Properties of the Polyakov loop geometrical clusters and deconfined transition in SU(2) gluodynamics

O. Ivanytskyi

based on arXiv:1606.04710 [hep-lat]

ICNFP2016, 6 - 14 July, 2016, Kolymbari, Crete
Outline

1 Geometrical clusterization
Outline

1. Geometrical clusterization

2. Properties of clusters
Outline

1 Geometrical clusterization

2 Properties of clusters

3 New order parameters
Clusterization in QCD

- Theory of strong interactions (QCD) operates with quarks and gluons
- Only hadrons are directly observed in experiments

Clusterization of partons to hadrons
Svetitsky-Jaffe conjecture

- Deconfinement transitions in \((d+1)\)dimensional SU(N) gluodynamics is equivalent to magnetic transition in the \(d\)-dimensional Z(N) spin system

 L. G. Yaffe and B. Svetitsky, PRD, 26, 963, 1982

 \[
 \text{SU}(2) \text{ gluodynamics } \Leftrightarrow \text{Ising spin model}
 \]

- Local Polyakov loop - gauge invariant analog of continuous spin

 \[
 L(\tilde{x}) = \text{Tr} \prod_{t=0}^{N_T-1} U_4(\tilde{x}, t)
 \]

 \(U_4(\tilde{x}, t)\) – temporal gauge link defined by gluon field

 \[
 \text{SU}(2) \Rightarrow L(\tilde{x}) \in [-1, 1], \text{ real}
 \]
Identification of geometrical clusters

Definition of (anti)clusters

\[|L(\tilde{x})| < L_{\text{cut}} \Rightarrow \text{auxiliary vacuum} \]
\[|L(\tilde{x})| \geq L_{\text{cut}} \Rightarrow \text{(anti)clusters} \]
\[L_{\text{cut}} - \text{vacuum cut - off parameter} \]

C. Gattringer, PLB, 690, 179 (2010)
C. Gattringer, A. Schmidt, JHEP 1101, 051, 2011

(Anti)clusters can be either “spin up"or “spin down"ones

- Largest fragment - “anticluster liquid droplet"
- Next to the largest fragment - “cluster liquid droplet"
- Gas of (anti)clusters has the same Polyakov loop sign as their “liquids"
Size distributions of (anti)clusters

- Numerical simulations at 3 + 1 dimensional lattice of size $N_\sigma = 24$, $N_\tau = 8$
- 13 values of inverse coupling $\beta \in [2.31, 3] \Rightarrow 13$ values of physical temperature
- Vacuum cut-off parameter $L_{\text{cut}} = 0.1$ and 0.2
- Average over 1600 independent configurations for all β and L_{cut}

Distributions at low $\beta \leq \beta_c \simeq 2.52$ (phase of restored global $Z(2)$ symmetry)
- Symmetry between (anti)cluster distributions
- Gas and "liquid"domains are well separated

Distributions at high $\beta > \beta_c \simeq 2.52$ (phase of broken global $Z(2)$ symmetry)
- No symmetry between (anti)cluster distributions
- "Cluster liquid" evaporates to cluster gas
- Anticluster gas condensates to "anticluster liquid"
Deconfinement transition in SU(2) gluodynamics is a special kind of the liquid-gas phase transition with two liquids and two gases

Polyakov loop clusters \Leftrightarrow droplets?

Liquid droplet formula for average number of (anti)clusters of size k

was mentioned in talks of I. Mishustin @ ICNFP2016 and V. Sagun @ ICNFP2016

first introduced in M.E. Fisher, Physics 3, 255 (1967)

$$n_{k \geq k_{\min}} = C \exp \left(\nu k - \sigma k^{2/3} - \tau \ln k \right)$$

- C - normalization factor (absolute amount)
- ν - reduced chemical potential (liquid-gas phase transition)
- σ - reduced surface tension coefficient (appearance of critical point)
- τ - Fisher topological exponent (size distribution at critical point)
- k_{\min} - size of the minimal (anti)cluster described by the liquid droplet formula
Geometrical clusterization
Properties of clusters
New order parameters

Determination of k_{min} and τ

- LDF describes size distributions with almost the same quality for all $k_{\text{min}} \geq 2$

- Fisher topological exponent τ is temperature independent at $k_{\text{min}} = 2$

 in agreement with Fisher droplet model M.E. Fisher, Physics 3, 255 (1967)

- $k_{\text{min}} = 2, \quad \tau = 1.806 \pm 0.008$

value of τ agrees with NPA 924, 24 (2014)
At $\beta = 2.52$ global $Z(2)$ symmetry breaks down \Rightarrow chemical nonequilibrium between (anti)clusters ($\nu_{\text{cl}} \neq \nu_{\text{acl}}$)
Volume fraction

\[K_{\text{tot}} = \begin{cases} \sum_k k_n^{(a)\text{Cl}} / N^3, & \text{(anti)clusters} \\ 1 - K_{\text{aCl}}^\text{tot} - K_{\text{Cl}}^\text{tot}, & \text{auxiliary vacuum} \end{cases} \]

Volume fraction of vacuum is independent on \(\beta \) and/or temperature

\textbf{Incompressible auxiliary vacuum?}
Properties of the Polyakov loop geometrical clusters and deconfinement transition in SU(2) gluodynamics

\[\beta = 3.0, L_{\text{cut}} = 0.2 \]

- \(\max K_{acl} \): the volume of largest anticluster;
- \(\max K_{cl} \): the volume of largest cluster;
- \(V_{\text{gas}} \): the total volume of the gas of anticlusters;
- \(V_{\text{cl}} \): the total volume of the gas of clusters;
- \(V_{\text{vac}} \): the volume of auxiliary vacuum;

Visually these liquids resemble two pieces of different Swiss cheeses!
Average maximal (anti)cluster

- **Average Polyakov loop** is SU(2) gluodynamics order parameter, not observable.
- **Largest (anti)cluster** occupies almost all lattice \(\Rightarrow |L| \sim \max K_{aCl} - \max K_{Cl} \)

\[
\max K = \frac{\sum_{\tilde{x}} k^{1+\tau} n_k}{\sum_{\tilde{x}} k^{\tau} n_k}
\]

\[
\beta > \beta_c : \max K(\beta) - \max K(\beta_c) = a \cdot (\beta_c - \beta)^b
\]

<table>
<thead>
<tr>
<th>(L_{cut})</th>
<th>type</th>
<th>(a)</th>
<th>(b)</th>
<th>(\chi^2/dof)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Cl</td>
<td>(-3056 \pm 246)</td>
<td>0.2964 \pm 0.0284</td>
<td>16.32/4 (\approx 4.08)</td>
</tr>
<tr>
<td>0.1</td>
<td>aCl</td>
<td>(2129 \pm 160)</td>
<td>0.3315 \pm 0.0269</td>
<td>8.94/4 (\approx 2.235)</td>
</tr>
<tr>
<td>0.2</td>
<td>Cl</td>
<td>(-4953 \pm 443)</td>
<td>0.3359 \pm 0.0289</td>
<td>12.3/3 (\approx 4.01)</td>
</tr>
<tr>
<td>0.2</td>
<td>aCl</td>
<td>(2462 \pm 87.7)</td>
<td>0.3750 \pm 0.0129</td>
<td>2.068/4 (\approx 0.517)</td>
</tr>
</tbody>
</table>

Exponent \(b\) coincide with \(b_{\text{Ising}}\) of the Ising model - **Svetitsky-Jaffe conjecture**
Reduced surface tension coefficient

\[\beta > \beta_c : \sigma(\beta) - \sigma(\beta_c) = d \cdot (\beta_c - \beta)^B \]

<table>
<thead>
<tr>
<th>(L_{cut})</th>
<th>type</th>
<th>(d)</th>
<th>(B)</th>
<th>(\chi^2/dof)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Cl</td>
<td>-0.485 ± 0.014</td>
<td>0.2920 ± 0.0012</td>
<td>1.43/4 ≈ 0.36</td>
</tr>
<tr>
<td>0.1</td>
<td>aCl</td>
<td>2.059 ± 0.028</td>
<td>0.4129 ± 0.0077</td>
<td>1.68/4 ≈ 0.48</td>
</tr>
<tr>
<td>0.2</td>
<td>Cl</td>
<td>-0.2796 ± 0.0118</td>
<td>0.2891 ± 0.0016</td>
<td>1.11/4 ≈ 0.28</td>
</tr>
<tr>
<td>0.2</td>
<td>aCl</td>
<td>1.344 ± 0.033</td>
<td>0.4483 ± 0.0021</td>
<td>0.66/2 ≈ 0.33</td>
</tr>
</tbody>
</table>

\[|L| \sim \max K_{aCl} - \max K_{Cl} \sim (\sigma_{aCl} - \sigma_{Cl})^{b/B} \]

Reduced surface tension coefficient - order parameter
The approach to study the properties of the Polyakov loop geometrical (anti)clusters is developed.

It is shown that the deconfinement phase transition can be explained by the condensation/evaporation of large anticluster/cluster ‘liquid droplet which corresponds to Z(2) global symmetry breaking.

The size distributions of the gas of (anti)clusters are analyzed on the basis of the Liquid Droplet Model. It is shown that even dimers are described within this approach with high accuracy.

The Fisher topological constant τ is found to be 1.806 ± 0.008.

It is shown that the reduced surface tension of (anti)clusters can serve as an order parameter which is able to distinguish the phases of restored and broken Z(2) global symmetry.

Need model: Svetitsky-Jaffe inspired statistical models, instanton-dyon model for gluodynamics ...
Geometrical clusterization
Properties of clusters
New order parameters

O. Ivanytskyi with K. Bugaev, E. Nikonov, E.-M. Ilgenfrit

Properties of the Polyakov loop geometrical clusters and deconfinement transition in SU(2) gluodynamics

THANK YOU FOR YOUR ATTENTION