Mass generation in Yang-Mills theories: Infrared finite gluon propagators

A.C.Aguilar, D.Binosi, C.T. Figueiredo, and JP: arXiv:1604.08456

Joannis Papavassiliou

Department of Theoretical Physics and IFIC University of Valencia-CSIC

<u>Sth International Conference</u> <u>on New Frontiers in Physics, ICNFP2016</u>

Large volume lattice simulations

Gluon propagator (in the Landau gauge) saturates in the deep infrared

Saturation explained through dynamical gluon mass generation

A.C.Aguilar. D.Binosi, and JP: Phys.Rev.D 78 (2008) 025010

Non-perturbative explanation in the continuum : Schwinger-Dyson equations

Dynamical equations for off-shell Green's functions Infinite system of coupled non-linear integral equations

Photon propagator

Gluon self-energy in linear covariant gauges

Switch from the linear covariant gauges to Background Field Method

BFM reminder: Basic concepts

The BFM is a special quantization scheme: Split the gauge field

$$A^a_\mu \to \widetilde{A}^a_\mu + A^a_\mu$$

 $\widetilde{A}^a_\mu \rightarrow$ background field; $A^a_\mu \rightarrow$ quantum (fluctuating) field;

In the generating functional integrate only over A^a_μ The gauge fixing condition G(A) is chosen to be $\Rightarrow G(A) = D^\mu A^a_\mu$ where $D_\mu = \partial_\mu - i \widetilde{A}^a_\mu t^a$ instead of the "standard" $\Rightarrow G(A) = \partial^\mu A^a_\mu$

 \odot The gauge-fixed $\mathcal L$ is invariant under the transformations:

$$\widetilde{A}^a_\mu \to \widetilde{A}^a_\mu + D_\mu \theta^a \qquad \qquad A^a_\mu \to A^a_\mu - f^{abc} A^a_\mu \theta$$

 \widetilde{A}^{a}_{μ} carries the local gauge transformation $\partial^{\mu}\theta^{a}$ A^{a}_{μ} transforms as matter field in the adjoint.

B. S. DeWitt, Phys. Rev. 162 (1967) 195—1239
G. 't Hooft, In *Karpacz 1975, Proceedings, Acta Universitatis Wratislaviensis No.368, 1976, 345-369
L. F. Abbott, Nucl. Phys. B185 (1981) 189

Abelían-líke Slavnov-Taylor ídentítíes

 $F(q^2)$: Ghost dressing function $D(q^2) = F(q^2)/q^2$: Ghost propagator $H_{\mu
u}(q,r,p)$: Ghost-gluon kernel

$q^{\alpha}\Gamma_{\alpha\mu\nu}(q,r,p) = iF(q) \left[\Delta_{\sigma\nu}^{-1}(r)H^{\sigma}_{\mu}(q,r,p) - \Delta_{\sigma\mu}^{-1}(p)H^{\sigma}_{\nu}(q,r,p) \right]$

INSTEAD

Abelian-like ("ghost-free")

Background and quantum propagators are related !

$$\widehat{\Delta}(q) = [\mathbf{1} + \mathbf{G}) \otimes \mathbf{a}$$

$$\widehat{\Delta}(q) = [\mathbf{1} + \mathbf{G}(\mathbf{q})] \Delta(q)$$

$$\widehat{\Delta}(q) = [\mathbf{1} + \mathbf{G})^2 \otimes \mathbf{a}$$

$$\widehat{\Delta}(q) = [\mathbf{1} + \mathbf{G}(\mathbf{q})]^2 \Delta(q)$$

Known function in the Landau gauge

P. A. Grassi, T. Hurth and M. Steinhauser, Annals Phys. 288, 197 (2001)
D. Binosi and J. P., Phys. Rev. D66, 025024 (2002)

SDEs in the BFM framework

$$\Delta^{-1}(q^2)P_{\mu\nu}(q) = \frac{q^2 P_{\mu\nu}(q) + i \sum_{i=1}^6 (a_i)_{\mu\nu}}{1 + G(q^2)},$$

Transversality is enforced separately for gluon and ghost loops, and order by order in the "dressed-loop" expansion!

A.C. Aguilar and J.P., JHEP 0612, 012 (2006)
D. Binosi and J. P., Phys.Rev. D 77, 061702 (2008); JHEP 0811:063,2008.

From Takahashí to Ward ídentítíes

$$q^{\mu}\widetilde{\Gamma}_{\mu\alpha\beta}(q,r,p) = i\Delta_{\alpha\beta}^{-1}(r) - i\Delta_{\alpha\beta}^{-1}(p)$$

Taylor expansion around q = 0assuming no poles $1/q^2$!

Seagull identity

In dimensional regularization, any function that satisfies the criterion of Wilson

$$\int_{k} f(k^{2}) = \frac{1}{(4\pi)^{\frac{d}{2}} \Gamma(\frac{d}{2})} \int_{0}^{\infty} dy y^{\frac{d}{2}-1} f(y) = \text{finite}, \quad \text{for } 0 < d < d^{*}$$
Seagull identity
$$\int_{k} k^{2} \frac{\partial f(k^{2})}{\partial k^{2}} + \frac{d}{2} \int_{k} f(k^{2}) = 0$$
One-loop example:
$$\Pi_{\mu\nu}(q) = \int_{k} \sqrt{k^{2} + q^{2}} = -(4\pi)^{\frac{d}{2}} \left(\frac{d}{2}\right) \Gamma\left(1 - \frac{d}{2}\right) (m^{2})^{\frac{d}{2}-1}$$

$$\int_{k} \frac{1}{k^{2} + m^{2}} = (4\pi)^{\frac{d}{2}} \Gamma\left(1 - \frac{d}{2}\right) (m^{2})^{\frac{d}{2}-1}$$

$$\int_{k} \frac{k^{2}}{(k^{2} + m^{2})^{2}} + \frac{d}{2} \int_{k} \frac{1}{k^{2} + m^{2}} = 0$$
Seagull identity
$$f(k^{2}) = \frac{1}{k^{2} + m^{2}}$$

Gluon propagator at the origin

Exact result from BFM Schwinger-Dyson equation !

Vertices with massless poles $\widetilde{\Gamma}_{\mu\alpha\beta}(q,r,p) = \widetilde{\Gamma}^{\mathbf{np}}_{\mu\alpha\beta}(q,r,p) + \widetilde{\Gamma}^{\mathbf{p}}_{\mu\alpha\beta}(q,r,p)$

$$\widetilde{\Gamma}^{\mathbf{p}}_{\mu\alpha\beta}(q,r,p) = \frac{q_{\mu}}{q^2} \widetilde{C}_{\alpha\beta}(q,r,p)$$

Explicit implementation of the famous Schwinger mechanism in Yang-Mills theories

J.S. Schwinger

Phys. Rev.125, 397 (1962); Phys.Rev.128, 2425 (1962). **R. Jackiw and K. Johnson**, Phys. Rev. D8, 2386 (1973)

E. Eichten and F. Feinberg, Phys. Rev. D10, 3254 (1974)

Evading the seagull identity

Triggers seagull identity exactly as before

Vanishes identically

 $\Delta^{-1}(0) \sim \int_{\mathcal{L}} k^2 \Delta^2(k^2) \widetilde{C}_1'(k^2)$

Dynamical formation of massless poles

Dynamical equation for massless pole formation

Falsifiable mechanism: can be tested on lattice

$$\widetilde{\Gamma}^{\mu\alpha\beta}(q,r,p) = \sum_{i=1}^{14} \widetilde{A}_i(q^2,r^2,q\cdot r) \, b_i^{\mu\alpha\beta}$$

 $\begin{array}{l} \mbox{poles} \quad \left[\begin{array}{c} b_1^{\mu\alpha\beta} = q^{\mu}g^{\alpha\beta}; & b_2^{\mu\alpha\beta} = q^{\mu}q^{\alpha}q^{\beta}; & b_3^{\mu\alpha\beta} = q^{\mu}q^{\alpha}r^{\beta}; & b_4^{\mu\alpha\beta} = q^{\mu}r^{\alpha}q^{\beta}; & b_5^{\mu\alpha\beta} = q^{\mu}r^{\alpha}r^{\beta}, \\ \\ b_6^{\mu\alpha\beta} = r^{\mu}g^{\alpha\beta}; & b_7^{\mu\alpha\beta} = r^{\mu}q^{\alpha}q^{\beta}; & b_8^{\mu\alpha\beta} = r^{\mu}q^{\alpha}r^{\beta}; & b_9^{\mu\alpha\beta} = r^{\mu}r^{\alpha}q^{\beta}; & b_{10}^{\mu\alpha\beta} = r^{\mu}r^{\alpha}r^{\beta}, \\ \\ b_{11}^{\mu\alpha\beta} = q^{\alpha}g^{\beta\mu}; & b_{12}^{\mu\alpha\beta} = q^{\beta}g^{\alpha\mu}; & b_{13}^{\mu\alpha\beta} = r^{\alpha}g^{\beta\mu}; & b_{14}^{\mu\alpha\beta} = r^{\beta}g^{\alpha\mu}. \end{array}$

