Overview talk on CMS detector performances in Run II

ICNFP2016: 5th International Conference on New Frontiers in Physics Orthodox Academy of Crete, Kolymbari, 6-14 July 2016

The CMS detector at the LHC

CMS (Compact Muon Solenoid) is a multipurpose detector built to exploit physics at LHC

- pp collisions at a center of mass energy 7, 8 and 13 TeV

- PbPb collisions at a center of mass energy of 2.76 TeV per nucleon

The CMS detector

CMS consists of multiple subdetectors to fully reconstruct tracks, electrons, photons, hadrons and muons

CMS operation in 2016

Main goals for 2016 operation:

- Re-establish efficient operation after Year End Technical Stop (YETS)
 - detector and magnet intervention
- Commissioning of Level-1 (L1) Trigger

- completely new system for 2016

• Ensure high data taking and data quality efficiency

Magnet status

Refurbishment of the magnet system was successful

- Cold box was cleaned to remove traces of Breox contaminants
- Primary oil removal system was replaced

Magnet is fully operational since April 28th

- Operational parameters of cryogenic system are stable
- Detector commissioning and alignment activities done with full magnetic field
- Working stably for proton-proton physics despite natural events

July 2016 - ICNFP2016

Overall detector performance

Many activities done during the winter shutdown to keep or improve detector performance with respect to 2015

- main improvement for Preshower sub-detector (ES) where 3% of dead channels were recovered

Detector Active Fraction

July 2016 – ICNFP2016

Data taking efficiency

CMS is efficiently recording physics data

- data recording efficiency > 90%
- data validated for physics > 95%

CMS Integrated Luminosity, pp, 2016, $\sqrt{s}=$ 13 TeV

L1 trigger: Muon

- L1 Trigger has been completely upgraded for 2016 runs
 - New more flexible and powerful electronics
 - Larger data bandwidth using optical links
 - More flexibility in the algorithm
- New muon trigger system
 - 3 regional track finder based on different eta region to exploit detector redundancy
 - a Global muon trigger as collector and for merging and removal duplicate tracks

- L1 calorimeter trigger has been fully upgraded
 - Full tower level information used by the algorithm
 - Better energy and position resolution

- L1 and offline jet energy are consistent
- Robust against pile-up

• More details in the talk of Riccardo Manzoni

July 2016 – ICNFP2016

Tracker

- Since 2015, Tracker detector is operated at low temperature
 Pixel at -10°C, Strip at -15°C
- Cosmics and collision data used to optimize the timing and update the alignment

Electromagnetic Calorimeter (ECAL)

- In 2016 new readout settings have been deployed to cope with higher pile-up
- Calibration streams and data being analysed to update alignment and inter-calibration constants

Invariant mass of photon pairs reconstructed in the ECAL Barrel crystal

- used as prompt feedback to monitor the laser monitoring calibration and to inter-calibrate the energy of ECAL crystals

July 2016 - ICNFP2016

- Di-electron invariant mass for barrel-barrel electron pairs:
 - data and MC comparison done with 2015 calibration
 - Energy shift is observed in data since ECAL calibration has not been yet updated to 2016 conditions

July 2016 - ICNFP2016

Hadron Calorimeter (HCAL)

- Many updates deployed during the winter shutdown
 - New uTCA-based readout for HB and HE (10Gb/s links)
 - Switched to updated L1 trigger (uTCA inputs from HB, HE, HF)
- Data checks with collisions data
 - HCAL timing synchronisation confirmed
 - Good matching of data and trigger primitives from new and previous readout

Readout

July 2016 - ICNFP2016

- Muon detectors operation are smooth for all detectors:
 - Drift Tube (DT), Cathode Strip Chamber (CSC), Resistive Plate Chamber (RPC)
 - Efficiencies are very good
 - DT and RPC efficiency are shown for 2016 data

Muon detectors: timing

- Time resolution is good
 - $-\sigma(DT) = 1.4 \text{ ns}$
 - better performance than in 2015 data (2 ns)
 - $-\sigma(CSC) = 3.1 \text{ ns}$
 - comparable to 2015 data

Muon performance

The dimuon invariant mass spectrum shows the different resonances collected with various dimuon triggers

July 2016 - ICNFP2016

Jet energy scale calibrated using Z/photon + jets

- similar performance as in Run1

Jet energy resolution robust against pile-up above 100 GeV

Data-MC in good agreement - similar performance to Run1

Data cleaning is effective to remove long MET tails

July 2016 - ICNFP2016

L. Borrello – The CMS detector performance

Algorithms performance improved in Run 2

- 10% higher b-jet efficiency for a misidentification probability of 1%

Good agreement of data and MC - Distribution of CSVv2 discriminator in top quark pair dilepton events

Tau reconstruction well understood in MC

July 2016 - ICNFP2016

CMS detector has stable and excellent performance

- Magnet is operated stably at 3.8T
- New Level-1 trigger system deployed with improved performance
- All sub-detectors are running smoothly
- Physics Object performing as expected
- CMS is ready to exploit full physics potential collecting and analyzing the large datasets provided by the LHC in 2016
 - Many thanks to the LHC team for the great performance of the accelerator
 - More than 8 fb⁻¹ delivered up to end of June

The CMS Collaboration

More than 4000 people among scientists, engineers, students from 200 institutions around the world

July 2016 - ICNFP2016

