

Neutral mesons and direct photon measurements with the ALICE experiment

Lucile Ronflette on behalf of the ALICE collaboration

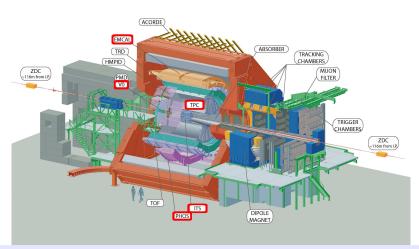
SUBATECH - Nantes

ICNFP - 2016/07/11

- Neutral mesons and direct photons as probes of hadronic matter
- 2 The ALICE experiment
- Neutral mesons in pp collisions
- Meutral mesons in Pb-Pb collisions
- 5 Direct photons in Pb-Pb collisions
- 6 Conclusions

Neutral mesons and direct photons as probes of hadronic matter

pp collisions


- Test pQCD
- Constrain Parton Distribution Functions and Fragmentation Functions
- Reference for Pb-Pb analysis

Pb-Pb collisions

- \bullet π^0 and η production
 - Probe the matter via parton energy loss
- Direct photon (prompt and thermal) production
 - Low p_T access to thermal photon measurement
 - probes the medium properties
 - Higher p_T access to prompt photon measurement
 - is a reference for jet quenching
 - \blacksquare tests the N_{coll} scaling assumption
 - tests possible initial state modifications

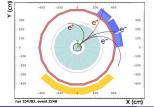
ALICE experiment

Charged particles: ITS and TPC

Electromagnetic particles: EMCal and PHOS

Centrality via multiplicity: V0

Photon measurement



PHOton Spectrometer (PHOS)

- PbWO₄ crystal calorimeter
- $|\eta| < 0.13$ and $260^{\circ} < \phi < 320^{\circ}$

•
$$\frac{\sigma}{E} = 0.011 \oplus \frac{0.033}{\sqrt{E}} \oplus \frac{0.018}{E}$$
(IJMPA 29 (2014) 1430044)

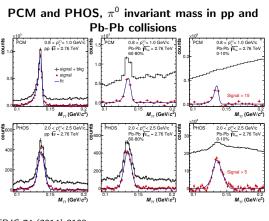
• Intermediate to high p_T


ElectroMagnetic CALorimeter (EMCal)

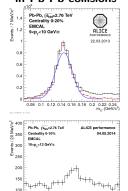
$$ullet$$
 $|\eta| <$ 0.7 and $80^{\circ} < \phi < 180^{\circ}$

•
$$\frac{\sigma}{E} = 0.017 \oplus \frac{0.11}{\sqrt{E}} \oplus \frac{0.05}{E}$$
 (NIM 615 (2010) 6-13)

• Intermediate to high p_T

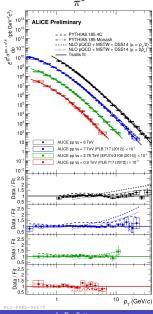

Photon Conversion Method (PCM)

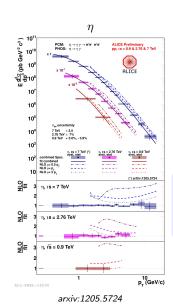
- Conversion probability ~ 8.5%
 (IJMPA 29 (2014) 1430044)
- $|\eta| < 0.9$ and $0^{\circ} < \phi < 360^{\circ}$
- Low to intermediate p_T


Invariant mass reconstruction

Invariant mass reconstruction from decay photons

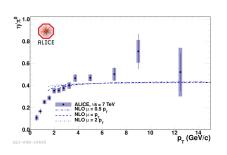
EMCAL π^0 and η invariant mass in Pb-Pb collisions

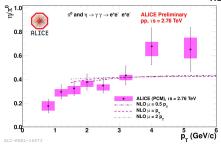



EPJC 74 (2014) 3108

 $\Longrightarrow {\sf Combination} \ of \ independent \ measurement \ using \ different \ detectors/methods$

π^0 and η in pp collisions with PCM+PHOS: cross section

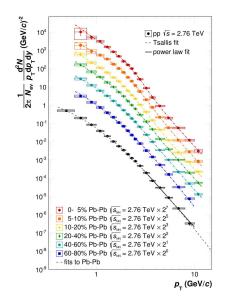



- π^0 and η cross section measurement $\sqrt{s} = 0.9, 2.76, 7 \text{ TeV}$
- π^0 at $\sqrt{s} = 8$ TeV

⇒ pQCD calculations (PRD 91 (2015) 014035) do not reproduce the data for larger \sqrt{s} at high p_T

$\pi^{\rm 0}$ and η in pp collisions with PCM+PHOS: $\eta/\pi^{\rm 0}$ ratio

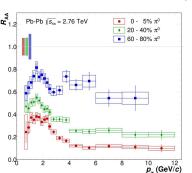
PLB 717 (2012) 162-172

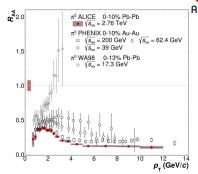

arxiv:1205.5724

- \bullet $\,\eta/\pi^0$ ratio reduces influence of the PDF choice in the pQCD calculation
- ullet PDF:CTEQ6M5,FF:AES for η
- ullet PDF:CTEQ6M5,FF:DSS for π^0

 \Rightarrow Measurements and pQCD NLO calculation show similar trend at both \sqrt{s}

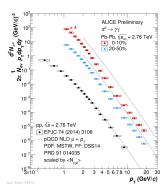
π^0 in Pb-Pb collisions with PCM+PHOS: invariant yield

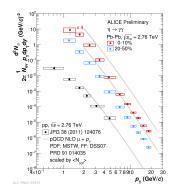

- 2010 data
- Pb-Pb spectra measurement at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
- pp spectrum $\sqrt{s_{NN}}=2.76$ TeV as reference in the nuclear modification factor


⇒ Nuclear modification factor to quantify nuclear effects

$$R_{AA} = \frac{d^2 N_{AA}/dp_T dy}{\langle T_{AA} \rangle d\sigma_{pp}^2/dp_T dy}$$

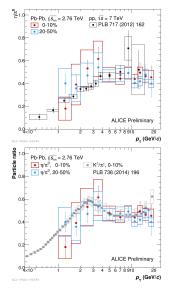
π^0 in Pb-Pb collisions with PCM+PHOS: R_{AA}

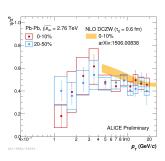

EPJC 74 (2014) 3108


EPJC 74 (2014) 3108

- ullet Suppression at high p_T and increasing with the centrality
- \Rightarrow increasing medium energy loss with centrality
 - Stronger suppression than at PHENIX (PRL 109 (2012) 152301 and PRL 101 (2008) 232301)
 and SPS (PRL 100 (2008) 242301)
- \Rightarrow increasing medium energy loss with $\sqrt{s_{NN}}$

π^0 and η in Pb-Pb collisions with PCM+EMCAL: invariant yield



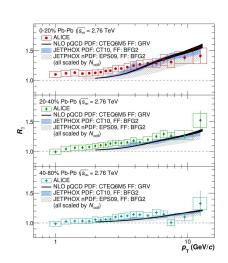

- 2011 data with ×10 statistics
- Higher $p_T \pi^0$ measurement compatible with PCM+PHOS results
- ullet First η measurement

 \Rightarrow Comparison with pQCD calculation (PRD 91 014035) shows suppression both for $\pi^{\rm 0}$ and η

$\pi^{\rm 0}$ and η in Pb-Pb collisions with PCM+EMCAL: $\eta/\pi^{\rm 0}$ ratio

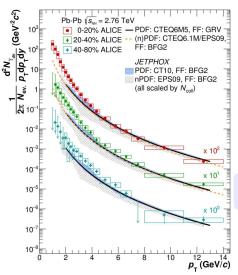
- Comparison with other ALICE results on K^{\pm}/π^{\pm} (*PLB 736 (2014) 196*) shows similar behaviour
- \bullet Comparison with pp η/π^0 ratio measurement shows comparable values

ullet pQCD NLO calculations at high p_T with energy loss reproduce the data


Direct photons measurement in Pb-Pb collisions with PCM+PHOS: R_{γ} comparison with pQCD

$$\gamma_{ extit{direct}} = \gamma_{ extit{incl}} - \gamma_{ extit{decay}} = (1 - rac{1}{R_{\gamma}}) \gamma_{ extit{incl}}$$

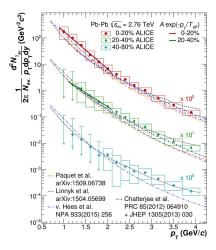
with
$$R_{\gamma}=rac{\gamma_{incl}}{\gamma_{decay}}=rac{\gamma_{incl}}{\pi_{param}^0}/rac{\gamma_{decay}}{\pi_{param}^0}$$


- Combination of PCM and PHOS independent measurements
- R_{γ} comparison to pQCD NLO theoretical predictions shows good agreement at high p_T

PLB 754 (2016) 235-248

Direct photons in Pb-Pb collisions with PCM+PHOS: comparison with pQCD

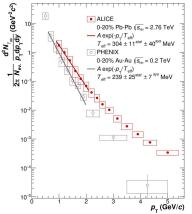
• At high p_T good agreement with pQCD calculations

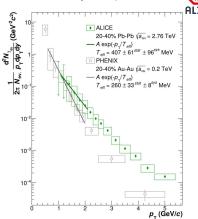

 \Rightarrow Excess of yield at low p_T attributed to thermal photons

PLB 754 (2016) 235-248

Direct photons in Pb-Pb collisions with PCM+PHOS: comparison with models

- Comparison with different models including thermal photon radiation
 - ▶ Van Hees et al.: space-time evolution $\tau_0 = 0.2 fm/c$, temperatures $T_0 = 682, 641, 461$ MeV for the 0-20%. 20-40% and 40-80%
 - ▶ Chatterjee et al.: (2+1D) hydrodynamics model with fluctuating initial conditions, $\tau_0=0.14 fm/c$, $T_0\approx740,680$ MeV for the 0-20% and 20-40%
 - Paquet et al.: (2+1D) hydrodynamics model with IP-Glasma initial conditions, $\tau_0 = 0.4 fm/c$, $T_0 \approx 385,350$ MeV for the 0-20% and 20-40%
 - Linnyk et al.: evolution of the collisions described microscopically




Phys. Lett. B 754 (2016) 235-248

 \Rightarrow Spectrum in agreement with models including QGP formation with an initial temperature > 350 MeV

Direct photons in Pb-Pb collisions with PCM+PHOS: \sqrt{s} dependence

PLB 754 (2016) 235-248

- At low p_T , exponential fit of the excess in the direct photon yield
- Comparison with PHENIX results (PRL104 (2010)132301 and PRC91/6 (2015) 064904)
- \Rightarrow Increasing inverse slope parameter with $\sqrt{s_{NN}}$ for 0-20% and 20-40% centrality classes

Conclusions

Neutral mesons in pp collisions

- Compatible with pQCD models for the lower p_T values
- ullet Good agreement of η/π^0 ratio measurement with the pQCD calculations

Neutral mesons in Pb-Pb collisions

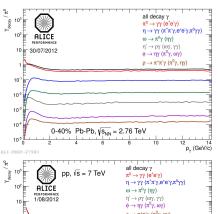
- \bullet π^0 measurement with PCM+PHOS and PCM+EMCAL
- Suppression observed with π^0 R_{AA} increasing in the most central collisions and with higher $\sqrt{s_{NN}}$
- \bullet η measurement with PCM+EMCAL

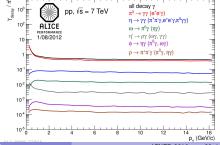
Direct photons in Pb-Pb collisions

- ullet Direct photon excess below 3 GeV/c in the most central collisions attributed to thermal photons
- Spectrum in agreement with models including QGP formation

Thank you for your attention!

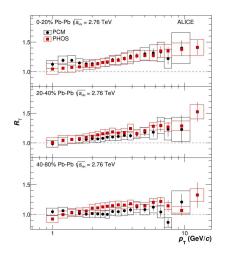
Back up


Direct photon measurement in Pb-Pb collisions with PCM+PHOS: R_{γ} cocktail



$$\gamma_{direct} = \gamma_{incl} - \gamma_{decay} = (1 - \frac{1}{R_{\gamma}})\gamma_{incl}$$

with
$$R_{\gamma}=rac{\gamma_{incl}}{\gamma_{decay}}=rac{\gamma_{incl}}{\pi_{param}^0}/rac{\gamma_{decay}}{\pi_{param}^0}$$


- $\frac{\gamma_{decay}}{\pi_{param}^0}$ obtained via calculations based on MC simulations anchored to data
- η meson contribution assuming transverse mass scaling or that η p_T have the same shape as K_S^0 spectrum

Direct photon in Pb-Pb collisions with PCM+PHOS: R_{γ}

PHOS and PCM individual results

Phys. Lett. B 754 (2016) 235-248