Recent results from ALICE at the LHC

Cynthia Hadjidakis
IPN Orsay, Université Paris-Sud, France
for the ALICE collaboration

5th International Conference on New Frontiers in Physics - ICNFP2016 Kolymbari, Crete, Greece July 6-14 2016

- Ultra-relativistic heavy-ion collisions and Quark Gluon Plasma at the LHC with A Large Ion Collider Experiment (ALICE)
- Soft probes: measuring low-p_T particles for studying the bulk and the collective properties of the medium produced in heavy-ion collisions
- Hard probes: hard QCD processes, such as high-pt particles, open heavy flavour and quarkonia, that cross the produced medium and allow to quantify its characteristics

Why heavy-ions at the LHC?

QCD phase diagram

Nuclear matter at high temperature and high density = Quark Gluon Plasma (QGP)

- Partons are deconfined (not bound into composite object)
- Chiral symmetry is restored (partons are massless)
- Behaves as a perfect fluid (well described by ideal hydrodynamics)

From lattice QCD: phase transition near $T_c = 170 \text{ MeV}$ ($\varepsilon_c = 1 \text{ GeV/fm}^3$)

At LHC energies: most particles produced during the collisions → very low net baryon density

Heavy ion collision experiments: search for the QGP phase and characterize it

Space-time evolution of the collision

 $\tau \simeq 20 \text{ fm/c}$ Kinetical freeze-out

Chemical freeze-out

 $\tau \simeq 10 \text{ fm/c}$ T < T_c Hadron gas

 $\tau \approx 1$ fm/c T > T_c Thermalized QGP

 $\tau \simeq 0$ Heavy-ion collision

LHC size and time numbers $1 \text{ fm/c} \sim 3 \ 10^{-24} \text{ s}$

QGP volume $\approx 300 \text{ fm}^3$

At large energy: large, hot, dense, long life-time plasma

Collision geometry: few definitions

Centrality of the collisions: overlap of two nuclei

semi-central collision

central collision

 $N_{part} = 2$ $N_{coll} = 1$

 $N_{\text{part}} = 5$ $N_{\text{coll}} = 6$

Pb-Pb cent. $N_{part} = 360$ $N_{coll} = 1500$

p-Pb cent. $N_{part} = 16$ $N_{coll} = 15$

Impact parameter of the collision: b

Number of participants nucleons: N_{part}

Number of binary collisions: N_{coll}

Collision geometry: few definitions

Centrality of the collisions: overlap of two nuclei

semi-central collision

central collision

 $N_{part} = 2$ $N_{coll} = 1$

 $N_{part} = 5$ $N_{coll} = 6$

Pb-Pb cent. $N_{part} = 360$ $N_{coll} = 1500$

 $N_{part} = 16$ $N_{coll} = 15$ p-Pb cent.

Impact parameter of the collision: b

Number of participants nucleons: Npart

Number of binary collisions: N_{coll}

Event centrality determination

- Cannot measure b, N_{part}, N_{coll} directly
- Multiplicity measurements with forward or central detectors (charged particles multiplicity - π , K, p...
 - -, spectator neutrons, ...)
- Use Glauber model to map the measured multiplicities in A-A collisions to b, N_{part} and N_{coll}

Collision geometry: few definitions

Centrality of the collisions: overlap of two nuclei

semi-central collision

central collision

 $N_{part} = 2$ $N_{coll} = 1$

 $N_{part} = 5$ $N_{coll} = 6$

Pb-Pb cent. $N_{part} = 360$ $N_{coll} = 1500$

p-Pb cent.

 $N_{part} = 16$

 $N_{coll} = 15$

Impact parameter of the collision: b Number of participants nucleons: Npart

Number of binary collisions: N_{coll}

Event centrality determination

- Cannot measure b, N_{part}, N_{coll} directly
- Multiplicity measurements with forward or central detectors (charged particles multiplicity - π , K, p... -, spectator neutrons, ...)
- Use Glauber model to map the measured multiplicities in A-A collisions to b, N_{part} and N_{coll}

Central barrel: $|\eta| < 0.9$ 0.5 T solenoidal magnet

Vertexing: ITS

Tracking: ITS,TPC

Soft probes

Charged particle multiplicity at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV

- -Last November: highest energy achieved experimentally in heavy-ion collisions at $\sqrt{s_{NN}} = 5.02$ TeV
- $-\langle dN_{ch}/d\eta \rangle$ (0-5%) = 1943 ± 54 \rightarrow x 2.5 the average multiplicity per participating nucleon pair, $\langle N_{part} \rangle /$ 2, in pp and p-Pb collisions at the same energy
- −The dependence of <d N_{ch} /dη> with energy is steeper in A-A than in pp and p-A collisions: 20% increase in Pb-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV wrt 2.76 TeV
- The average yield per participant pair depends strongly on collision centrality: same dependence observed at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV

Azimuthal asymmetry

Overlap region in noncentral heavy-ion collisions is asymmetric, in « almond » shape

For interacting matter, spatial asymmetry leads to a momentum anisotropy of finalstate particles

Azimuthal dependence of the particle yield:

$$\frac{dN}{d\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)].$$

 Ψ_n : symmetry planes

Anisotropic flow is sensitive to the initial geometry and properties of the produced medium

Anisotropic flow at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV

- Anisotropic flow measurements using multi-particle cumulant method and two-particle correlations with $|\Delta\eta|>1$
- Elliptic flow $v_2(p_T)$ very similar at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV
- Comparable values also for the higher harmonics (v3, v4) vs p_T at both energies

Anisotropic flow at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV

Ref. [25] H. Niemi et al. Phys. Rev. C 93, 014912 (2016). Ref. [27] J. Noronha-Hostler et al. Phys. Rev. C 93, 034912 (2016).

- $-p_{\rm T}$ -integrated results show an increase of $3.0\pm0.6\%$ (v₂), $4.3\pm1.4\%$ (v₃) and $10.2\pm3.8\%$ (v₄) from $\sqrt{s_{\rm NN}} = 2.76$ to $5.02~{\rm TeV} \rightarrow$ this can be attributed to an increase in $< p_{\rm T} >$
- Measurements in good agreement with hydrodynamical calculations \rightarrow the data support a low value for the shear viscosity to entropy density ratio (η /s) of the QGP
- Continuous increase of p_T -integrated v_2 from SPS to LHC

more in You Zhou's talk

Direct photons

- Direct photons at low p_T give access to thermal photons emitted by QGP and hadronic matter
- Good agreement with NLO pQCD calculations scaled by N_{coll} for $p_{\text{T}} > 5$ GeV/c → data supports N_{coll} scaling at large p_{T}
- In 0-20% and 20-40%: excess of low p_T direct photons wrt pQCD calculations
- p_T -spectrum described at p_T < 2.1 GeV/c by an exponential with an inverse slope parameter: $T_{\rm eff}$ = (297 ± 12 ± 41) MeV in central collisions → 30% higher than at RHIC

more in Lucile Ronflette's talk

Baryon-to-meson ratio

- Enhancement of baryon-to-meson ratio at intermediate p_T in Pb-Pb: understood in terms of collective flow or recombination
- B/M ratio significantly lower in jets than for the inclusive measurements and consistent with PYTHIA expectations (vacuum fragmentation) → baryon enhancement seen in Pb-Pb does not originate in jets but arises from the bulk

Baryon-to-meson ratio in pp and p-Pb

- Clear evolution of B/M ratios with event multiplicity also in pp and p-Pb!

Strangeness enhancement in pp, p-Pb and Pb-Pb

- -Strangeness production in AA: first QGP signature proposed *Rafelski PRL48(1982)1066*
- -Strange to non-strange particle ratios increase with event multiplicity in Pb-Pb but also in pp and p-Pb!
- -Saturation at large mult. in Pb-Pb in agreement with grand canonical thermal models (not shown) *Andronic et al, PLB 673 (2009) 142, Cleymans et al, PRC 74 (2006) 034903*

Strangeness enhancement in pp, p-Pb and Pb-Pb

- -Strangeness production in AA: first QGP signature proposed *Rafelski PRL48(1982)1066*
- -Strange to non-strange particle ratios increase with event multiplicity in Pb-Pb but also in pp and p-Pb!
- -Saturation at large mult. in Pb-Pb in agreement with grand canonical thermal models (not shown) *Andronic et al, PLB 673 (2009) 142, Cleymans et al, PRC 74 (2006) 034903*

- –Baryon-to-meson ratios Λ/K^0_s and p/π do not increase significantly
 - → increase is not mass but strangeness related

July 2016

Strangeness enhancement in pp, p-Pb and Pb-Pb

- -Strangeness production in AA: first QGP signature proposed *Rafelski PRL48(1982)1066*
- -Strange to non-strange particle ratios increase with event multiplicity in Pb-Pb but also in pp and p-Pb!
- -Saturation at large mult. in Pb-Pb in agreement with grand canonical thermal models (not shown) *Andronic et al, PLB 673 (2009) 142, Cleymans et al, PRC 74 (2006) 034903*

- –Baryon-to-meson ratios Λ/K_s^0 and p/π do not increase significantly
 - → increase is not mass but strangeness related
- -Hierarchy of increase with strangeness content observed
- -MC models with color ropes interactions between produced strings (DIPSY) and radial expansion (EPOS) qualitatively reproduce the measured trend with multiplicity

Hard probes

Hard processes

Hard probes

- Hard scattering in pp collisions described by pQCD calculations using universal non-perturbative functions such as (n)PDF and Fragmentation Function
- Produced in the initial hard partonic collisions in the early stage of the collisions ($\tau \approx 1/m$)
- In A-A, hard probes cross the formed medium

Nuclear modification factor

- In A-A (and p-A), if there is no interaction with the medium (high- p_T photons, electroweak bosons), hard processes are expected to be a superposition of independent nucleon-nucleon collisions and to scale with N_{coll}

$$R_{AA} = \frac{dN^{AA}/dp_T dy}{\langle N_{coll} \rangle dN^{pp}/dp_T dy}$$

- $R_{AA} = 1$: no modification

- $R_{AA} > 1$: enhancement

- $R_{AA} < 1$: suppression

References

- pp collisions: test of production models and reference for A-A and p-A
- p-A collisions: initial/final state effects in « cold » nuclear environment (cold nuclear matter effects) such as shadowing or gluon saturation, multiple interaction of partons in the initial state (Cronin effect), energy loss, ...

Suppression of high-p_T charged particles

- R_{AA} = 1 for probes that do not interact with QGP (electroweak bosons, high- p_T photons) \rightarrow essential verification of N_{coll} scaling
- R_{AA} < 1: strong suppression of high- p_T charged particles (\rightarrow jets), minimum at p_T = 6-7 GeV/c and slow increase at larger p_T \rightarrow strong parton energy loss in nuclear matter that decreases with increasing p_T
- R_{pPb} consistent with unity at $p_T > 2 \text{ GeV/c} \rightarrow \text{suppression}$ observed in Pb-Pb is a final-state effect

Suppression of high-p_T charged particles

- R_{AA} < 1: strong suppression of high- p_T charged particles (\rightarrow jets), 0.4 minimum at p_T = 6-7 GeV/c and slow increase at larger p_T \rightarrow 0.2 strong parton energy loss in nuclear matter that decreases with increasing p_T
- R_{pPb} consistent with unity at $p_T > 2$ GeV/c \rightarrow suppression observed in Pb-Pb is a final-state effect

- Results at $\sqrt{s_{NN}} = 5.02$ TeV with improved systematics \rightarrow very similar results wrt $\sqrt{s_{NN}} = 2.76$ TeV

LI-PREL-107300

Open heavy-flavor R_{AA}

Radiative energy loss decreases for heavy quarks (Casimir factor and dead cone effect):

$$\Delta E_g > \Delta E_c > \Delta E_b \rightarrow R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$$

- At high p_T the suppression for D mesons and π and/or charged hadrons is similar: can be explained by harder fragmentation and p_T spectrum for charm wrt gluon
- Indications of $R_{AA}(\pi) < R_{AA}(D)$ at low $p_T, p_T < 6$ GeV/c
- $-R_{AA}(D) \le R_{AA}(B \leftarrow J/\psi)$ measured at large p_T : expected from $\Delta E_c \ge \Delta E_b$

Open heavy-flavor R_{AA}

Radiative energy loss decreases for heavy quarks (Casimir factor and dead cone effect):

$$\Delta E_g > \Delta E_c > \Delta E_b \rightarrow R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$$

- At high p_T the suppression for D mesons and π and/or charged hadrons is similar: can be explained by harder fragmentation and p_T spectrum for charm wrt gluon
- Indications of $R_{AA}(\pi) < R_{AA}(D)$ at low $p_T, p_T < 6$ GeV/c
- $-R_{AA}(D) \le R_{AA}(B \leftarrow J/\psi)$ measured at large p_T : expected from $\Delta E_c \ge \Delta E_b$

more in Renu Bala, Lehas Fatiha and Kim Mijung's talks

Heavy flavor v₂

Quarkonia in AA

From sequential suppression...

- At T >> 0, high density of colour charge in the medium induces Debye screening
- At $T > T_D$, melting of quarkonia *Matsui, Satz PLB178(1986)*
- Since quarkonia (J/ ψ , ψ (2S), Y(nS),...) have different binding energy
- → sequential suppression of quarkonium states Karsch, Satz Z.Phys. C51 (1991) 209

prompt J/ ψ in pp $\approx 10\% \psi(2S) + 30\% \chi_{C} + 60\%$ direct J/ ψ

Quarkonia in AA

From sequential suppression...

- At T >> 0, high density of colour charge in the medium induces Debye screening
- At $T > T_D$, melting of quarkonia Matsui, Satz PLB178(1986)
- Since quarkonia (J/ ψ , ψ (2S), Y(nS),...) have different binding energy
- → sequential suppression of quarkonium states Karsch, Satz Z.Phys. C51 (1991) 209

prompt J/ ψ in pp $\approx 10\% \psi(2S) + 30\% \chi_{C} + 60\%$ direct J/ ψ

... to regeneration

- Total charm cross-section increases with energy
- c and \bar{c} combination in the QGP or at the phase boundary
 - \rightarrow regeneration of J/ ψ

Braun-Munzinger, Stachel PLB490(2000) Thews et al. PRC62(2000)

- \Rightarrow enhancement (depending on open charm cross-section) of J/ ψ
- → evidence of thermalization of charm quarks
- Small regeneration expected for bottomonia

 $rac{ extstyle N_{qar{q}}}{ extstyle event} = rac{\sigma^{pp}_{qar{q}}}{\sigma^{pp}_{inel}} imes extstyle N_{coll}$

ALICE, JHEP 1207 (2012) 191

In most central collisions [0-10%]	RHIC 200 GeV	LHC 2.76 TeV
N _{cc} /event	13	115
N _{bb} /event	0.1	3

$J/\psi R_{AA}$ at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

- -Higher J/ ψ R_{AA} at LHC than at RHIC
- $-R_{AA}$ vs N_{part} flat from $N_{part} > 70$ and R_{AA} increases with decreasing $p_T \rightarrow$ different behavior at RHIC
- -Only models including J/ψ regeneration can describe the data
- -How does the J/ψ suppression evolve at higher energy, $\sqrt{s_{NN}} = 5.02$ TeV?

J/ψ production at $\sqrt{s_{(NN)}} = 5.02$ TeV

- -Inclusive J/ ψ cross-sections measured in pp collisions at $\sqrt{s} = 5.02 \text{ TeV}$
- -More precise R_{AA} measurements at $\sqrt{s_{NN}}$ = 5.02 TeV wrt 2.76 TeV!
- $-R_{AA}(5.02 \text{ TeV}) / R_{AA}(2.76 \text{ TeV}) = 1.13 \pm 0.02 \text{ (stat)} \pm 0.18 \text{ (syst)} \rightarrow \text{results compatible}$
- -Hint for an increase at $\sqrt{\text{s}_{\text{NN}}}$ =5.02 TeV for p_{T} = 2-5 GeV/c

Charmonium production in p-Pb

Nuclear modification factor as a function of ZN (forward neutron detector) centrality class: possible bias in the $\langle N_{\text{coll}} \rangle$ evaluation in ZN class, hence the Q_{pPb} notation

- -Nuclear matter effect important for the J/ ψ in the p-going direction and in most central events: well reproduced by models that include shadowing, gluon saturation (not shown) or coherent energy loss
- –Additional mechanisms are needed to describe the $\psi(2S)$: only models that include final-state interaction with a comoving medium are able to describe the data

Y(1S) in Pb-Pb and p-Pb

- Decreasing trend of R_{AA} with rapidity and N_{part} at $\sqrt{s_{NN}} = 5.02$ TeV
- Energy comparison: $R_{AA}(5.02 \text{ TeV}) / R_{AA} (2.76 \text{ TeV}) = 1.3 \pm 0.2$
 - \pm 0.2 \rightarrow results compatible
- Transport models reproduce the centrality dependence

Y(1S) in Pb-Pb and p-Pb

- Decreasing trend of R_{AA} with rapidity and N_{part} at $\sqrt{s_{NN}} = 5.02$ TeV
- Energy comparison: $R_{AA}(5.02 \text{ TeV}) / R_{AA} (2.76 \text{ TeV}) = 1.3 \pm 0.2 \pm 0.2 \rightarrow \text{results compatible}$
- Transport models reproduce the centrality dependence
- -In p-Pb: Y(1S) suppression in the p-going direction

Summary

- ALICE studies the quark gluon plasma created in the ultra-relativistic heavyion collisions of the LHC
- The measurements of various probes, soft or hard, allow to characterize the created medium
- Energy dependence is studied in Pb-Pb collisions thanks to the results obtained at $\sqrt{s_{NN}} = 2.76$ TeV (Run I) and the new ones at $\sqrt{s_{NN}} = 5.02$ TeV (Run II):
 - -Average multiplicity of charged particle increases by 20%
 - -Increase of charged particle anisotropic flow that can be attributed to an increase of $< p_T >$
 - $-J/\psi$ and $\Upsilon(1S)$ measurements in Pb-Pb wrt pp are compatible at both energies
- High precision measurements in pp collisions at various energies and p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV provide a quantitative understanding of the features observed in Pb-Pb but many surprises found in these small systems at high event multiplicities
- Many more results to come from Run I and II, stay tuned!

ALICE talks in ICNFP 2016

- You Zhou: Overview of recent azimuthal correlation measurements
- Renu Bala: Open charm production in pp, p-Pb and Pb-Pb collisions
- -Minjung Kim: Beauty production measurements
- Lehas Fatiha: Azimuthal angular correlations of D mesons and charged particles in pp collisions at 7 TeV and p-Pb collisions at 5.02 TeV
- Lucile Ronflette: Neutral meson and direct photon measurements
- -Thomas Humanic: K⁰_S K[±] femtoscopy in Pb-Pb collisions

back-up slides

Charmonium production: pp

J/ψ production at $\sqrt{s_{(NN)}} = 5.02$ TeV

 $-R_{\rm pPb}$ is compatible with unity at large $p_{\rm T}$: the large suppression measured in Pb-Pb is due to a final-state effect

D-hadron correlations in pp and p-Pb

2.5

 $\Delta \phi$ (rad)

0.5

- Measure hadronic activity near and away from the direction of D-meson
- Near-side correlation peak sensitive to the characteristics of the jet containing the D meson
- Very similar correlation functions obtained in pp and p-Pb pointing out to unmodified charm-quark fragmentation processes in p-Pb
- Next: measurement of the azimuthal correlation of D mesons and charged particles in Pb–Pb: information on the charm-quark energy-loss mechanisms

 $\Delta \varphi$ (rad)

v₂ of leptons from HF decays

$\Upsilon(1S)$ production

Charged particles production in Pb-Pb

Ψ(2S) measurements at forward rapidity

Double ratio measurement: $\Psi(2S)/J/\Psi$ in Pb-Pb over pp pp reference from 7 TeV data but ratio is not expected to vary much with energy (dashed line uncertainty)

ALICE measurements has large uncertainties but there is not indication of a large $\Psi(2S)$ enhancement in most central collisions

Open heavy flavour: D mesons in pp and p-Pb collisions

- $-D^0$ measurement without reconstruction of the decay vertex in pp and p-Pb collisions: D mesons reconstructed down to $p_T = 0$
- -Reduced uncertainty on total charm cross-section
- $-R_{pPb}$ (p_T>0, -0.96<y<0.04) = 0.89±0.11(stat)^{+0.13}_{-0.18}(syst) : no sensitivity yet to distinguish between the existing models \rightarrow much large sample in pp and p-Pb collisions to be collected soon
- -R_{pPb} is compatible with unity at large p_T: the large suppression measured in Pb-Pb is due to a final-state effect

p-Pb measurements at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Crucial measurements to determine the cold nuclear matter effects in heavy-ion collisions

2013 Jan.-Feb. data taking running conditions:

- 2 beam configurations: p-Pb and Pb-p
- Shift in rapidity in the proton beam direction $\Delta y = 0.465$

p-Pb measurements at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Crucial measurements to determine the cold nuclear matter effects in heavy-ion collisions

2013 Jan.-Feb. data taking running conditions:

- 2 beam configurations: p-Pb and Pb-p
- Shift in rapidity in the proton beam direction $\Delta y = 0.465$
 - → two rapidity ranges with the ALICE Muon Spectrometer

ALICE performance

- -Tracking/vertexing: excellent track and reconstruction capabilities in a high multiplicity environment over a wide $p_{\rm T}$ range (and down to low $p_{\rm T}$ ~100 MeV in the central barrel)
- -Particle identification: strong capabilities by using energy loss dE/dx, time-of-flight, Cherenkov radiation, transition radiation, calorimetry...
- -Muon arm: Quarkonium measurements down to low p_T

