### Performance of the ATLAS Detector in Run 2

#### Nicoletta Garelli SLAC on behalf of the ATLAS Collaboration

5th International Conference on New Frontiers in Physics

6-14 July 2016, Kolymbari, Greece



https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Collisions

## Outline

- ATLAS upgrades during the Long Shutdown 1
- Improvements for 2016 and current status
- Detector performance in 2015
- ATLAS talks @ICNFP2016 to complete the picture:
  - Trigger performance by *Antonia Strubig* yesterday
  - Physics performance (Evgeny Soldatov, Fairouz Malek, Xiaohu Sun, Riccardo Maria Bianchi, James Beacham, Rachid Mazini, Bora Atlay, Ewa Stanecka, Maria Jose Costa)
  - Muon reconstruction (*Pierre-Francois Giraud*) and b-tagging (*Ian Allan Connelly*) performance
  - Upgrade prospects by Stefania Antonia Stucci on Thursday and Masaya Ishino for the trigger on Wednesday

# **Discovery of H(251)**

In 2012, with ~10 fb<sup>-1</sup> of data at 7-8 TeV, a new particle observed with mass ~125 GeV in the H $\rightarrow\gamma\gamma$  and H $\rightarrow$ 4l decay channels



9/7/2016

## Run-2 : a New Era for HEP

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Collisions



Run: 280862 Event: 53564866 2015-10-02 16:24:44 CEST

Candidate Higgs boson event from p-p collisions reconstructed in the  $2e2\mu$  final state; recorded by ATLAS with LHC stable beams at a collision energy of 13 TeV.

## **Run-2 LHC Conditions**

#### Long Shutdown 1 (LS1) = 2 years for upgrading the machine

| Parameter                        | Run 1                                                 | Overall Run 2<br>(expected)                               | Design                                            |
|----------------------------------|-------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|
| Center of Mass Energy            | 7 (8) TeV                                             | 13 (14) TeV                                               | 14 Tev                                            |
| Bunch spacing                    | 50 ns                                                 | 25 ns                                                     | 25 ns                                             |
| Integrated Luminosity            | ~ 30 fb <sup>-1</sup>                                 | ~100 – 150 fb <sup>-1</sup>                               | 500 fb <sup>-1</sup> (*)                          |
| Peak Instantaneous<br>Iuminosity | 7.5 10 <sup>33</sup> cm <sup>-2</sup> s <sup>-1</sup> | 1.3-1.5 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> |
| # bunches                        | 1400                                                  | 2550-2808                                                 | 2808                                              |
| Max pile-up                      | ~30                                                   | ~40                                                       | ~25 Congratulations!                              |

#### LHC is working extremely well!

(\*) extrapolation from integrated luminosity in Run 1, up to 2021 Numbers taken from LHC Performance Workshop (Chamonix 2014 and 2016)

9/7/2016

N.Garelli (SLAC)

### **The ATLAS Detector at a Glance**



# **Detector Upgrades during LS1**

- Remove readout limitations to sustain 100 kHz L1 rate (75 kHz in Run-1)
  - New Cathode Strip Chambers off-detector Readout system
- Additional 4<sup>th</sup> innermost pixel layer
- Pixel detector brought on surface and equipped with new service panel
- Gas leak repairs for Transition Radiation Tracker
- Replacement of on-detector power supplies for electromagnetic and hadronic calorimeters
- Installation of remaining and new muon chambers to close coverage holes (sector 13 elevator shafts + feet region)
- LUCID: luminosity monitor, newly installed
- Repair all accessible front-ends to improve efficiency
  - More than 96% operational fraction across all detectors

## Year-End-Technical-Stop 2015

- New readout system for 2<sup>nd</sup> layer of Pixel detector
- Repair a damaged bellow of the toroid endcap magnet
- **AFP**: new forward proton detectors installed 210 m from ATLAS, on one side

#### Data Taking restarted on April 25<sup>th</sup> 2016



### **Instantaneous Luminosity**



N.Garelli (SLAC)

# **Pile-up and Integrated Luminosity**

Luminosity-weighted distribution of mean number of interactions per crossing (pile-up)



10

### **Overall ATLAS Performance**

#### ATLAS pp 25ns run: August-November 2015

| Inner Tracker |      | Calorimeters |      | Muon Spectrometer |     |     | Magnets |     |          |        |
|---------------|------|--------------|------|-------------------|-----|-----|---------|-----|----------|--------|
| Pixel         | SCT  | TRT          | LAr  | Tile              | MDT | RPC | CSC     | TGC | Solenoid | Toroid |
| 93.5          | 99.4 | 98.3         | 99.4 | 100               | 100 | 100 | 100     | 100 | 100      | 97.8   |

#### All Good for physics: 87.1% (3.2 fb<sup>-1</sup>) 95.5% in 2012

Luminosity weighted relative detector uptime and good data quality (DQ) efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at  $\sqrt{s}=13$  TeV between August-November 2015, corresponding to an integrated luminosity of 3.7 fb<sup>-1</sup>. The lower DQ efficiency in the Pixel detector is due to the IBL being turned off for two runs, corresponding to 0.2 fb<sup>-1</sup>. Analyses that don't rely on the IBL can use those runs and thus use 3.4 fb<sup>-1</sup> with a corresponding DQ efficiency of 93.1%.

[Twiki-Results]

## **Heavy Ion Data Taking**

#### From 23 Nov to 10 Dec 2015

- -5.02 TeV pp reference data
- $-\sqrt{s_{NN}}$ =5.02 TeV PbPb data
- -VDM scans for both

#### ZDC detector refurbished and re-commissioned



Day in 2015

Run: 286665 Event: 419161 2015-11-25 11:12:50 CEST

EXPERIM

first stable beams heavy-ion collisions

9/7/2016

### **Inner Detector**

#### Pixel

- More robust against optical link failures
- New fourth layer (next slides)
- Some readout system issues preventing the 100 kHz L1 rate → solved

#### Silicon Microstrip Tracker (SCT)

- All performance metrics comparable to Run-1 except small drop (~0.5%) in hit efficiency with 25ns bunch spacing
  - In line with expectations, due to veto on signal on previous BC
  - Intrinsic hit efficiency can be determined using first bunch of the train

#### Transition Radiation Tracker (TRT)

- Sustains 100 kHz rate at 50% occupancy
- Allows simultaneous operations with Xe and also Ar gas mixtures
- Leaks continued to worsen during autumn 2015, as luminosity increased



## **Insertable b-Layer (IBL)**

- Insertable 4<sup>th</sup> pixel layer with planar and 3D sensors
  - At R=33 mm from the beam line, mounted on the new smaller beam-pipe
  - 12M channels added to the 80M and smaller pixels cells: 50x250  $\mu m^2\,vs$  50x400  $\mu m^2$ 
    - Improved resolution: 8  $\mu m$  in  $r\phi$  and 40 (vs 75  $\mu m$ ) in z



### **IBL: some start-up issues**

#### Mechanical distortion of IBL staves

- Cosmic ray commissioning: magnitude of distortion depends linearly on T with a gradient of ~10  $\mu m/K$
- Increase of FE current during October  $\rightarrow$  IBL off during 2 LHC fills
  - FE transistor leakage due to defect building up at the silicon oxide interface
  - Decision to run IBL at +15° C beginning of 2016 run, +5° C now (-10°C nominal)

#### • Effects regularly corrected online before reconstruction of data

- After alignment, no significant impact on tracking



## **IBL** Performance



10<sup>2</sup>

## **Beam Spot**

- Very stable beam spot for all 2015
- Tune beam once to bring collisions in nominal position
  - beam cogging on September 18<sup>th</sup> 2015
  - Longitudinal position used to be shifted by 3 cm, brought to 0
- Very stable x, y, z beam sizes



Aug 12 Aug 23 Sep 02 Sep 13 Sep 24 Oct 05 Oct 16 Oct 27 Nov 07



#### **BeamSpot Twiki**

Time (CET)

## **ID Tracking Performance**

Tracking efficiency: 90% (85%) for Loose (Tight Primary) selections for tracks above 5 GeV



9/7/2016

N.Garelli (SLAC)

18

# **B-Tagging Performance**

 IBL, together with several enhancements to the tracking and btagging algorithms, significantly improves the b-tagging algorithms in Run-2 with respect to Run-1

Light and c-jet rejection versus b-jet efficiency in Run-1 and Run-2. ATL-PHYS-PUB-2015-022 10<sup>5</sup> 10 ATLAS Simulation Preliminary c-jet rejection Light-flavour jet rejection ATLAS Simulation Preliminary 10<sup>4</sup> MV1 Bun-1 MV1c Run-1 MV2c00 Run-2 MV2c20 Run-2  $10^{3}$ 10 10<sup>2</sup>, 10 \s=8,13 TeV, tt \s=8,13 TeV , tt p<sup>jet</sup>>25 GeV, h<sup>jet</sup>|<2.5  $p_{-}^{jet}$  > 25 GeV,  $|\eta_{-}^{jet}|$  < 2.5 1 Run-2 / Run-1 2.5 Run-2 / Run-1 1.5 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 b-jet efficiency b-jet efficiency

### **Jet Reconstruction Performance**

#### Calorimeters worked extremely well in 2015

- Good for physics: 99.4% (Larg) and 100% (Tile)
- LAr using 4 instead of 5 sample readout to achieve 100 kHz

#### • In-situ jet energy-scale with 2015 dataset



[ref]

## e/γ Reconstruction Performance

#### Electron ID

- number of hits in IBL used for discriminating between electrons and converted photo + new discriminating variable in the electron identification algorithms due to change in TRT gas (modifications in detector response)
- Likelihood (LH) combining LAr shower shapes, tracking, track-cluster matching and TRT PID

#### Photon ID

Using cut-based selection







### **Tau Reconstruction Performance**

- Hadronically decaying taus identified using boosted decision tree offline and online
  - Performance measured using  $Z \rightarrow \tau \tau$  candidates
  - Good agreement between data and simulation



## **Muon System Performance**

- Muon spectrometer running smoothly
- Alignment ~50 μm for both barrel and endcap
- Performance studies done with three main working points (Tight, medium, loose)
  - Tight presented here
- Good agreement between data and MC
- Ref: <u>PERF-2015-010</u>





# **Computing and Software**

- Worldwide LHC Computing Grid (WLCG) backbone of ATLAS computing
  - -Smooth operations
  - -Dominated by MC production
- Tier0 reconstruction
  - –15k jobs slots
  - Used for Grid jobs if not utilized by Tier0
- New analysis model and formats
  - ~all analysis done via compact data format (DAOD), higher compression wrt Run 1
  - Helps in producing results quickly





## Conclusion

- ATLAS underwent several upgrades during the LS1
- The restart after the LS1 and the data taking through out 2015 has been very successful
- Despite the challenging conditions, the system stability and the data taking efficiency has quickly reached the Run-1 level
- Detailed performance studies demonstrate good understanding of the 2015 data
- 2016 data taking started on 25 April, excellent LHC performance
  - integrated luminosity already higher than in 2015
  - Instantaneous luminosity higher than in Run-1 and exceeded 10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup>
- 2016 will be an exciting year for HEP!

## **THANK YOU**



# Backup

### **Muon Spectrometer Alignment**

- Based on optical system
- Tracks needed for full alignment
  - Tracks in B=OFF used as re-calibration of the optical system
  - Tracks in B=ON to constrain the external alignment DoF



Sagitta alignment overall performance MUON-2016-002

| $[\mu m]$ | $\sigma_{ m ali}(\mu_0)$ | $\sigma_{ m ali}(\mu_{	heta})$ | $\sigma_{ m ali}(\mu_{\phi})$ | $\sigma_{\rm ali}({\rm total})$ |
|-----------|--------------------------|--------------------------------|-------------------------------|---------------------------------|
| BA large  | $24\pm2$                 | $12 \pm 1$                     | $16 \pm 2$                    | $31\pm2$                        |
| BA small  | $49\pm 6$                | $15\pm6$                       | $43\pm 6$                     | $67\pm 6$                       |
| EC large  | $29\pm4$                 | $22\pm4$                       | $15\pm4$                      | $40 \pm 4$                      |
| EC small  | $34\pm7$                 | $42\pm 6$                      | $34\pm7$                      | $64\pm 6$                       |
| CS large  | $21\pm5$                 | $24\pm4$                       | $25\pm4$                      | $41\pm4$                        |
| CS mall   | $31\pm 6$                | $26\pm6$                       | $11^{+6}_{-9}$                | $42\pm 6$                       |
| EE large  | $46\pm 6$                | $16\pm3$                       | $20 \pm 4$                    | $53\pm 6$                       |
| EE small  | $41\pm19$                | $0^{+24}_{-0}$                 | $41\pm26$                     | $58^{+24}_{-20}$                |
| BEE       | $49\pm5$                 | $44 \pm 5$                     | $38 \pm 5$                    | $76\pm 5$                       |

# **IBL Start-up Issues (1)**

- Mid-way during production discovered corrosion of wire-bond
  - Must avoid condensation at all cost!
- Increase of FE current during October
  - IBL turned off during 2 LHC fills
  - Effect understood: FE transistor leakage due to defect building up at the silicon oxide interface and cumulated by ionizing dose
    - Lab tests confirmed the effect relaxes after a few additional Mrad of irradiation
  - Decision taken to run IBL initially at 15°C during 2016
    - so far effect looks under control



