

Searches for new exotic phenomena at the LHC

Kate Pachal for the ATLAS and CMS collaborations ICNFP 2016

1

Introduction

The Standard Model has so far done remarkably well at withstanding experimental tests

- Higgs discovery of 2012 marked last piece of the SM
- No meaningful deviations from SM predictions observed by end of Run I

But many questions indicate there must still be new physics beyond the Standard Model!

· · · · · · · · · · · · · · · · · · ·			
Dark matter	What is it? Is it a particle?		
Hierarchy problem	Why is gravity so weak? Can extra dimensions explain it?		
Gauge unification	Is there a unified theory connecting fundamental forces?		
Higgs fine-tuning	How do we account for large, fine-tuned Higgs mass correction		
	Why 3 generations? Why 4 forces? Matter-antimatter asymmetry?		

Searching for BSM physics with ATLAS and CMS

- Two all-purpose detectors at the LHC allow examination of any high-energy final state
- Enormous overlap between models and signatures, with each final state corresponding to numerous theories and vice versa
- To ensure we don't miss anything, focus on signatures in broad classes of analyses and search for any signs of deviation from a SM prediction

- Select **signatures** motivated by one or more theories
- Use handful of **benchmark models** to define limits on mass or cross section of possible new particles
- Today: searches for (non-SUSY) physics **beyond the Standard Model** in 13 TeV data

Integrated luminosity delivered: 4.2/fb

- ATLAS Recorded: 3.9/fb (IBL on: 3.2/fb)
- CMS Recorded: 3.8/fb (toroid on: 2.7/fb)

Since cross-section increase over Run I corresponds to dramatic increase in parton luminosities at high mass, sensitivity to exotic signatures improves even with much less than the 20/fb of luminosity used in 2012

ADD $G_{KK} + g/q$	-	≥ 1 j	Yes	20.3	MD
ADD OBH $\rightarrow \ell \alpha$	2e, µ 1 o u	- 1 i		20.3	IVIS M.
$ADD QBH \rightarrow iq$	ι ε, μ	21	_	20.3	N/ .
	2 ((SS)	2]		20.3	M.
ADD BH high $\sum p_{T}$	$\geq \mu (00)$	- > 2 i		20.3	M.
ADD BH high multijet	\geq 1 C, μ	≥ 2 j > 2 i		20.3	M
$RS1 \ Grav \to \mathscr{U}$	2 0 11	< < j		20.3	Current mass
$BS1 G_{KK} \to \mathcal{W}$	$2 c, \mu$		_	20.3	G _{KK} mass
Bulk BS $G_{KK} \rightarrow 77 \rightarrow aall$	2 8 11	2i/1.1	_	20.3	G _{KK} mass
Bulk BS $G_{KK} \rightarrow WW \rightarrow aalv$	1 e u	2 j / 1 .l	Voc	20.3	W/ mass
Bulk BS $C_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$		2]7 1 0 7 h	-	19.5	Gree mass
Bulk BS $\sigma_{KK} \rightarrow t\bar{t}$	1 <i>eu</i> 3	> 1 h > 1.l/2i	Vac	20.3	EKK Mass
211ED / RDD	$2 e \mu (SS)$	>1b >1i	Voc	20.3	KK mase
2020/111	<i>L C</i> , <i>μ</i> (00)	_ + N, _ + J	163	20.0	
$SSM\ Z' \to \ell\ell$	2 e, µ		—	20.3	Z' mass
SSM $Z' \to \tau \tau$	2τ		_	19.5	Z' mass
$SSM \ W' \to \ell \nu$	1 e, µ		Yes	20.3	W' mass
$EGM\ W' \to WZ \to \ell \nu \ \ell' \ell'$	3 e,µ		Yes	20.3	W' mass
$EGM \ W' \to WZ \to qq\ell\ell$	2 e, µ	2 j / 1 J	_	20.3	W' mass
EGM $W' \rightarrow WZ \rightarrow qqqq$		2 J	_	20.3	W' mass
$HVT \ W' \longrightarrow WH \to \ell \nu bb$	1 e,µ	2 b	Yes	20.3	W' mass
		nin	nr)@r	
LRSM W_{R} I the second sec	JUO	l⊵lĢl			W hass
		2-i	_	17.3	٨
Clade of the c	hnd	f E) _{F 1}	$\mathbf{n}_{0.3}$	Λ
	ナロCan		JU	20.3	•\ •
EFT D5 operator (Dirac)	0 e,μ	≥ 1 j	Yes	20.3	M _*
EFT D9 operator (Dirac)	0 e, µ	1 J, ≤ I J	Yes	20.3	M _*
Scalar LQ 1 st gen	2 e	≥ 2 j		20.3	LQ mass
Scalar LQ 2 nd gen	2 μ	≥ 2 j	_	20.3	LQ mass
Scalar LQ 3 rd gen	1 e, µ	≥1 b, ≥3 j	Yes	20.3	LQ mass
		> 0 b > 2 ;		00.0	and the second se
$VLQ I I \rightarrow Ht + X$	1 e,μ	$\geq 2 b, \geq 3 j$	Yes	20.3	T mass
$VLQ \ I \ I \ \rightarrow Ht + X$ $VLQ \ YY \ \rightarrow Wb + X$	1 e,μ 1 e,μ	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$	Yes Yes	20.3 20.3	T mass Y mass
$VLQ TT \rightarrow Ht + X$ $VLQ YY \rightarrow Wb + X$ $VLQ BB \rightarrow Hb + X$ $VLQ DD = 7t + X$	1 e, μ 1 e, μ 1 e, μ	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$	Yes Yes Yes	20.3 20.3 20.3	T mass Y mass B mass
$VLQ TT \rightarrow Ht + X$ $VLQ YY \rightarrow Wb + X$ $VLQ BB \rightarrow Hb + X$ $VLQ BB \rightarrow Zb + X$	1 e, μ 1 e, μ 1 e, μ 2/≥3 e, μ	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 2/\geq 1 \text{ b}$	Yes Yes Yes	20.3 20.3 20.3 20.3	T mass Y mass B mass B mass
VLQ $TT \rightarrow Ht + X$ VLQ $YY \rightarrow Wb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Zb + X$ $T_{5/3} \rightarrow Wt$	1 e,μ 1 e,μ 1 e,μ 2/≥3 e,μ 1 e,μ	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 2/\geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 5 \text{ j}$	Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3	T mass Y mass B mass B mass T _{5/3} mass
VLQ $TT \rightarrow Ht + X$ VLQ $YY \rightarrow Wb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Zb + X$ $T_{5/3} \rightarrow Wt$ Excited quark $q^* \rightarrow q\gamma$	$1 e, \mu$ $1 e, \mu$ $1 e, \mu$ $2/\geq 3 e, \mu$ $1 e, \mu$ 1γ	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 2/\geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 5 \text{ j}$ 1 j	Yes Yes - Yes -	20.3 20.3 20.3 20.3 20.3 20.3	T mass Y mass B mass B mass T _{5/3} mass q* mass
VLQ $TT \rightarrow Ht + X$ VLQ $YY \rightarrow Wb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Zb + X$ $T_{5/3} \rightarrow Wt$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$	$1 e, \mu$ $1 e, \mu$ $1 e, \mu$ $2/\ge 3 e, \mu$ $1 e, \mu$ 1γ -	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 2/\geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 5 \text{ j}$ 1 j 2 j	Yes Yes – Yes –	20.3 20.3 20.3 20.3 20.3 20.3 20.3	T mass Y mass B mass B mass T _{5/3} mass q* mass q* mass
VLQ $TT \rightarrow Ht + X$ VLQ $YY \rightarrow Wb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Zb + X$ $T_{5/3} \rightarrow Wt$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$	1 e, μ 1 e, μ 1 e, μ 2/ \geq 3 e, μ 1 e, μ 1 γ - 1 or 2 e, μ	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 2/\geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 5 \text{ j}$ 1 j 2 j 1 b, 2 j or 1 j	Yes Yes - Yes - Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	T mass Y mass B mass B mass T _{5/3} mass q* mass p* mass
VLQ $TT \rightarrow Ht + X$ VLQ $YY \rightarrow Wb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Zb + X$ $T_{5/3} \rightarrow Wt$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$	1 e, μ 1 e, μ 1 e, μ 2/ \geq 3 e, μ 1 e, μ 1 γ - 1 or 2 e, μ 2 $e, \mu, 1 \gamma$	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 2/\geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 5 \text{ j}$ 1 j 2 j 1 b, 2 j or 1 j -	Yes Yes - Yes - Yes - Yes -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	T mass Y mass B mass B mass T _{5/3} mass q* mass g* mass b* mass {\ell* mass
VLQ $TT \rightarrow Ht + X$ VLQ $YY \rightarrow Wb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Zb + X$ $T_{5/3} \rightarrow Wt$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\nu^* \rightarrow \ell W, \nu Z$	1 <i>e</i> , μ 1 <i>e</i> , μ 1 <i>e</i> , μ 2/≥3 <i>e</i> , μ 1 <i>e</i> , μ 1 <i>r</i> , μ 1 <i>r</i> − 1 or 2 <i>e</i> , μ 2 <i>e</i> , μ, 1 <i>γ</i> 3 <i>e</i> , μ, <i>τ</i>	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 2/\geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 5 \text{ j}$ 1 j 2 j 1 b, 2 j or 1 j - -	Yes Yes Yes Yes Yes Yes -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 13.0 20.3	T mass Y mass B mass B mass T _{5/3} mass q* mass q* mass b* mass l* mass l* mass
VLQ $TT \rightarrow Ht + X$ VLQ $YY \rightarrow Wb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Zb + X$ $T_{5/3} \rightarrow Wt$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\nu^* \rightarrow \ell W, \nu Z$	1 e, μ 1 e, μ 1 e, μ 2/ \geq 3 e, μ 1 e, μ 1 γ - 1 or 2 e, μ 2 $e, \mu, 1 \gamma$ 3 e, μ, τ	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 2/\geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 5 \text{ j}$ 1 j 2 j 1 b, 2 j or 1 j -	Yes Yes - Yes - Yes - Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 13.0 20.3	T mass Y mass B mass B mass T _{5/3} mass q* mass q* mass b* mass ℓ* mass
VLQ $TT \rightarrow Ht + X$ VLQ $YY \rightarrow Wb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Zb + X$ $T_{5/3} \rightarrow Wt$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\nu^* \rightarrow \ell W, \nu Z$ LSTC $a_T \rightarrow W\gamma$	1 e, μ 1 e, μ 1 e, μ 2/≥3 e, μ 1 e, μ 1 γ - 1 or 2 e, μ 2 e, μ, 1 γ 3 e, μ, τ 1 e, μ, 1 γ	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 2/\geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 5 \text{ j}$ 1 \text{ b}, 2 \text{ j or 1 j} - - -	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 13.0 20.3 20.3	T mass Y mass B mass B mass T _{5/3} mass q* mass q* mass b* mass t* mass t* mass r mass
VLQ $TT \rightarrow Ht + X$ VLQ $YY \rightarrow Wb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Zb + X$ $T_{5/3} \rightarrow Wt$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\ell^* \rightarrow \ell W$, vZ LSTC $a_T \rightarrow W\gamma$ LRSM Majorana v	1 e, μ 1 e, μ 1 e, μ 2/ \geq 3 e, μ 1 e, μ 1 γ - 1 or 2 e, μ 2 $e, \mu, 1 \gamma$ 3 e, μ, τ 1 e, μ	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 2/\geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 5 \text{ j}$ 1 j 2 j 1 b, 2 j or 1 j - - 2 j	Yes Yes Yes Yes - Yes - Yes - Yes -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 13.0 20.3 20.3 20.3 20.3	T mass Y mass B mass B mass T _{5/3} mass q* mass q* mass b* mass t* mass t* mass a _T mass N ⁰ mass
VLQ $TT \rightarrow Ht + X$ VLQ $TT \rightarrow Ht + X$ VLQ $YY \rightarrow Wb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Zb + X$ $T_{5/3} \rightarrow Wt$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\ell^* \rightarrow \ell W$, νZ LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$	1 e, μ 1 e, μ 1 e, μ 2/ \geq 3 e, μ 1 e, μ 1 γ - 1 or 2 e, μ 2 $e, \mu, 1 \gamma$ 3 e, μ, τ 1 e, μ 2 e, μ 2 e, μ (SS)	$\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 1 \text{ b}, \geq 3 \text{ j}$ $\geq 2 \text{ b}, \geq 3 \text{ j}$ $\geq 2/\geq 1 \text{ b}$ $\geq 1 \text{ b}, \geq 5 \text{ j}$ 1 \text{ j} 1 \text{ b}, 2 \text{ j} \text{ or } 1 \text{ j} - 2 j - -	Yes Yes Yes Yes - Yes - Yes - Yes -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 13.0 20.3 20.3 20.3 20.3 20.3	T mass Y mass B mass B mass T _{5/3} mass q* mass q* mass t* mass t* mass r* mass n ⁰ mass H ^{±±} mass
VLQ $TT \rightarrow Ht + X$ VLQ $YY \rightarrow Wb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Zb + X$ $T_{5/3} \rightarrow Wt$ Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\nu^* \rightarrow \ell W, \nu Z$ LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$	1 e, μ 1 e, μ 1 e, μ 2/≥3 e, μ 1 e, μ 1 γ - 1 or 2 e, μ 2 e, μ, 1 γ 3 e, μ, τ 1 e, μ (SS) 3 e, μ, τ	$\geq 2 b, \geq 3j$ $\geq 1 b, \geq 3j$ $\geq 2 b, \geq 3j$ $\geq 2/\geq 1 b$ $\geq 1 b, \geq 5j$ 1 j 2 j 1 b, 2 j or 1 j - 2 j - -	Yes Yes Yes Yes - Yes - Yes - Yes -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 13.0 20.3 20.3 20.3 20.3 20.3	T mass Y mass B mass B mass T _{5/3} mass q* mass q* mass b* mass t* mass t* mass α _T mass N ⁰ mass H ^{±±} mass
VLQ $TT \rightarrow Ht + X$ VLQ $TT \rightarrow Ht + X$ VLQ $YY \rightarrow Wb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Zb + X$ $T_{5/3} \rightarrow Wt$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\nu^* \rightarrow \ell W, \nu Z$ LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod)	$1 e, \mu 1 e, \mu 1 e, \mu 2/≥3 e, \mu 1 e, \mu 1 r, \mu 1 or 2 e, \mu 2 e, \mu, 1 \gamma 3 e, \mu, \tau 1 e, \mu (SS) 3 e, \mu, \tau 1 e, \mu 1 e, \mu$	$ \geq 2 \text{ b}, \geq 3 \text{ j} \\ \geq 1 \text{ b}, \geq 3 \text{ j} \\ \geq 2 \text{ b}, \geq 3 \text{ j} \\ \geq 2/\geq 1 \text{ b} \\ \geq 1/\geq 1 \text{ b}, \geq 5 \text{ j} \\ 1 \text{ j} \\ 2 \text{ j} \\ 1 \text{ b}, 2 \text{ j or } 1 \text{ j} \\ - \\ 2 \text{ j} \\ - \\ 1 \text{ b} \\ 1 \text{ b} $	Yes Yes Yes - Yes - Yes - Yes - Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 13.0 20.3 20.3 20.3 20.3 20.3 20.3 20.3	T mass Y mass B mass B mass T _{5/3} mass q* mass q* mass b* mass t* mass t* mass N ⁰ mass H ^{±±} mass Spin-1 invis
VLQ $TT \rightarrow Ht + X$ VLQ $YY \rightarrow Wb + X$ VLQ $BB \rightarrow Hb + X$ VLQ $BB \rightarrow Zb + X$ $T_{5/3} \rightarrow Wt$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $p^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\ell^* \rightarrow \ell\gamma$ Excited lepton $\gamma^* \rightarrow \ell W, \gamma Z$ LSTC $a_T \rightarrow W\gamma$ LRSM Majorana γ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Monotop (non-res prod) Multi-charged particles	$1 e, \mu \\ 1 e, \mu \\ 1 e, \mu \\ 2/\geq 3 e, \mu \\ 1 e, \mu \\ 1 e, \mu \\ 1 or 2 e, \mu \\ 2 e, \mu, 1 \gamma \\ 3 e, \mu, \tau \\ 1 e, \mu \\ 2 e, \mu (SS) \\ 3 e, \mu, \tau \\ 1 e, \mu \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\geq 2 b, \geq 3j$ $\geq 1 b, \geq 3j$ $\geq 2 b, \geq 3j$ $\geq 2/\geq 1 b$ $\geq 1 b, \geq 5j$ 1 j 2 j 1 b, 2 j or 1 j - 2 j - 1 b - 1 b -	Yes Yes Yes - Yes - Yes - Yes - Yes - Yes -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 4.7 13.0 20.3 20.3 20.3 20.3 20.3 20.3 20.3 2	T mass Y mass B mass B mass T _{5/3} mass q* mass q* mass b* mass t* mass t* mass r* mass n ⁰ mass H ^{±±} mass H ^{±±} mass spin-1 invis multi-charg

DY production, BR($H_I^{\pm\pm} \rightarrow H_I$

 $a_{non-res} = 0.2$ **5** DY production, |q| = 5eDY production, $|g| = 1g_D$, s

Black hole searches

- Models assuming a higherdimensional universe allow strong gravity on the same scale as the other fundamental forces
- Consequence is production of microscopic black holes above fundamental gravity scale M_D

- Decays of semiclassical microscopic black holes are "democratic": equally likely to produce any particle, and give high multiplicity final states
- Decays of quantum black holes are dominated by 2-body final states, especially jets at the LHC
- Primary backgrounds: QCD multijet production. Secondary: V+jets, γ+jets, tt

Black holes in multi-particle final states

- Discriminating variable: $S_T = \Sigma p_T (\Sigma E_T)$ of **all objects**. Include jets, e, μ , (γ , MET in CMS) > 60/50 GeV
- Selection: $S_T > 2$ TeV. CMS accepts any event of mult. ≥ 2 ; ATLAS requires ≥ 1 lepton, mult. ≥ 3
- Background estimation
 - ATLAS: W/Z+jets dominant with ttbar, di-boson, single-top contribs. Estimate from MC.

2.2 fb⁻¹ (13 TeV)

Data with multiplicity ≥ 3 Bkg prediction from data

 $M_D = 6 \text{ TeV}, M_{OBH} = 6 \text{ TeV}, n = 6$

CMS Preliminary

Black holes in multi-particle final states

ATLAS CERN-PH-EP-2015-312

dt = 3.0 fb

 $H_{\rm T}$ [TeV]

 $n_{jet} \ge 3$

 ATLAS covers non-leptonic states with multiplicity \geq 3 by **fit** extrapolated in H_T Events / 0.1 ¹ **ATLAS** Evaluate in exclusive luminosity steps to ensure ٠ low contamination of CR & VR √s = 13 TeV 10^{2} 10 fit functions examined in data and MC. • Step 4 Data 2015 10 **⊨** $f_5(x) = p_1(1-x)^{p_1}(1+x)^{p_2}$ Baseline = highest performing • $f_1(x) = p_0(1-x)^{p_1}/x^{p_2}$ $f_{2}(x) = p_{1}(1-x)^{p_{1}}e^{p_{2}x^{2}}$ $f_3(x) = p_3(1-x)^{p_1} x^{p_2 x}$ Uncertainty = envelope of other acceptable $f_4(x) = p_a(1-x)^{p_1} x^{p_2 \ln (x)}$ $f_{6}(x) = p_{a}(1-x)^{p_{1}}(1+x)$ function predictions $f_7(x) = p_0(1-x)^{p_1 - p_2 \ln (x)}$ $f_8(x) = p_0(1-x)^{p_1 - p_2 \ln(x)} / x^2$ Limits 10⁻¹ $f_{q}(x) = p_{a}(1-x^{1/3})^{p_{1}}/x^{p_{2}}$ ••••• * $f_{10}(x) = p_n(1-x^{1/3})^{p_1} x^{p_2 \ln (x)}$ Rejected in validation region Semi-classical BH, n=6 Ж data - fit)/ σ_{data} CMS (non-rotating), @ MD = 4 TeV: 8.7 TeV using all final states ATLAS (rotating), @ MD = 5 TeV: 7.4 TeV for lepton+jets 9 TeV for multijets 3 6 8

Black holes decaying to different-flavour leptons

- Quantum black holes favour two-body production and often support flavour violation.
- Selection: exactly 1 e and 1 mu (**new** ATLAS analysis also covers et, µt!)
- Low SM background to mixed lepton flavours.

Events / 06/ 10³ 10² 10¹

 10^{0}

 10^{-1}

10⁻²

10⁻³

 10^{-4}

10⁻⁵

Data/WC 0.9 0.6

0.6

10²

ttbar dominant dilepton background; single-top, Drell-Yann, diboson also contribute. Take from MC. In ATLAS, use $2.7 \text{ fb}^{-1}(13 \text{ TeV})$ 10⁵ CMS

fit to top and diboson backgrounds to extend shape where stats are low

 W+jet and multijet processes with a fake electron: use data-driven estimation

ADD QBH, n=6: 4.5 TeV for both ATLAS, CMS Comparison: dijet analysis sets limits at 8.1 TeV

CMS PAS EXO-16-001

ATLAS EXOT-2015-20

Vector-like quarks, leptoquarks, simple SM extensions

- Compositeness models remain among the few naturally motivated models not yet excluded. One prediction is vectorlike quarks
 - Couple to 3rd generation quarks
 - Permit flavour-changing neutral current decays
- Second potential consequence (also consequence of GUTs) is leptoquarks
 - Essentially fill in the holes of the SU(5) matrix. Mediate interactions between leptons & quarks of same generation.
 - · Pair-produced at LHC; decay gives Iq
- Another GUT consequence is additional standard-model like heavy vector bosons, W' and Z'
 - Simplest are "sequential standard model" SSM: same couplings as SM W and Z with larger masses

VLQ to lepton+jets

- Model: pair production of up-type • vector quarks T to Wb, Zt, and Ht
 - **One lepton**, high MET, and **plenty** of jet activity including several btagged jets from H->bb
 - Also sensitive to SM tttt production
- Selection: isolated leptons, all objects' $p_T > 30$ GeV. • Sort by N(jets), N(b-tagged jets), and number of large-R jets passing n-subjet requirements (and in some cases jet mass cuts). Define 11 search channels with \geq 6 j and 9 validation channels with exactly 5 j

4500

3500 3000

2500E

2000

1500

1000

500

0.5

Data / Bkg 1.5

- Backgrounds: mainly tt + bosons or jets inc. heavy • flavour, also W/Z+jets, single top, diboson
- Uncertainties: tt cross section, generator choice, ISR/ • FSR, normalisation uncertainties

VLQ to lepton+jets, cont'd

- **CMS analysis** of VLQ pair production: T to Wb, Zt, and Ht
 - One lepton, high MET, \geq 3 high-pT jets
 - Divide into regions by lepton flavour, N(b-tagged jets), N(W-tagged large-R jets). 16 signal regions.
 - Same background contributions as ATLAS
- Uncertainties: reweighting of MC distributions to match data add additional uncertainty to background
- Analyses give results sorted by BR assumption. Nominal assumption used in CMS limit plot: B(T->bW) = 0.5, B(T->tH) = 0.25, B(T->tZ) = 0.25

CMS-PAS-B2G-16-002

- LQ **pair production**: 2 leptons (ATLAS: exactly 2 e or μ , CMS: \geq 2 μ) and \geq 2 jets
- Backgrounds: tt, Drell-Yann+jets, diboson, W+t
- Systematics: JES, lumi, MC shape and norm. (CMS), PDF acceptance & cross section, showering & hadronisation (ATLAS)

- Signal regions cut in m_{II} and S_T.
 Discriminating variable: minimum m_{LQ}, pairs chosen for smallest mass difference
- CMS also searches in hadronic tau channel.

ATLAS CERN-EP-2016-074 CMS PAS EXO-16-007 CMS PAS EXO-16-016

Limits

Observed limits, $\beta=1$

CMS PAS EXO-15-006 ATLAS CERN-PH-2016-143

W' to lepton + MET

• Kinematic variable:

$$m_{\rm T} = \sqrt{2p_{\rm T} E_{\rm T}^{\rm miss} (1 - \cos \phi_{\ell \nu})}$$

- Selection: exactly 1 e > 55 (53) GeV or μ > 55 (130) GeV
 - + ATLAS ensures MET > 55 GeV, $m_{\rm T}$ > 110 GeV
 - CMS requires 0.4 < pT/MET < 1.5, lepton and MET back-to-back
- Backgrounds: W->Iv, Drell-Yann, tt, single-top, diboson.
 Estimated using MC. Fake lepton contrib. estimated from data
- Systematics: muon scale factors, pT/E scales, MET uncertainties, K factors, PDF

Dark matter searches: mono-X

- Search for DM mediator to MET plus any object on which to trigger
- Simplified model uses mediator explicitly.
 Usually SM object produced in conjunction with mediator or as ISR

- EFT uses contact operators for DM to SM vertex
- Harmonisation of WIMP models a big focus of CMS and ATLAS for Run II. Dark Matter Forum targets include (arXiv:1507.00966v1, arXiv: 1506.03116v3):
 - Unify simplified models and implementations
 between analyses
 - Ensure effective field theory models only used within valid regimes (very heavy mediators)
 - Help LHC results to complement direct detection searches

CMS PAS EXO-15-003 ATLAS CERN-EP-2016-075

Jet + MET signatures

- Lead jet pT > 250 (100) GeV, up to 4 jets (ATLAS), MET > 250 (200) GeV isolated from 4 lead jets.
- Leptons vetoed. CMS rejects events with b-jets.
- Z(vv)/W(lv)+jets contributions calculated from simultaneous fit to control regions

- Top and diboson backgrounds taken from simulation
- Systematics: normalisation/ factorisation σ effects, PDF unc., NLO correction, MET, lumi, selection/background estimation uncertainties

Photon + MET

 Leading isolated photon with pT > 150 (175) GeV, MET > 150 (170) GeV and not near photon. Leptons vetoed.

Limits

Axial-vector mediator

710 GeV (ATLAS)

600 GeV (CMS)

- ATLAS vetoes if > 1 jet, or jet is near photon.
- CMS rejects if photon near any of 4 leading jets

 Backgrounds: ATLAS takes Z/W+γ from simultaneous fit to control regions; CMS directly from MC. γ+jets from MC. Fake photons estimated from data.

> CMS PAS EXO-16-014 ATLAS CERN-EP-2016-060

General resonance searches

Heavy particles with short lifetimes appear as narrow resonances

$$f(E) = \frac{k}{(E^2 - m^2)^2 + M^2 \Gamma^2}$$

where M is resonance mass and Γ is decay width.

This appears as a **bump** on a smooth, well-understood background:

19

Dijet resonance search

Search dijet events above unprescaled trigger turn-on •

- **Resonance analysis** uses invariant mass m_{ii}
- Angular analysis uses rapidity difference in jet CMF
- ATLAS: ≥ 2 jets, $|y^*| < 0.6 (\chi < 30)$, $m_{ii} > 1$ (2.5) TeV
- CMS: ≥ 2 jets, $|\Delta \eta_{ii}| < 1.3 (\chi < 16), m_{ii} > 1.2 (1.9)$ TeV. Uses wide jets to account for gluon FSR

20

See Garabed's talk for more details!

Dijets at low masses

- Challenge in dijet analysis below 1 TeV is strong trigger prescales
- Wish to access this region for low-cross section, low-mass signals (Z')
- Solution 1: look for dijet + ISR (jet or γ) events and trigger on the ISR object

Events Events ATLAS Preliminary ATLAS Preliminary √s=13 TeV, 3.2 fb⁻¹ √s=13 TeV, 3.4 fb⁻¹ Data Data Background fit Background fit BumpHunter interval BumpHunter interval Z', m_ = 300 GeV 10⁶ 10^{3} 10 $Z'(g_{a} = 0.30), \sigma \times 50$ 10⁵ p-value = 0.89 p-value = 0.44 Fit Range: 203 - 1493 GeV Fit Range: 443 - 1236 GeV ly*l < 0.8 ly*l < 0.6 10 Significance Significance 2 400 500 1000 600 800 900 1000 300 500 700 m_{ii} [GeV] m_{ii} [GeV]

Solution 2: **"Trigger level analysis"**. Save only partial event data to increase statistics.

- Challenging! Requires special jet calibration for jets with only calorimeter level information
- CMS used same strategy in 8 TeV

ATLAS-CONF-2016-029, ATLAS-CONF-2016-030, ATLAS-CONF-2016-031

DM including dijet limits: where do we stand?

Limits on simplified DM are filling in remaining holes

Most limits dramatically improved from 8 TeV!

CMS PAS EXO-15-005, ATLAS-CONF-2015-070

Di-lepton final states

- Models: SSM Z', six narrow E6 gauge group model Z's
- Selection:
 - ATLAS: ≥ 2 same-flavour isolated leptons, $p_T > 2$ 30 GeV; opposite-sign if µ. Select highest scalar sum- p_T lepton pair
 - CMS: Dedicated ee selection algorithm. Require • isolated muons > 53 GeV of opposite sign.
- Systematics: Z/γ cross-section (PDF etc), lepton energy scale, trigger, reco., isolation efficiencies, MC stats. Data driven bkg estimation in ee.
- CMS also publishes analysis in di-τ channel

100

70

200

300

2000

m(μ⁺μ⁻) [GeV]

1000

Resonances in diboson final states

- W(Iv)+jj, Z(II)+jj, Z(vv)+jj final states
 reconstructed by using single large-R jet plus
 isolated, high pT leptons and/or large MET.
- W/Z->qqqq reconstructed as 2 large-R bosontagged jets

- Backgrounds for semileptonic channels: SM diboson and W/Z+jets, ttbar, mis-ID'd jets and photons.
- Estimate qqqq bkg with dijet fit to data
- Estimate semileptonic backgrounds by combined fit of MC across control regions

ATLAS CERN-EP-2016-106, CMS PAS EXO-15-002

The diphoton final state

- Caused a great deal of fervour in the community with these • results!
- Pairs of isolated photons passing cleaning cuts are • parameterised by a smooth fit
 - In CMS, divide into separate spectra by detector region ٠
 - In ATLAS, fits include signal template and therefore 2 • distinct results

- Constrain spin-0, spin-2 • **RS** gravitons
- Excess at 750 GeV has global significance 2.1 σ in ATLAS and 1.6σ in CMS. Require 2016 data to confirm or deny the presence of interesting physics!

ATLAS CERN-EP-2016-120 CMS-EXO-16-018

m_{yy} [GeV]

The exotic landscape at 13 TeV

C

Empty and desolate, yet still fun to explore!

Does the diphoton analysis offer excitement on the horizon?

Backup

W/Z hadronic + MET

- Selection
 - 1 large-R jet, MET > 250 GeV isolated from all small-R jets, no leptons
 - Large-R jets reclustered, selected by jet mass and D₂ substructure variable
- Systematics:
 - Dominant: modelling of large-R jet parameters (D2, mass, energy)
 - Other: small-R JES, lumi, reconstruction
 and ID efficiency for leptons
- Backgrounds: ttbar, W+jets, Z+jets, singletop

CMS PAS EXO-16-013

Multijet + MET

- \geq 2 jets and high MET. Lepton veto. MET is kinematic variable
 - For mono-V look at AKT8 jets with n-subjettiness cut
 - Includes mono jet (top left) and mono-vector boson hadronic (top right) signatures
- Backgrounds: Z(vv)+jets, W(vl)+jets dominant & taken from data control regions. Top and diboson subdominant and taken from MC.
- Systematics: V-tagging in large-R jets, normalisation of top & diboson background, luminosity, b jet veto efficiency
- Consider vector, axialvector simplified models

Vector, axial-vector mediators @ 90% CL: 1.3 TeV

Higgs + MET

Events / Ge/

ATLAS-CONF-2016-019 ATLAS-CONF-2016-011 ATLAS-CONF-2015-059

> 10

/ 50

Events /

10⁶

 10^3

10

 10^{-2}

- All s-channel vector mediators Z' with higgs as ISR/FSR •
- H(bb)+MET: High MET, no leptons, resolved (2 small-R jets) and boosted (large-R jet with 2 ass. track jets) channels
- **H(yy)+MET**: 2 central isolated photons. High MET. Modelled with fit; count number of events with $m\gamma\gamma$ in Higgs mass window.

Monojet further information I: limit vs. coupling

Monojet further information II: WIMP-proton scattering cross-section limits

The jet+γ final state

- ATLAS uses jet+γ events to set limits on excited quarks, RS1 and ADD quantum black holes, generic resonances
- Selection: at least 1 each of an isolated photon and a jet, both pT > 150 GeV. $|\Delta \eta| < 1.6$ between the lead jet and photon, and photon is not near any jet.
- Data-driven background estimate from fit.
 - Fit above 1 TeV for all signals but ADD QBH
 - Fit for ADD QBH from 2 TeV
- Systematics: jet and γ energy scales, γ trigger, ID, and isolation efficiencies, function choice.
 - Here function choice modelled by testing spurious signal for each mass point and range of MC settings, taking result as uncertainty

Z+γ search

CMS PAS EXO-16-019

- Z(ee) or Z($\mu\mu$) + photon
- Require exactly 2 opposite-sign leptons, at least 1 photon isolated from leptons and with significant fraction of energy in Zγ system
- Search in $m_{Z\gamma}$ > 200 GeV for localised excesses. Background described by parametric fit.
- Signal shape is generic based on the crystal ball function

W/Z+higgs final state

- Signature: Z(II), W(Iv), or Z(vv) plus h(bb)
- Reconstruct higgs candidate with large-R jet associated to b-tagged track jets and within selected mass window
- Use simplified model of heavy vector triplets as benchmark: V couples to higgs and SM bosons
- Use transverse mass as discriminant in 0-lepton channel; m_{VH} in other channels
- Background modelling taken from MC

X->hh->bbbb

- Resolved analysis: search for 4 btagged small-R jets. Reconstruct as 2 dijet pairs with small ΔR within pair
- Boosted: 2 large-R jets each with associated b-tagged track jets (3 or 4 tags overall)
- Switch at resonance masses of 1100 GeV
- Compare dijet/fatjet masses to top quark mass and higgs mass using probability variable. Use for ttbar veto and to define signal region near Higgs mass

