Kaon femtoscopic measurements from 200 GeV p+p and Au+Au collisions at STAR

Grigory Nigmatkulov
(for the STAR collaboration)

National Research Nuclear University MEPhI
(Moscow Engineering Physics Institute)

5th International Conference on New Frontiers in Physics
July 6-14, 2016
• Introduction

• Basics of the correlation femtoscopy

• Kaon femtoscopic measurements
 – p+p collisions at $\sqrt{s}=200$ GeV
 – Au+Au collisions at $\sqrt{s_{\text{NN}}}=200$ GeV

• Summary
Charged kaon correlation femtoscopy

• Femtoscopy with *strange particles*
 – Kaon scattering cross-sections are smaller than those for pions, hence *kaons may provide information about a different stage of the collision evolution*
 – Access to the *higher transverse mass* regions compared to pions

• *Clean probe of the emitting source*
 – Smaller contamination from the resonance decays compared with pions
Correlation femtoscopy

- Allows to extract **spatial and temporal parameters of the emitting source** by using particle correlations due to the quantum statistics (QS)

- Two-particle correlation function (CF):
 \[C(p_1, p_2) = \frac{P_2(p_1, p_2)}{P_1(p_1)P_1(p_2)} \]

- Experimentally:
 \[C(q_{\text{inv}}) = \frac{A(q_{\text{inv}})}{B(q_{\text{inv}})} \]

 \(q_{\text{inv}} \) - relative 4-momentum of the pair
 \(A(q_{\text{inv}}) \) - pair distribution from the same event (contain QS correlations)
 \(B(q_{\text{inv}}) \) - uncorrelated reference sample (event mixing technique)
Fitting procedures

• Correlation functions are fitted by a Bowler-Sinyukov function:
 \[C(q_{\text{inv}}) = N(1 - \lambda + K(q_{\text{inv}})(1+\exp(-R_{\text{inv}}^2 q_{\text{inv}}^2)))D(q_{\text{inv}}) \]
 - \(N \) - normalization factor
 - \(\lambda \) - correlation strength
 - \(K(q_{\text{inv}}) \) - Coulomb function integrated over a spherical source
 - \(D(q_{\text{inv}}) \) - baseline function, that takes into account non-femtoscopic correlations (important for p+p collisions)

• In order to eliminate possible biases due to the construction of the reference sample in p+p collisions, the measured CFs are corrected on the simulated distributions (contain neither QS correlations nor Final State Interactions) by constructing the double ratio before the fitting:
 \[C(q_{\text{inv}}) = \frac{\frac{dN_{\text{exp}}^\text{MC}(q_{\text{inv}})/dq_{\text{inv}}}{dN_{\text{ref}}^\text{MC}(q_{\text{inv}})/dq_{\text{inv}}}}{\frac{dN_{\text{exp}}^\text{MC}(q_{\text{inv}})/dq_{\text{inv}}}{dN_{\text{ref}}^\text{MC}(q_{\text{inv}})/dq_{\text{inv}}}} \]

PLB 270 (1991) 69
STAR detectors

- Large acceptance mid-rapidity detector
- Full azimuthal coverage (|η|<1)
- Excellent particle identification
MC generator PYTHIA-6.4.28 with Perugia0 tune is used to describe the non-femtoscopic correlations.

For overlapping m_T, the radius parameters for pions and kaons are consistent with each other within uncertainties.
• Source radii for positively and negatively charged kaons are consistent within the uncertainties.
• The emitting source radii increase with centrality (multiplicity) and decrease with pair transverse momentum.
• For the given multiplicity, the kaon source radii are smaller than those for pions → kaons and pions are not emitted from the same space-time position for Au+Au collisions.

Also see Jindřich Lidrych talk.
Conclusions

Like-sign kaon femtoscopy in p+p collisions
• Slight decrease of the charged kaons source radii with increasing k_T
• Radius parameters for pions and kaons are consistent with each other within uncertainties for the overlapping m_T

Charged kaon correlations in Au+Au collisions
• The source radii of positively and negatively charged kaons are consistent within the uncertainties
• The emitting source radii of charged kaons decrease with increasing pair transverse momentum and increase with the collision centrality
• Kaon source size is smaller compare to pions for the given multiplicity