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• Develop a model for SOFT interactions at high energy based on the BFKL
Pomeron and the CGC/saturation approach

• Green function for the Pomeron is calculated in framework of the
CGC/saturation approach - replacing Pomeron Calculus

• CGC/saturation effective theory for high energy QCD

• BFKL Pomeron describes both hard AND soft interactions at high energy

• For diffractive processes include both low and high mass contributions
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Guide to the Various Regions
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Scattering near the Unitarity Limit

1. In the Regge limit of pQCD, when s ≫ Λhard, as the energy increases the
parton density becomes more dense, and the scattering amplitude A(s,t) grows.

2. As long as densities are NOT TOO HIGH, growth is described by BFKL
evolution equation.

3. Density becomes higher as A(s,t) → 1, and one enters a regime called
SATURATION, where the BFKL evolution FAILS.

4. NON LINEARITIES lead to SATURATION + UNITARIZATION of A(s,t).

5. Balitsky-Kovchegov equation is the simplest and most accurate way to describe
the saturation regime of QCD. It is non-linear and resums QCD fan diagrams
in the LLA.
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Phenomenological Input

1. A deficiency that has to be overcome, is the fact that the BFKL Pomeron
does NOT lead to shrinkage of the diffractive peak, and has no slope for the
Pomeron trajectory.

2. This can be cured by introducing a non-perturbative correction at large impact
parameter, which also assures satisfying the Froissart-Martin bound for σtot.

3. In our model we fix the large b behaviour by assuming that
the SATURATION MOMENTUM has the following form:

Q2
s(b, Y ) = Q2

0s(b, Y0)e
λ(Y−Y0) and Q2

0s(b, Y0) = (m2)(1−
1
γ̄ )[S(b,m)]

1
γ̄

S(b,m) = m2

2π e
−mb and γ̄ = 0.63 = 1 − γcr

The parameter λ = ᾱSχ (γcr) /(1− γcr),
in leading order of perturbative QCD (λ=0.2 to 0.3)

The parameter m is introduced to describe the large b behaviour, it determines
the typical sizes of dipoles inside the hadron.
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Phenomenological Input continued

4. Our model includes two additional scales m1 and m2, which describe two
typical sizes in the proton wave function.

Can associated these with:

(i) the distance between the constituent quarks; size of the proton Rp ≈
1
m1

.

(ii) m2 can be associated with the size of the constituent quark; Rq ≈
1
m2

.

5. Altinoluk et al JHEP 1404, 075 (2014) have proved the equivalence of the
CGC/saturation approach and the BFKL Pomeron calculus for a wide range
of rapidities

Y ≤
2

∆ BFKL
ln
(

1
∆2

BFKL

)

.
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Dressed Pomeron in MPSI approximation

=

a) b)

a) Dressed Pomeron in MPSI approximation

and

b) Sum of net diagrams

Wavy lines describe BFKL Pomerons.

The grey blobs stand for triple Pomeron vertices,

while black blobs show the hadron-Pomeron vertex g(b).

Since the typical rapidity is O(Y − Yi) ≈ 1
∆BFKL

, only large Pomeron loops with rapidity

O(Y )

contribute at high energies → can sum such loops using MPSI approximation.

For the BFKL Pomeron λ = 4.88ᾱs while ∆BFKL = 4ln2ᾱs ≈ 0.2
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Dressed Pomeron in MPSI approximation (continued)

The resulting Green function of the Dressed Pomeron is given by:

G
dressed
IP (Y − Y0, r, R, b) =

a2
{

1 − exp (−T (Y − Y0, r, R, b))

}

+ 2a(1 − a)
T (Y − Y0, r, R, b)

1 + T (Y − Y0, r, R, b)

+ (1 − a)
2

{

1 − exp

(

1

T (Y − Y0, r, R, b)

)

1

T (Y − Y0, r, R, b)
Γ

(

0,
1

T (Y − Y0, r, R, b)

)

}

with T (Y − Y0, r, R, b) =
ᾱ2
S

4π
GIP (z → 0) = φ0

(

r2Q2
s (R, Y, b)

)1−γcr

= φ0S (b) e
λ(1−γcr)Y

z = ln(r2Q2
s(b, Y )) , a = 0.65, γcr ≈ 0.37
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Parameters of the Model

We need to introduce four constants: gi and mi (i = 1, 2), to describe the
vertices of the hadron-Pomeron interaction

gi (b) = gi SIP (b) with SIP (b) =
m3
i b

4π K1 (mib)

SIP (b)
Fourier image
−−−−−−−−−−→ (

m2
i

q2 +m2
i
)2

Ωi,k (Y ; b) =

∫

d2b′
gi

(

~b′
)

gk

(

~b−~b′
)

Ḡdressed
IP (Y )

1 + 1.29 Ḡdressed
IP (Y )

[

gi

(

~b′
)

+ gk

(

~b−~b′
) ],

where Ḡdressed
IP (Y ) =

∫

d2 b′′Gdressed
IP (Y ; b′′) .
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Basic formalism for Two Channel Model

Following Good-Walker the observed physical hadronic and diffractive states are written

ψh = αΨ1 + βΨ2 ; ψD = −βΨ1 + αΨ2; where α
2
+ β

2
= 1.

Functions ψ1 and ψ2 form a complete set of orthogonal functions {ψi} which diagonalize the

interaction matrix T

A
i′k′

i,k =< ψiψk|T|ψi′ ψk′ >= Ai,k δi,i′ δk,k′.

The unitarity constraints can be written as

2 ImAi,k (s, b) = |Ai,k (s, b) |
2 +Gin

i,k(s, b)

At high energies a simple solution to this equation is

Ai,k(s, b) = i

(

1 − exp

(

−
Ωi,k(s, b)

2

))

G
in
i,k(s, b) = 1 − exp (−Ωi,k(s, b)) .

Gin
i,k(s, b) denotes the contribution of all non-diffractive inelastic processes
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Physical Observables for Elastic, and Low Mass Diffraction

elastic amplitude : ael(s, ) = i
(

α4A1,1 + 2α2 β2A1,2 + β4A2,2

)

;

elastic observables : σtot = 2

∫

d
2
b ael (s, b) ; σel =

∫

d
2
b |ael (s, b) |

2
;

optical theorem : 2 ImAi,k(s, t = 0) = 2

∫

d
2
b ImAi,k(s, b) = σel + σin = σtot;

single diffraction : σ
GW
sd =

∫

d
2
b
(

αβ{−α
2
A1,1 + (α

2
− β

2
)A1,2 + β

2
A2,2}

)2

;

double diffraction : σ
GW
dd =

∫

d
2
b α

4
β
4
{A1,1 − 2A1,2 + A2,2}

2
.

‘GW’ denotes the Good -Walker component, that is responsible for diffraction in the small mass

region.
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Single Diffractive Scattering in the region of Large Mass

The large Mass contribution for single diffraction is:

σ
large mass
sd = 2

∫

d
2
b

{

α6Asd
1;1,1 e

−2ΩD1,1(Y ;b)
+ α2β4Asd

1;2,2 e
−2ΩD1,2(Y ;b)

+ 2α4 β2Asd
1;1,2 e

−
(

ΩD1,1(Y ;b)+ΩD1,2(Y ;b)
)

+ β2 α4Asd
2;1,1 e

−2ΩD1,2(Y ;b)
+ 2β4α2Asd

2;1,2 e
−
(

ΩD1,2(Y ;b)+ΩD2,2(Y ;b)
)

+ β6 Asd
2;2,2 e

−2Ω2,2(Y ;b)

}

ΩD
i,k (Y ; b) =

∫

d2b′
gi

(

~b′
)

gk
(

~b−~b′
)

Ḡ dressed (T )
(

1 + 1.29 Ḡ dressed (T )
[

gi
(

~b′
)

+ gk
(

~b−~b′
)])2

Asd
i;k,l (Y, Ymax, Ymin; b) =

∫

d2b′ σdiff (Y, Ymax, Ymin, 1/m) .

gigkglSIP
(

b
′
,mi

)

SIP
(

~b−~b
′
,mk

)

SIP
(

~b−~b
′
,ml

)

,

and SIP
(

b′,mi

)

= 1
4πm

3
i b

′K1

(

b′,mi

)
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Double Diffractive Scattering in the region of Large Mass

Unitarity constraints for the dressed Pomeron takes the form:

2G dressed (T (Y, b)) = G dressed (2T (Y ; b)) + NDD (Y ; b)

where G dressed (2T (Y ; b)) describes all inelastic processes that are generated by the exchange

of the dressed Pomeron.

σdd =

∫

d
2
b
{

2G
dressed

(T (Y, b)) − G
dressed

(2T (Y ; b))
}

For the double diffraction production at large mass we have

σ large mass
dd =

∫

d2b

{

α4Add
1,1 e

−2ΩD1,1(Y ;b)
+ 2α2 β2Add

1,2 e
−2ΩD1,2(Y ;b)

+ β4Add
2,2 e

−2ΩD2,2(Y ;b)

}

.

where

A
dd
i,k =

∫

d
2
b gi gk S

i,k
DD (b)σdd (Y )

Si,kDD (b) =

∫

d2b′ SIP
(

b′,mi

)

SIP
(

~b−~b′,mk

)

and SIP
(

b′,mi

)

= 1
4πm

3
i b

′K1

(

b′,mi

)
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Parameters and Predictions for the Model

model λ φ0 g1 (GeV −1) g2 (GeV −1) m(GeV ) m1(GeV ) m2(GeV )

2 channel 0.38 0.0019 110.2 11.2 5.25 0.92 1.9 0.58

W σtot σel(mb) Bel single diffraction double diffraction

(TeV) (mb) (mb) (GeV −2) σLMsd (mb) σHMsd (mb) σLMdd (mb) σHMdd (mb)

0.546 62.3 12.9 15.2 5.64 1.85 0.7 0.46

0.9 69.2 15 16 6.25 2.39 0.77 0.67

1.8 79.2 18.2 17.1 7.1 3.35 0.89 1.17

2.74 85.5 20.2 17.8 7.6 4.07 0.97 1.62

7 99.8 25 19.5 8.7 6.2 1.15 3.27

8 101.8 25.7 19.7 8.82 6.55 1.17 3.63

13 109.3 28.3 20.6 9.36 8.08 1.27 5.11

14 110.5 28.7 20.7 9.44 8.34 1.27 5.4

57 131.7 36.2 23.1 10.85 15.02 1.56 13.7
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Results for Two channel Model
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Application of CGC/saturation approach for INCLUSIVE PRODUCTION

[Phys. Letts. B746, 154 (2015)]

INCLUSIVE PRODUCTION occurs in two stages:

• First stage: Production of a mini-jet with typical transverse momentum Qs:
Qs (saturation scale)≫ soft scale.

• Second stage: Decay of minijets into hadrons, which is treated
phenomenologically.

For mini-jet production we use the kT factorization formula:

dσ

dy d2pT
=

2πᾱS

p2T

∫

d
2
kT φ

h1
G

(

x1;~kT
)

φ
h2
G

(

x2; ~pT − ~kT
)

(1)

where φ
hi
G denotes the probability to find a gluon that carries the fraction xi of energy with k⊥

transverse momentum.

1
2Y + y = ln(1/x1) and 1

2Y − y = ln(1/x2).

φ
hi
G is the solution of the Balitsky-Kovchegov(BK) non-linear evolution equation, and can be

viewed as the sum of ‘fan’ diagrams of the BFKL Pomeron interactions, shown in figure.
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INCLUSIVE PRODUCTION 2

kT

Y/2

−Y/2

a)

p , y
T

T

T T

2

1

Y/2

−Y/2

y
aPP

b)
g  (b)(i)

The graphic representation of Eqn. (1) (fig-a). Wavy lines denote the BFKL Pomerons, while

the helical lines illustrate the gluons.

In fig-b the Mueller diagram for the inclusive production is shown.

Eqn.(1) can be rewritten as a Mueller diagram fig-b, and the inclusive cross section is given by:

dσ

dy
=

∫

d2pT
dσ

dy d2pT
= aIPIP ln (W/W0)

{

α4 In(1)

(

1

2
Y + y

)

In(1)

(

1

2
Y − y

)

+ α
2
β
2
(

In
(1)

(

1

2
Y + y

)

In
(2)

(

1

2
Y − y

)

+ In
(2)

(

1

2
Y + y

)

In
(1)

(

1

2
Y − y

)

)

+ β
4
In

(2)

(

1

2
Y + y

)

In
(2)

(

1

2
Y − y

)

}
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In
(i)

(y) =

∫

d
2
b N

BK
(

g
(i)
S (mi, b) G̃IP (y)

)

where G̃IP (y) = φ0 exp (λ (1 − γcr) y)

The mass of mini jet is given by m2
jet = 2msoftpT .

Since the typical transverse momentum is equal to the saturation scale, we have

m2
jet

p2T
=

2msoft

Qs (W )
= r20

(

W

W0

)−1
2λ

Values of parameters have been extracted from the diffractive and elastic data.

The only free parameters are aIPIP and r20.

Our curves are calculated for aIPIP = 0.21 and r20 = 8, which have been determined from the

experimental data.
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Our Model Results for Inclusive Production
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fig(a) fig(b)

The single inclusive density ( (1/σNSD) dσ/dη) versus energy. The data were taken from

ALICE,CMS,ATLAS and from PDG. The description of the CMS data is plotted in fig(a), while

fig(b) presents the comparison with all inclusive spectra with W ≥ 0.546TeV .
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Our Model Results for Inclusive Production continued
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The comparison of the inclusive production at W = 8TeV with the Monte Carlo models is

shown in fig (a). The figure is taken from [CMS and TOTEM ].

In fig.(b) dNch/dη at η = 0 versus energy W is displayed. Our estimates are shown by the

solid line. The dotted line corresponds to fit: 0.725 (W/W0)
0.23

with W0 = 1GeV . The

data are taken from [CMS,ALICE,CDF,UA5, ATLAS∗].
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Conclusions
• Constructed a model based on the BFKL Pomeron and the CGC/saturation
approach, which successfully describes data in the Regge region, for high
energy hadron scattering.

• Do not require that the soft Pomeron to appear as a Regge pole.

• Suggest a procedure where the matching with long distance physics (where
confinement of quarks and gluons is essential) can be reached within the
CGC/saturation approach.

• Model for soft (long distance) interactions, is able to describe inclusive
production.

• Model also successfully describes:
Long range rapidity correlations [EPJ C75,(2015) 518 ]
Survival Probability of central exclusive production [EPJ C76 (2016) 177]
Long-range elliptic anistropies (ridge structure) in proton -proton collisions
[Phys. Rev. D93 (2016) 074029]
Bose-Einstein correlations in hadron and nucleus collisions [arXiv:1604.04461]
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Diffractive Scattering based on the Levin-Kovchegov Equation

Y

YM

0

MPSI approximation: the simplest diagram for single diffraction production.

The wavy lines describe BFKL Pomerons. The blobs stand for triple Pomeron vertices.

The dashed line denotes the cut Pomeron. YM = ln
(

M2/s0
)

, where M is the mass of

produced particles and s0 is the scale taken to be of the order of 1GeV 2.

L-K equation has same form as the B-K equation ( Nucl.Phys. B577 (2000) 221) for the

function

G (Y, Y0, r, b) = 2N (Y, Y0, r, b) − NSD (Y, Y0, r, b) ,

N (Y, Y0, r, b) is the imaginary part of the elastic amplitude

The cross section for diffraction production is:

σdiff (Y, Y0, r) =
∫

d2bNSD (Y, Y0, r, b)
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