Top-quark production measurements using the ATLAS detector at the LHC

5th International Conference on New Frontiers in Physics Κολυμπάρι, 6th - 14th July 2016

The top-quark

- The only 'bare' quark
- Yukawa coupling to Higgs $\sim \mathcal{O}(I)$
- Important to test the SM
- Top-quark pairs + vector boson probes electroweak couplings in the SM
- Produced in either pairs or as a single quark
- Decays almost exclusively in Wb pair
- Top-quark pair decay channels depending on the

Pair Production

Single Production

Top-quark decay

Outline

* Top-quark pair production

- in dilepton(eµ) channel events at $\sqrt{s} = 13 \text{ TeV}$
- differential cross sections in lepton+jets channel at $\sqrt{s} = 8 \text{ TeV}$
- associated production with Z/W in multilepton final states at \sqrt{s} =13 TeV

* Single top-quark production

- inclusive cross section in *t-channel* at $\sqrt{s} = 13$ TeV
- cross section in Wt-channel at $\sqrt{s} = 8 \text{ TeV}$
- evidence in the s-channel at at $\sqrt{s} = 8 \text{ TeV}$

Pair Production

arXiv:1606.02699

A very clean signal

- one isolated $e^{\pm} \mu^{\mp}$ pair
- one or two *b*-jet(s)
- leptons and jets $p_T>25$ GeV, $|\eta|<2.5$

Backgrounds: mostly from simulation

- Z+jets
- diboson
- misidentified (fake) lepton events ->data

tt purity in the simulation:

- with one b-tag -> 89%
- with two b-tags -> 96%

$$N_1 = \mathcal{L} \ \sigma_{t\bar{t}} \ \epsilon_{e\mu} \ 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{bkg}$$
$$N_2 = \mathcal{L} \ \sigma_{t\bar{t}} \ \epsilon_{e\mu} \ C_b \ \epsilon_b^2 + N_2^{bkg}$$

 $\epsilon_{e\mu}$: Efficiency for ϵ_{μ} selection

 C_b : Correlations between the two b-jets

 ϵ_b : b-tagging efficiency

arXiv:1606.02699

The inclusive cross-section reads:

$$\sigma_{t\bar{t}} = 818 \pm 8(\text{stat.}) \pm 27(\text{syst.}) \pm 19(\text{lumi}) \pm 12(\text{beam})\text{pb}$$

To be compared with $\sigma_{theo} = 832^{+40}_{-46} \mathrm{pb}$ (NNLO+NNLL)

Systematics are dominated by:

 $t\bar{t}$ hadronisation $t\bar{t}$ NLO modelling misidentified leptons single top / $t\bar{t}$ interference parton distribution functions

Differential Cross Section in I+jets Channel

arXiv:1511.04716

- $t\bar{t}$ production w.r.t. different kinematic variables to test the SM at the TeV scale
- Effects beyond the SM as modifications of diff. measurements
- Observables to emphasise:
 - the tt production process with sensitivity: to effects of I/FSR to the different PDFs to non-resonant processes and higher order corrections

* Baseline observables:

$$p_T^{t,had}$$
, $|y^{t,had}|$, $p_T^{t\overline{t}}$, $|y^{t\overline{t}}|$, $m^{t\overline{t}}$

Lepton+jets channel

- \rightarrow one iso. e or μ
- at least four jets
- at least two *b*-jets

* Backgrounds

- \rightarrow W+jets
- $ightharpoonup tar{t}$ dilepton events
- single top
- QCD multijet

20.3 fb s = 8 TeV

arXiv:1511.04716

- * Results unfolded both to a fiducial particlelevel (PL) phase space and to the full phase space
- * Unfolding to a fiducial PL phase space and using variables directly related to detector observables
 - allows precision tests of QCD, avoiding large model-dependent extrapolation corrections
- * A migration matrix to map the binned generated particle-level events to the binned detector-level events

arXiv:1511.04716 (2016)

- Good agreement with the predictions over a wide kinematic range
- Most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data
- Agreement for this observable improves when NNLO corrections are taken into account
- Uncertainty dominated by jet energy scale, b-tagging, tt modelling

2

2.5

 $|\mathbf{y}^{\mathsf{t}}|$

Phys. Rev. D 93, 032009 (2016)

- * BSM $t\bar{t}$ production can distort top- p_T high p_T region
- Precise measurement of boosted top-quarks might reveal hint for BSM
- * Lepton+jets channel using hadronically decaying top-quarks with $p_T > 300 \text{ GeV}$
- * Boosted top-quarks reconstruction anti- k_T with radius parameter R = 1.0
- * Cross-section as a function of top-quark p_T
- * The measurement uncertainty dominated by jet energy resolution of large-R jets.

* The predictions of a majority of NLO and LO ME Monte Carlo generators agree with the measured cross-sections.

- Three channels based on the number of reconstructed leptons:
- 1. Same-sign dimuon analysis (2 μ -SS): ttWtwo muons p_T >25 GeV, E_T^{miss} >40 GeV, H_T > 240 GeV, \ge 2 b-jets

2. Trilepton analysis:

		-
	_	
U	U	

	UUZ	$\iota\iota\iota vv$		
Variable	3ℓ -Z-1b4j 3ℓ -Z-2b3j 3ℓ -Z-2b	4j		
Leading lepton $p_{\rm T}$	> 25 Ge	eV		
Other leptons' $p_{\rm T}$	> 20 GeV			
Sum of lepton charges	±1			
Z-like OSSF pair	$ m_{\ell\ell} - m_Z < 10 \text{ GeV}$	$ m_{\ell\ell} - m_Z > 10 \text{ GeV}$		
$n_{ m jets}$	$\geq 4 \qquad \qquad 3 \qquad \qquad \geq 4$	$\geq 2 \text{ and } \leq 4$		
$n_{b-\mathrm{jets}}$		≥ 2		

3. Tetralepton analysis: t t Z

Region	Z_2 leptons	<i>P</i> T34	$ m_{Z_2}-m_Z $	$E_{ m T}^{ m miss}$	$N_{b ext{-jets}}$
4 <i>ℓ</i> -DF-1b	$e^{\pm}\mu^{\mp}$	> 35 GeV	-	-	1
4 <i>ℓ</i> -DF-2b	$e^{\pm}\mu^{\mp}$	-	-	-	≥ 2
11 SE 16	م±م [∓] بی±بہ	> 25 GeV	<pre>> 10 GeV < 10 GeV</pre>	> 40 GeV \	1
46-51-10	$e e , \mu \mu$	> 23 GCV	< 10 GeV	> 80 GeV \int	1
<i>4ℓ</i> -SF-2b	$e^{\pm}e^{\mp},\mu^{\pm}\mu^{\mp}$	_	<pre>> 10 GeV < 10 GeV</pre>	-)	≥ 2
	ε ε ,μ μ	-	\ < 10 GeV	> 40 GeV \int	

Pair production in association with Z/W boson

3.2 fb⁻¹ s = 13 TeV

ATLAS-CONF-2016-00

(2mu-SS)	Trilepton	Tetralepton	Ē
Dominant background: fake leptons.	Dominant background from diboson,	Dominant background from	-
Backgrounds from the production of prompt	tZ, Z+jets w/ fake	diboson.	Data / Pred.
leptons w/ correct charges come from WZ	lepton,	Backgrounds w/ fake leptons estimated	Data
The fake lepton bkg. is estimated using matrix method.	The fake lepton bkg. is estimated using matrix method.	from simulation and corrected w/ SFs from CRs.	Events

- ATLAS Preliminary → Data WZ $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ tWZ Fake leptons Other **/// Uncertainty** Trilep SR ≥6 Number of jets
- **ATLAS** Preliminary ttZ WZ $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ tWZ Other Fake leptons /// Uncertainty Tetralep_|SR Data / Pred.
- Backgrounds containing prompt leptons are modelled by simulation.
- Normalisations are estimated from data when possible.

≥2 Number of b-tagged jets

Pair production in association with Z/W boson

- Expected yields after the fits: in the relevant SRs and two CRs used to constrain WZ and ZZ.
- From a fit to eight SRs and two CRs:

$$\sigma_{t\bar{t}Z} = 0.9 \pm 0.3 \text{ pb}$$

$$\sigma_{t\bar{t}W} = 1.4 \pm 0.8 \text{ pb}$$

Both measurements are consistent with the NLO QCD theoretical predictions:

$$\sigma_{t\bar{t}Z}^{theo} = 0.76 \pm 0.08 \text{ pb}$$

$$\sigma_{t\bar{t}W}^{theo} = 0.57 \pm 0.06 \text{ pb}$$

Uncertainty	$\sigma_{tar{t}Z}$	$\sigma_{t \bar{t} W}$
Luminosity	6.4%	7.0%
Reconstructed objects	7.0%	7.3%
Backgrounds from simulation	5.5%	3.7%
Fake leptons and charge misID	3.9%	21%
Total systematic	12%	24%
Statistical	32%	51%
Total	34%	56%

Single Production

b

ATLAS-CONF-2015-079

Wtb

- Dominant single production channel
- One muon, E_T^{miss} , two high p_T jets, one \emph{b} -jet
- Signal discrimination using neural network (NN)
- Most discriminating variables: reconstructed top-quark mass and jet-pair mass
- Binned maximum likelihood fit to the NN output

Inclusive cross section single top-quark in t-channel 3.2 fb

- Most important backgrounds: tt events, W+jets
- Smaller backgrounds: *s*-channel, *Wt*-channel, diboson and Z+jets
- All backgrounds except QCD -> simulation based and scaled to the SM predictions
- After maximum likelihood fit:

$$\sigma_{tq} = 133 \pm 6(\text{stat.}) \pm 24(\text{syst.}) \pm 7(\text{lumi.}) \text{pb}$$

$$\sigma_{\bar{t}q} = 96 \pm 5(\text{stat.}) \pm 23(\text{syst.}) \pm 5(\text{lumi.}) \text{pb}$$

- * Measured cross-section is proportional to $|f_{LV} \cdot V_{tb}|^2$
- * $|f_{LV} \cdot V_{tb}|$ is extracted by dividing the cross-section by the NLO prediction:

$$|f_{\text{LV}} \cdot V_{\text{tb}}| = 1.03 \pm 0.02 \pm 0.11 \pm 0.02 \pm 0.03$$
 (stat.) (syst.) (theo.) (lumi.)

ATLAS-CONF-2015-079

JHEP01 (2016) 064

Production via b-quark-induced partonic channels

$$gb \longrightarrow Wt \longrightarrow W^-W^+b$$

- Only one b-jet in the final state is a distinctive feature
- Two opposite sign high- p_T leptons, E_T^{miss} and one high- p_T central b-jet
- Signal separation through the use of a boosted decision tree (BDT) algorithm in the TMVA* framework

^{*} Toolkit for Multivariate Data Analysis

The BDTs are trained separately in three regions, 1jet-1tag, 2jets-1tag and 2jets-2tag using simulated Wt (signal), and tt (main background) samples

A profile likelihood fit to the BDT classifier utilising all regions

$$\sigma_{Wt} = 23.0 \pm 1.3 (\text{stat.})^{+3.2}_{-3.5} (\text{syst.}) \pm 1.1 (\text{lumi.}) \text{pb}$$

$$|f_{\text{LV}} \cdot \mathbf{V}_{\text{tb}}| = 1.01 \pm 0.10$$

Fid. XS with 2 leptons p_T >25 GeV, $|\eta|$ < 2.5, 1 jet p_T >20 GeV, $|\eta|$ < 2.5 and E_T^{miss} > 20 GeV

$$\sigma_{Wt} = 0.85 \pm 0.01 \text{(stat.)}_{-0.07}^{+0.06} \text{(syst.)} \pm 0.03 \text{(lumi.)} \text{pb}$$

Jet energy resolution and I/FSR are the dominant uncertainties

Physics Letters B 756 (2016) 228-246

- Sensitive to new particles in several models of physics beyond the SM such as: charged Higgs, W' boson
- Important role for anomalous coupling models in an effective quantum field theory*
- Theoretical calculations are available in NLO QCD including NNLL correction

- * Lepton+jet channel
 - \rightarrow one iso. e or μ
 - large E_T^{miss}
 - two high $p_T b$ -jets

Signal extraction using matrix element method

20.3 fb⁻¹ $/_S$ = 8 TeV

The result of the maximum LH fit

$$\sigma_s = 4.8 \pm 0.8 (\text{stat.})^{+1.6}_{-1.3} (\text{syst.}) \text{pb}$$

- The signal contribution for the matrix element discriminant in the data (all backgrounds subtracted)
- The largest uncertainties:
 - the limited sample sizes for data and the simulation
 - jet energy resolution
 - modelling of single top t-channel
- Obs. sig.: 3.2σ (Exp. 3.9σ)

$$|f_{LV} \cdot V_{tb}| = 0.93 + 0.18/-0.20$$

0.058

0.0018

0.0002

0.102

P(S|X)

0.187

Summary

- * Latest result for pair production in dilepton($e\mu$) channel
- * Differential measurements of the top-quark transverse momentum and kinematic properties of the $t\bar{t}$ pair including results using boosted top-quarks
- * Pair production in association with *Z/W* boson
- * t-channel cross section at 13 TeV
- * Inclusive and fiducial cross sections using BDTs in Wt channel
- * Evidence in s-channel using ME method 3.2σ
- * Coupling strength at the *Wtb* vertex is determined for all channels

Further Material

Pair production cross-section using eµ events - Systematics

Event counts	N_1	N_2
Data	11958	7069
Single top	1140 ± 100	221 ± 68
Dibosons	34 ± 11	1 ± 0
$Z(\to \tau\tau \to e\mu)$ +jets	37 ± 18	2 ± 1
Misidentified leptons	164 ± 65	116 ± 55
Total background	1370 ± 120	340 ± 88

6 • 1 • • • • • • • • • • • • • • • • • • •			
Uncertainty (inclusive $\sigma_{t\bar{t}}$)	$\Delta \epsilon_{e\mu}/\epsilon_{e\mu}$ [%]	$\Delta C_b/C_b$ [%]	$\Delta\sigma_{tar{t}}/\sigma_{tar{t}}$ [%]
Data statistics			0.9
$t\bar{t}$ NLO modelling	0.7	-0.1	0.8
$t\bar{t}$ hadronisation	-2.4	0.4	2.8
Initial- and final-state radiation	-0.3	0.1	0.4
$t\bar{t}$ heavy-flavour production	_	0.4	0.4
Parton distribution functions	0.5	-	0.5
Single-top modelling	_	-	0.3
Single-top/ $t\bar{t}$ interference	_	-	0.6
Single-top Wt cross-section	_	-	0.5
Diboson modelling	_	-	0.1
Diboson cross-sections	_	-	0.0
Z+jets extrapolation	_	-	0.2
Electron energy scale/resolution	0.2	0.0	0.2
Electron identification	0.3	0.0	0.3
Electron isolation	0.4	-	0.4
Muon momentum scale/resolution	-0.0	0.0	0.0
Muon identification	0.4	0.0	0.4
Muon isolation	0.2	-	0.3
Lepton trigger	0.1	0.0	0.2
Jet energy scale	0.3	0.1	0.3
Jet energy resolution	-0.1	0.0	0.2
b-tagging	-	0.1	0.3
Misidentified leptons	-	-	0.6
Analysis systematics	2.7	0.6	3.3
Integrated luminosity	_	-	2.3
LHC beam energy	_	-	1.5
Total uncertainty	2.7	0.6	4.4
Uncertainty (fiducial $\sigma_{t\bar{t}}^{\mathrm{fid}}$)	$\Delta G_{e\mu}/G_{e\mu}$ [%]	$\Delta C_b/C_b$ [%]	$\Delta \sigma_{t \bar{t}}^{\mathrm{fid}} / \sigma_{t \bar{t}}^{\mathrm{fid}} \ [\%]$
$t\bar{t}$ NLO modelling	0.5	-0.1	0.6
$t\bar{t}$ hadronisation	-1.6	0.4	1.9
Parton distribution functions	0.1	-	0.1
Other uncertainties (as above)	0.8	0.4	1.5
Analysis systematics $(\sigma_{t\bar{t}}^{\text{fid}})$	1.8	0.6	2.5
Total uncertainty $(\sigma_{t\bar{t}}^{\mathrm{fid}})$	1.8	0.6	3.9

Differential distributions (Full phase-space)

$$\frac{d\sigma^{\text{full}}}{dX^{i}} \equiv \frac{1}{\mathcal{L} \cdot \mathcal{B} \cdot \Delta X^{i}} \cdot \hat{f}_{\text{eff}}^{i} \cdot \sum_{j} \hat{\mathcal{M}}_{ij}^{-1} \cdot \hat{f}_{\text{acc}}^{j} \cdot \hat{f}_{\text{ljets}}^{i} \cdot \left(N_{\text{reco}}^{j} - N_{\text{bg}}^{j}\right)$$

 $f_{\rm eff}$: eff. correction for events passing PL sel. but failing DL

 f_{ljets} : the fraction of single lepton tt events in the nom. sample

 f_{acc} : correction for events generated outside the FR but passed the detector-level selection

X observable at particle level (PL)

j bins of X at DL and i bins at PL

 ΔX^i bin width

 \mathcal{M}_{ij}^{-1} is the Bayesian unfolding

Differential distributions (Full phase-space)

Differential distributions (Fiducial phase-space)

Pair production in association with Z/W boson - Systematics

Region	t + X	Bosons	Fake leptons	Total bkg.	$\Big t ar{t} W$	$t ar{t} Z$	Data
3ℓ -WZ-CR	0.51 ± 0.13	26.9 ± 2.5	1.6 ± 1.7	29.0 ± 3.0	0.017 ± 0.005	0.71 ± 0.08	33
4ℓ -ZZ-CR	0.007 ± 0.006	37.9 ± 2.5	3.1 ± 0.9	41.0 ± 2.7	< 0.001	0.031 ± 0.006	40
2μ -SS	1.00 ± 0.19	0.14 ± 0.06	1.7 ± 1.5	2.9 ± 1.5	2.28 ± 0.34	0.65 ± 0.07	9
3ℓ -Z-2b4j	1.06 ± 0.25	0.5 ± 0.4	0.1 ± 0.6	1.7 ± 0.8	0.061 ± 0.013	5.1 ± 0.5	8
3ℓ -Z-1b4j	1.23 ± 0.26	3.4 ± 2.2	2.0 ± 1.7	6.6 ± 2.8	0.037 ± 0.010	4.0 ± 0.4	7
3ℓ -Z-2b3j	0.64 ± 0.23	0.25 ± 0.18	0.1 ± 0.4	1.0 ± 0.5	0.082 ± 0.015	1.75 ± 0.20	4
3ℓ -noZ- $2b$	0.95 ± 0.15	0.18 ± 0.09	3.6 ± 2.2	4.7 ± 2.2	1.55 ± 0.24	1.35 ± 0.16	10
4ℓ -SF-1b	0.198 ± 0.035	0.22 ± 0.08	0.112 ± 0.032	0.53 ± 0.09	< 0.001	0.59 ± 0.05	1
4ℓ -SF-2b	0.130 ± 0.035	0.11 ± 0.05	0.053 ± 0.016	0.29 ± 0.07	< 0.001	0.57 ± 0.05	1
4ℓ -DF-1b	0.21 ± 0.04	0.022 ± 0.011	0.105 ± 0.027	0.34 ± 0.05	< 0.001	0.67 ± 0.05	2
4ℓ-DF-2b	0.15 ± 0.05	< 0.001	0.055 ± 0.017	0.20 ± 0.05	< 0.001	0.58 ± 0.05	1

Inclusive cross section single top-quark in t-channel - Systematics

Source	$\Delta \sigma_{tq}/\sigma_{tq}$ [%]	$\Delta \sigma_{ar{t}q}/\sigma_{ar{t}q}$ [%]
Data statistics	± 4.6	± 5.0
MC statistics	± 6.3	± 6.5
Multijet normalisation	± 0.8	± 2.4
Other background normalisation	± 1.4	± 0.5
3.5		1 1 0
Muon uncertainties	± 1.6	± 1.6
JES	± 5.5	± 1.6
Jet energy resolution	± 4.3	± 3.1
$E_{\mathrm{T}}^{\mathrm{miss}}$ modelling	± 4.2	± 4.5
b-tagging efficiency	± 7.1	± 7.5
c-tagging efficiency	< 0.5	< 0.5
Light-jet tagging efficiency	< 0.5	< 0.5
Pile-up reweighting	± 1.2	± 3.2
W+jets modelling	± 2.3	$\pm \ 1.0$
$t\bar{t},Wt$ and s-channel shower generator	< 0.5	± 2.3
$t\bar{t},Wt$ and s-channel NLO matching	± 2.7	± 2.0 ± 7.0
$t\bar{t},Wt$ and s-channel scale	± 2.6	± 0.9
t-channel scale	± 5.9	± 0.9 ± 7.7
	$\pm \ 3.9$ $\pm \ 11.0$	± 15.0
t-channel generator		
PDF	< 0.5	± 1.0
Luminosity	± 5.0	± 5.0
Total systematic uncertainty	$\pm \ 18.4$	± 24.4
Total uncertainty	± 19.0	± 25.0

Inclusive cross section single top-quark in t-channel - Variables

* The ten variables which are used in the training of the neural network ordered by their importance.

Variable	Corr. loss	Definition
$m(\ell \nu b)$	31.8 %	top-quark mass reconstructed from the charged lepton,
		neutrino and b -quark jet
m(jb)	29.0~%	invariant mass of the tagged (b) and light-jet (j)
$m_{ m T}(W)$	23.1~%	transverse mass of the reconstructed W boson
$ \eta(j) $	15.8~%	pseudorapidity of the light-jet (j)
$m(\ell b)$	8.5~%	invariant mass of the charged lepton (ℓ) and the tagged jet (b)
$\cos\Theta(\ell,j)_{\ell\nu b \text{ r.f.}}$	6.6~%	cosine of the angle θ between the charged lepton and the light-jet (j)
		in the rest frame of the reconstructed top quark
$\Delta R(\ell u b,j)$	7.4~%	ΔR of the reconstructed top quark and the light-jet (j)
$\eta(W)$	6.8~%	rapidity of the reconstructed W boson
$\Delta p_{ m T}(\ell u b,j)$	5.5~%	Δp_{T} of the reconstructed top quark and the light-jet (j)
$\Delta R(\ell,j)$	2.1 %	ΔR of the charged lepton and the light-jet (j)

Single top-quark production in Wt-channel

Variable	1-jet, 1-tag	2-jet 1-tag	2-jet 2-tag
$p_{\mathrm{T}}^{\mathrm{sys}}\left(\ell_{1},\ell_{2},E_{\mathrm{T}}^{\mathrm{miss}},j_{1}\right)$	1		
$p_{\mathrm{T}}^{\mathrm{sys}}$ (ℓ_1, ℓ_2, j_1)	7		
$p_{\mathrm{T}}^{\mathrm{sys}} \left(\ell_{1}, \ell_{2}\right)$	13		
$p_{\mathrm{T}}^{\mathrm{sys}}\left(j_{1},j_{2} ight)$		10	1
$p_{\mathrm{T}}^{\mathrm{sys}} \left(\ell_{1}, \ell_{2}, E_{\mathrm{T}}^{\mathrm{miss}}\right)$		12	2
$p_{\rm T}^{\rm sys} \; (\ell_1, \ell_2, E_{\rm T}^{\rm miss}, j_1, j_2)$		13	
$p_{\mathrm{T}}^{\mathrm{sys}}\left(\ell_{1},j_{1} ight)$			13
$\sigma(p_{\mathrm{T}}^{\mathrm{sys}}) \ (\ell_1, \ell_2, E_{\mathrm{T}}^{\mathrm{miss}}, j_1)$	4	5	
$p_{\mathrm{T}}(j_2)$			8
$\Delta p_{ m T} \; (\ell_1,\ell_2)$	8		
$\Delta p_{\rm T} \ ((\ell_1, \ell_2, j_1), (E_{\rm T}^{\rm miss}))$	9		
$\Delta p_{\mathrm{T}} \ (E_{\mathrm{T}}^{\mathrm{miss}}, j_{1})$		9	
$\Delta p_{\mathrm{T}} \; (\ell_1, \ell_2, E_{\mathrm{T}}^{\mathrm{miss}}, j_1)$		16	
$\Delta p_{ m T} \; (\ell_2,j_2)$			14
$\Delta R \; (\ell_1, j_1)$	2		5
$\Delta R \; (\ell_2, j_1)$		4	10
$\Delta R \; (\ell_2, j_2)$		6	
$\Delta R \; (\ell_2, j_1)$		11	
$\Delta R \; (\ell_1, \ell_2)$		14	
$\Delta R \; ((\ell_1,\ell_2),j_2)$			9
m (ℓ_2, j_1)	10	3	3
$m\;(\ell_1,j_2)$		1	4
$m(j_1,j_2)$		2	
$m\;(\ell_2,j_2)$		7	7
$m (\ell_1, j_1)$		8	6
$m (\ell_1, \ell_2)$		15	
$m (\ell_2, j_1, j_2)$			11
$m\ (\ell_1,\ell_2,j_1,j_2)$			15
$m_{\mathrm{T}} \ (j_{1}, E_{\mathrm{T}}^{\mathrm{miss}})$	5		
$m_{ m T2}$	11		
$E/m\ (\ell_1,\ell_2,j_2)$			16
$\sum E_{\mathrm{T}}$	3		
Centrality (ℓ_1, ℓ_2)	6		
Centrality (ℓ_1, j_1)	12		
Centrality (ℓ_2, j_2)			12

Evidence for single top-quark in s-channel - ME method

- * The ME method directly uses theoretical calculations to compute a per-event signal probability
- * The discrimination between signal and background is based on the computation of likelihood values $\mathcal{P}(X|H_{proc})$ for the hypothesis that a measured event with final state X is of a certain process type H_{proc}

$$P(S|X) = \frac{\sum_{i} \alpha_{S_i} \mathcal{P}(X|S_i)}{\sum_{i} \alpha_{S_i} \mathcal{P}(X|S_i) + \sum_{j} \alpha_{B_j} \mathcal{P}(X|B_j)}$$

- * S_i and B_j denote all signal and background processes that are being considered
- * a priori probabilities α_{S_i} and α_{B_j} given by the exp. fraction of events of each process in the set of selected events within the signal region
- ullet P(S|X) is the value taken as the main discriminant in the signal extraction

* Event selection:

PV with > 4 tracks, one electron or muon, > 3
jets, at least one b-jet, one photon

* Main uncertainties

• Signal template modelling (6.6%), parton shower (7.3%) and jet modelling (16%)

Theoretical NLO production

$$\sigma^{Whizard}_{t\bar{t}\gamma} = 48.4 \pm 0.5 (stat.) \pm 9.7 (theo.) \text{ fb}$$

$$\sigma^{MadGraph}_{t\bar{t}\gamma} = 47.2 \pm 0.4 (stat.) \pm 9.4 (theo.) \text{ fb}$$

• First observation of tty process: 5.3σ

$$\sigma_{t\bar{t}\gamma} \times BR = 63 \pm 8(stat.)^{+17}_{-13}(syst.) \pm 1(lumi.)$$
 fb

