

Searches for BSM physics in final states with jets and leptons+jets at CMS

Francesco Santanastasio "Sapienza" University of Rome and INFN

5th International Conference on New Frontiers in Physics ICNFP2016, 06-14 July 2016, Kolymbari (Crete)

Large Hadron Collider (LHC)

- Still many unanswered questions in Standard Model (SM)
 - what is dark matter? where is all the antimatter in the universe? why gravity is so weak? etc..
- LHC is the ideal place to find new physics beyond SM at the TeV scale

Physics beyond SM

Many theory predictions

Many searches in CMS

NFN

20

10

Run1: 7 & 8 TeV

CMS publications

Technical stop

- Searches for new physics produce the largest number of publications in CMS
 - ~100 from Exotica
 - ~65 from Supersymmetry
 - ~15 from B2G
- In this talk, focus on some Exotica signatures of new physics in jets and leptons +jets final state
 - selection of few recent results

Run2: 13 TeV

Dijet resonances

- Nearly any new resonance that might be seen at LHC should couple to quarks/gluons
 - dijet final state
- Search strategy
 - look of narrow bump in dijet invariant mass spectrum
- <u>High-mass</u> search using standard data stream (mass > 1 TeV)
- <u>Low-mass</u> search using special data stream (mass < 1 TeV)

Highest dijet mass event (~6 TeV)

High-mass dijet search

- Trigger selection
 - $H_T = \sum_{jets} p_T^i > 800 \text{GeV}$
- Wide jets (R=1.1) used to recover final state radiation
 - improve energy scale and resolution
- Fit data with smoothly falling background function
 - same parameterization successfully used in previous searches

$$\frac{d\sigma}{dm_{j_{j}}} = \frac{P_{o}(1-x)^{f_{1}}}{x^{f_{2}+P_{s}\,\ell_{m}(x)}} \qquad X = \frac{M_{j_{j}}}{13000}$$

• **No new resonance observed**, set limits

High-mass limits at 13 TeV

Phys. Rev. Lett. 116 (2016) 071801 [1]

- Different final states considered:
 qq, qg, gg resonances
- More sensitive than Run1 for resonance masses >2 TeV

Low-mass dijet search

• Important to cover the full mass range in BSM searches

- Hot topic
 - diphoton excess at 750 GeV [2]
 - decays to jets are expected
- Experimental difficulties
 - large dijet cross section at hadron colliders at low-mass
 - limited resources to process and store data
 - trigger thresholds raise with increasing inst. luminosity(L)

First introduced by

"Data scouting" in CMS

Low-mass limits at 8 TeV

• No excess at 750 GeV

- similar sensitivity of CMS 8 TeV, no excess

Leptoquarks (LQ)

- Predicted by many BSM theories: grand unified theories, composite models, technicolor, superstring-inspired, SUSY RPV, and others
- Possible explanation for observed quark-lepton symmetry of SM
- Spin 0 or 1, coloured, fractional electric charge, carry both baryon and lepton number
 - proton is stable → baryon and lepton number conserved separately
 - FCNC suppressed in SM \rightarrow only coupling within each generation

Scalar Leptoquarks

LQ model and signatures

- Pair-production cross section known at NLO
 - independent of unknown l-q-LQ coupling
- Several different final states
 - rich physics program in CMS
 - interesting signatures also beyond leptoquark models

LQ2 - µµqq

- 2 muons + 2 jets [7]
- Selection optimized for each LQ mass hypothesis
 - $M_{\mu\mu}$: dimuon invariant mass
 - $\mathbf{S}_{\mathbf{T}}$: $p_T(\mu_1) + p_T(\mu_2) + p_T(jet_1) + p_T(jet_2)$
 - M^{min}_{µj}: smaller of two LQ masses which minimizes LQ-LQ mass difference
- Counting experiment
 - no excess in data
- Exclude scalar LQ2 with mass < 1150 GeV and $\beta=1$
 - exceeding 8 TeV limits

LQ3 - TTbb

- First search for LQ3 at 13 TeV LHC
- 2 taus + 2 jets [8]
 - hadronic tau decays (BR = 42%)
 - no explicit jet b-tagging (model independent)
- Main physics observable
 - **S**_T: $p_T(\tau_1) + p_T(\tau_2) + p_T(jet_1) + p_T(jet_2)$
- Shape analysis
 - data in agreement with predictions
- Exclude scalar LQ3 with mass < 740 GeV and β =1

Run 1 fluctuations

Conclusions

• Search for BSM physics continues at CMS

- rich physics program in final states with jets and leptons+jets (covered small part in this talk)

• Dijet resonances

- new energy territory for masses > 2 TeV
- novel *data scouting* technique extend search in sub-TeV mass region; can confirm 750 GeV diphoton excess
- Leptons+jets searches
 - many different final states covered in CMS
 - $2-3\sigma$ excess in evjj and eejj Run 1 searches
- Excellent LHC performance in 2016
 - expect $\sim 10 \text{ fb}^{-1}$ for ICHEP2016 in August
 - maybe 40 fb^{-1} by the end of the year
- Keep eyes open for LHC results !!!

CMS Exotica Public Results

http://cms-results.web.cern.ch/cms-results/ public-results/publications/EXO/index.html

CMS Integrated Luminosity, pp, 2016, $\sqrt{s}=$ 13 TeV

References

CMS Exotica Public Results

http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO/index.html

- [1] Dijet resonances 13 TeV: CMS collaboration, Phys. Rev. Lett. 116 (2016) 071801, <u>http://arxiv.org/abs/</u> <u>1512.01224</u>,
- [2] **Diphoton excess 13 TeV**: CMS collaboration, <u>http://arxiv.org/abs/1606.04093</u>, submitted to PRL; ATLAS collaboration, <u>http://arxiv.org/abs/1606.03833</u>, submitted to JHEP
- [3] Data Scouting and Data Parking: CMS collaboration, CMS-DP-2012-022
- [4] First dijet search with scouting at CMS: CMS collaboration, CMS-PAS-EXO-11-094, <u>http://cds.cern.ch/</u> record/1461223
- [5] **Dijet search with scouting at 8 TeV**: CMS collaboration, <u>https://arxiv.org/abs/1604.08907</u>, Accepted for publication by PRL
- [6] Dijet search with TLA at 13 TeV: ATLAS collaboration, <u>http://cds.cern.ch/record/2161135</u>, ATLAS-CONF-2016-030
- [7] Second generation leptoquarks at 13 TeV: CMS collaboration, <u>https://cds.cern.ch/record/2139349</u>, CMS-PAS-EXO-16-007
- [8] Third generation leptoquarks at 13 TeV: CMS collaboration, <u>https://cds.cern.ch/record/2159374</u>, CMS-PAS-EXO-16-016
- [9] First generation leptoquarks at 8 TeV: CMS collaboration, Phys. Rev. D93 (2016) 032004, <u>http://arxiv.org/abs/1509.03744</u>
- [10] W_R and Heavy neutrino at 8 TeV: CMS collaboration, Eur. Phys. J. C 74 (2014) 3149, <u>http://arxiv.org/abs/</u> <u>1407.3683</u>

Backup slides

Data Scouting in 2015 (next 3 slides)

• Calo Scouting

- Four-momenta of Calojets with pT>20 GeV
- Vertices (when available), "opportunistically" from other paths in the trigger table
- Event information
 - energy density p (for pile-up subtraction)
 - Missing transverse energy

PF Scouting

- · Four-momenta of relevant physics objects
 - e, μ, γ, PFJets, PF candidates, vertices
- Event information (as for Calo Scouting, but with tracking)

Vertices ρ e μ γ Typical size: 10 kb

Trigger Algorithms

Hadronic triggers

- collect events with HT above some threshold (PF/Calo scouting)
- collect events in bins of HT (parking)

<u>Muon Trigger</u>

 collect events with muon pair having mass > 10 GeV

Auxiliary triggers

- measure L1-seed turn-on curve
- measure efficiency of HLT selection

Scouting Trigger Paths	Rate [Hz] @3.2e33 cm ⁻² s ⁻¹
DST_HT450_PFScouting	100
DST_HT250_CaloScouting	1000
DST_DoubleMu6_Mass10	140
Parking Trigger	Rate [Hz] @3.2e33 cm ⁻² s ⁻¹
HLT_HT450to470	17
HLT_HT470to500	20
HLT_HT500to550	22
HLT_HT550to650	23
HLT_HT650	21
Prescaled Paths (10 Hz each)	Purpose
DST_L1HT_PFScouting	Measure HLT turn-ons
DST_L1HT_CaloScouting	Measure HLT turn-ons
DST_CaloJet40_PFScouting	Measure L1 turn-ons
DST_CaloJet40_CaloScouting	Measure L1 turn-ons

EXAMPLE: The HT events

Dijet scouting limits

- Exclude "cross section X branching ratio X acceptance" of about 2 pb at 750 GeV for gg resonances
 - acceptance ~ 60% for scalar resonances

Leptoquark constraints

 →LQ must vertices must conserve separately baryon and lepton number

FCNC suppressed in SM

• ⇒LQ only couple within a single generation

LQ1 and LQ2 limits

SAPIENZA UNIVERSITÀ DI ROMA

INFN

M(IIjj) spectra

INFN