0, y — Ratio of
probabilities: Pp(t)/Pc(t/γ).
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Summary

The mass of the system in the unstable state |φ〉 is not defined: It
can not take the exact value. Unstable system can be characterized
by the mass distribution ω(µ), the average mass
< m >=

∫∞

µ0
µω(µ)dµ and by instantaneous mass (energy) µφ(t)

but not by the mass.

There is no any time interval in which the survival probability
(decay) law could be a decreasing function of time of the purely
exponential form: Even in the case of the Breit–Wigner model in
so–called ”exponential regime” the decay curves are oscillatory
modulated with smaller or large amplitude of oscillations depending
on the parameters of the model.

At any time interval the instantaneous mass µφ(t) and
instantaneous decay rate γφ(t) can not be constant in time.
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Summary

In the case of moving relativistic quantum unstable system moving
with constant momentum ~p, when unstable systems are modeled by
the Brei–Wigner mass distribution ω(µ), only at times of the order
of lifetime τ0 it can be Pp(t) ≃ P0(t/γ) to a better or worse
approximation. At times longer than a few lifetimes the decay
process of moving particles observed by an observer in his rest
system is much slower that it follows from the classical physics

relation Pp(t)
?
= exp [− t

γ
Γ0]:

Pp(t) > P0(t/γ), for t ≫ τ0.

In the case of moving relativistic quantum unstable system moving
with constant momentum ~p decay curves are also oscillatory
modulated but the amplitude of these oscillations is higher than in
the case of unstable systems in rest.

There is a need to test the decay law of moving relativistic unstable
system for times much longer than the lifetime
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The end
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