Top-quark production measurements using the ATLAS detector at the LHC **5**th International Conference on New Frontiers in Physics Κολυμπάρι, 6th - 14th July 2016 ## The top-quark - The only 'bare' quark - Yukawa coupling to Higgs $\sim \mathcal{O}(I)$ - Important to test the SM - Top-quark pairs + vector boson probes electroweak couplings in the SM - Produced in either pairs or as a single quark - Decays almost exclusively in Wb pair - Top-quark pair decay channels depending on the #### **Pair Production** #### **Single Production** #### **Top-quark decay** ### Outline ## * Top-quark pair production - in dilepton(eµ) channel events at $\sqrt{s} = 13 \text{ TeV}$ - differential cross sections in lepton+jets channel at $\sqrt{s} = 8 \text{ TeV}$ - associated production with Z/W in multilepton final states at \sqrt{s} =13 TeV ## * Single top-quark production - inclusive cross section in *t-channel* at $\sqrt{s} = 13$ TeV - cross section in Wt-channel at $\sqrt{s} = 8 \text{ TeV}$ - evidence in the s-channel at at $\sqrt{s} = 8 \text{ TeV}$ ## Pair Production #### arXiv:1606.02699 #### A very clean signal - one isolated $e^{\pm} \mu^{\mp}$ pair - one or two *b*-jet(s) - leptons and jets $p_T>25$ GeV, $|\eta|<2.5$ #### Backgrounds: mostly from simulation - Z+jets - diboson - misidentified (fake) lepton events ->data ### tt purity in the simulation: - with one b-tag -> 89% - with two b-tags -> 96% $$N_1 = \mathcal{L} \ \sigma_{t\bar{t}} \ \epsilon_{e\mu} \ 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{bkg}$$ $$N_2 = \mathcal{L} \ \sigma_{t\bar{t}} \ \epsilon_{e\mu} \ C_b \ \epsilon_b^2 + N_2^{bkg}$$ $\epsilon_{e\mu}$: Efficiency for ϵ_{μ} selection C_b : Correlations between the two b-jets ϵ_b : b-tagging efficiency arXiv:1606.02699 The inclusive cross-section reads: $$\sigma_{t\bar{t}} = 818 \pm 8(\text{stat.}) \pm 27(\text{syst.}) \pm 19(\text{lumi}) \pm 12(\text{beam})\text{pb}$$ To be compared with $\sigma_{theo} = 832^{+40}_{-46} \mathrm{pb}$ (NNLO+NNLL) Systematics are dominated by: $t\bar{t}$ hadronisation $t\bar{t}$ NLO modelling misidentified leptons single top / $t\bar{t}$ interference parton distribution functions ## Differential Cross Section in I+jets Channel arXiv:1511.04716 - $t\bar{t}$ production w.r.t. different kinematic variables to test the SM at the TeV scale - Effects beyond the SM as modifications of diff. measurements - Observables to emphasise: - the tt production process with sensitivity: to effects of I/FSR to the different PDFs to non-resonant processes and higher order corrections #### * Baseline observables: $$p_T^{t,had}$$, $|y^{t,had}|$, $p_T^{t\overline{t}}$, $|y^{t\overline{t}}|$, $m^{t\overline{t}}$ #### Lepton+jets channel - \rightarrow one iso. e or μ - at least four jets - at least two *b*-jets #### * Backgrounds - \rightarrow W+jets - $ightharpoonup tar{t}$ dilepton events - single top - QCD multijet #### 20.3 fb s = 8 TeV arXiv:1511.04716 - * Results unfolded both to a fiducial particlelevel (PL) phase space and to the full phase space - * Unfolding to a fiducial PL phase space and using variables directly related to detector observables - allows precision tests of QCD, avoiding large model-dependent extrapolation corrections - * A migration matrix to map the binned generated particle-level events to the binned detector-level events arXiv:1511.04716 (2016) - Good agreement with the predictions over a wide kinematic range - Most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data - Agreement for this observable improves when NNLO corrections are taken into account - Uncertainty dominated by jet energy scale, b-tagging, tt modelling 2 2.5 $|\mathbf{y}^{\mathsf{t}}|$ Phys. Rev. D 93, 032009 (2016) - * BSM $t\bar{t}$ production can distort top- p_T high p_T region - Precise measurement of boosted top-quarks might reveal hint for BSM - * Lepton+jets channel using hadronically decaying top-quarks with $p_T > 300 \text{ GeV}$ - * Boosted top-quarks reconstruction anti- k_T with radius parameter R = 1.0 - * Cross-section as a function of top-quark p_T - * The measurement uncertainty dominated by jet energy resolution of large-R jets. * The predictions of a majority of NLO and LO ME Monte Carlo generators agree with the measured cross-sections. - Three channels based on the number of reconstructed leptons: - 1. Same-sign dimuon analysis (2 μ -SS): ttWtwo muons p_T >25 GeV, E_T^{miss} >40 GeV, H_T > 240 GeV, \ge 2 b-jets #### 2. Trilepton analysis: | | | - | |---|---|---| | | | | | | _ | | | | | | | | | | | U | U | | | | | | | | UUZ | $\iota\iota\iota vv$ | | | |----------------------------|---|---|--|--| | Variable | 3ℓ -Z-1b4j 3ℓ -Z-2b3j 3ℓ -Z-2b | 4j | | | | Leading lepton $p_{\rm T}$ | > 25 Ge | eV | | | | Other leptons' $p_{\rm T}$ | > 20 GeV | | | | | Sum of lepton charges | ±1 | | | | | Z-like OSSF pair | $ m_{\ell\ell} - m_Z < 10 \text{ GeV}$ | $ m_{\ell\ell} - m_Z > 10 \text{ GeV}$ | | | | $n_{ m jets}$ | $\geq 4 \qquad \qquad 3 \qquad \qquad \geq 4$ | $\geq 2 \text{ and } \leq 4$ | | | | $n_{b-\mathrm{jets}}$ | | ≥ 2 | | | ## 3. Tetralepton analysis: t t Z | Region | Z_2 leptons | <i>P</i> T34 | $ m_{Z_2}-m_Z $ | $E_{ m T}^{ m miss}$ | $N_{b ext{-jets}}$ | |-------------------|-------------------------------------|--------------|------------------------------------|----------------------|--------------------| | 4 <i>ℓ</i> -DF-1b | $e^{\pm}\mu^{\mp}$ | > 35 GeV | - | - | 1 | | 4 <i>ℓ</i> -DF-2b | $e^{\pm}\mu^{\mp}$ | - | - | - | ≥ 2 | | 11 SE 16 | م±م [∓] بی±بہ | > 25 GeV | <pre>> 10 GeV < 10 GeV</pre> | > 40 GeV \ | 1 | | 46-51-10 | $e e , \mu \mu$ | > 23 GCV | < 10 GeV | > 80 GeV \int | 1 | | <i>4ℓ</i> -SF-2b | $e^{\pm}e^{\mp},\mu^{\pm}\mu^{\mp}$ | _ | <pre>> 10 GeV < 10 GeV</pre> | -) | ≥ 2 | | | ε ε ,μ μ | - | \ < 10 GeV | > 40 GeV \int | | ## Pair production in association with Z/W boson #### 3.2 fb⁻¹ s = 13 TeV | ATLAS-CONF-2016-00 | |--------------------| |--------------------| | (2mu-SS) | Trilepton | Tetralepton | Ē | |--|--|--|--------------| | Dominant background: fake leptons. | Dominant
background from
diboson, | Dominant
background from | - | | Backgrounds from the production of prompt | tZ,
Z+jets w/ fake | diboson. | Data / Pred. | | leptons w/ correct charges come from WZ | lepton, | Backgrounds w/ fake leptons estimated | Data | | The fake lepton bkg. is estimated using matrix method. | The fake lepton bkg. is estimated using matrix method. | from simulation and corrected w/ SFs from CRs. | Events | - ATLAS Preliminary → Data WZ $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ tWZ Fake leptons Other **/// Uncertainty** Trilep SR ≥6 Number of jets - **ATLAS** Preliminary ttZ WZ $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ tWZ Other Fake leptons /// Uncertainty Tetralep_|SR Data / Pred. - Backgrounds containing prompt leptons are modelled by simulation. - Normalisations are estimated from data when possible. ≥2 Number of b-tagged jets ## Pair production in association with Z/W boson - Expected yields after the fits: in the relevant SRs and two CRs used to constrain WZ and ZZ. - From a fit to eight SRs and two CRs: $$\sigma_{t\bar{t}Z} = 0.9 \pm 0.3 \text{ pb}$$ $$\sigma_{t\bar{t}W} = 1.4 \pm 0.8 \text{ pb}$$ Both measurements are consistent with the NLO QCD theoretical predictions: $$\sigma_{t\bar{t}Z}^{theo} = 0.76 \pm 0.08 \text{ pb}$$ $$\sigma_{t\bar{t}W}^{theo} = 0.57 \pm 0.06 \text{ pb}$$ | Uncertainty | $\sigma_{tar{t}Z}$ | $\sigma_{t \bar{t} W}$ | |-------------------------------|--------------------|------------------------| | Luminosity | 6.4% | 7.0% | | Reconstructed objects | 7.0% | 7.3% | | Backgrounds from simulation | 5.5% | 3.7% | | Fake leptons and charge misID | 3.9% | 21% | | Total systematic | 12% | 24% | | Statistical | 32% | 51% | | Total | 34% | 56% | ## Single Production b ATLAS-CONF-2015-079 Wtb - Dominant single production channel - One muon, E_T^{miss} , two high p_T jets, one \emph{b} -jet - Signal discrimination using neural network (NN) - Most discriminating variables: reconstructed top-quark mass and jet-pair mass - Binned maximum likelihood fit to the NN output ## Inclusive cross section single top-quark in t-channel 3.2 fb - Most important backgrounds: tt events, W+jets - Smaller backgrounds: *s*-channel, *Wt*-channel, diboson and Z+jets - All backgrounds except QCD -> simulation based and scaled to the SM predictions - After maximum likelihood fit: $$\sigma_{tq} = 133 \pm 6(\text{stat.}) \pm 24(\text{syst.}) \pm 7(\text{lumi.}) \text{pb}$$ $$\sigma_{\bar{t}q} = 96 \pm 5(\text{stat.}) \pm 23(\text{syst.}) \pm 5(\text{lumi.}) \text{pb}$$ - * Measured cross-section is proportional to $|f_{LV} \cdot V_{tb}|^2$ - * $|f_{LV} \cdot V_{tb}|$ is extracted by dividing the cross-section by the NLO prediction: $$|f_{\text{LV}} \cdot V_{\text{tb}}| = 1.03 \pm 0.02 \pm 0.11 \pm 0.02 \pm 0.03$$ (stat.) (syst.) (theo.) (lumi.) #### ATLAS-CONF-2015-079 JHEP01 (2016) 064 Production via b-quark-induced partonic channels $$gb \longrightarrow Wt \longrightarrow W^-W^+b$$ - Only one b-jet in the final state is a distinctive feature - Two opposite sign high- p_T leptons, E_T^{miss} and one high- p_T central b-jet - Signal separation through the use of a boosted decision tree (BDT) algorithm in the TMVA* framework ^{*} Toolkit for Multivariate Data Analysis The BDTs are trained separately in three regions, 1jet-1tag, 2jets-1tag and 2jets-2tag using simulated Wt (signal), and tt (main background) samples A profile likelihood fit to the BDT classifier utilising all regions $$\sigma_{Wt} = 23.0 \pm 1.3 (\text{stat.})^{+3.2}_{-3.5} (\text{syst.}) \pm 1.1 (\text{lumi.}) \text{pb}$$ $$|f_{\text{LV}} \cdot \mathbf{V}_{\text{tb}}| = 1.01 \pm 0.10$$ Fid. XS with 2 leptons p_T >25 GeV, $|\eta|$ < 2.5, 1 jet p_T >20 GeV, $|\eta|$ < 2.5 and E_T^{miss} > 20 GeV $$\sigma_{Wt} = 0.85 \pm 0.01 \text{(stat.)}_{-0.07}^{+0.06} \text{(syst.)} \pm 0.03 \text{(lumi.)} \text{pb}$$ Jet energy resolution and I/FSR are the dominant uncertainties Physics Letters B 756 (2016) 228-246 - Sensitive to new particles in several models of physics beyond the SM such as: charged Higgs, W' boson - Important role for anomalous coupling models in an effective quantum field theory* - Theoretical calculations are available in NLO QCD including NNLL correction - * Lepton+jet channel - \rightarrow one iso. e or μ - large E_T^{miss} - two high $p_T b$ -jets Signal extraction using matrix element method 20.3 fb⁻¹ $/_S$ = 8 TeV The result of the maximum LH fit $$\sigma_s = 4.8 \pm 0.8 (\text{stat.})^{+1.6}_{-1.3} (\text{syst.}) \text{pb}$$ - The signal contribution for the matrix element discriminant in the data (all backgrounds subtracted) - The largest uncertainties: - the limited sample sizes for data and the simulation - jet energy resolution - modelling of single top t-channel - Obs. sig.: 3.2σ (Exp. 3.9σ) $$|f_{LV} \cdot V_{tb}| = 0.93 + 0.18/-0.20$$ 0.058 0.0018 0.0002 0.102 P(S|X) 0.187 ## Summary - * Latest result for pair production in dilepton($e\mu$) channel - * Differential measurements of the top-quark transverse momentum and kinematic properties of the $t\bar{t}$ pair including results using boosted top-quarks - * Pair production in association with *Z/W* boson - * t-channel cross section at 13 TeV - * Inclusive and fiducial cross sections using BDTs in Wt channel - * Evidence in s-channel using ME method 3.2σ - * Coupling strength at the *Wtb* vertex is determined for all channels ## Further Material ## Pair production cross-section using eµ events - Systematics | Event counts | N_1 | N_2 | |----------------------------------|----------------|--------------| | Data | 11958 | 7069 | | Single top | 1140 ± 100 | 221 ± 68 | | Dibosons | 34 ± 11 | 1 ± 0 | | $Z(\to \tau\tau \to e\mu)$ +jets | 37 ± 18 | 2 ± 1 | | Misidentified leptons | 164 ± 65 | 116 ± 55 | | Total background | 1370 ± 120 | 340 ± 88 | | 6 • 1 • • • • • • • • • • • • • • • • • • • | | | | |--|--|----------------------|---| | Uncertainty (inclusive $\sigma_{t\bar{t}}$) | $\Delta \epsilon_{e\mu}/\epsilon_{e\mu}$ [%] | $\Delta C_b/C_b$ [%] | $\Delta\sigma_{tar{t}}/\sigma_{tar{t}}$ [%] | | Data statistics | | | 0.9 | | $t\bar{t}$ NLO modelling | 0.7 | -0.1 | 0.8 | | $t\bar{t}$ hadronisation | -2.4 | 0.4 | 2.8 | | Initial- and final-state radiation | -0.3 | 0.1 | 0.4 | | $t\bar{t}$ heavy-flavour production | _ | 0.4 | 0.4 | | Parton distribution functions | 0.5 | - | 0.5 | | Single-top modelling | _ | - | 0.3 | | Single-top/ $t\bar{t}$ interference | _ | - | 0.6 | | Single-top Wt cross-section | _ | - | 0.5 | | Diboson modelling | _ | - | 0.1 | | Diboson cross-sections | _ | - | 0.0 | | Z+jets extrapolation | _ | - | 0.2 | | Electron energy scale/resolution | 0.2 | 0.0 | 0.2 | | Electron identification | 0.3 | 0.0 | 0.3 | | Electron isolation | 0.4 | - | 0.4 | | Muon momentum scale/resolution | -0.0 | 0.0 | 0.0 | | Muon identification | 0.4 | 0.0 | 0.4 | | Muon isolation | 0.2 | - | 0.3 | | Lepton trigger | 0.1 | 0.0 | 0.2 | | Jet energy scale | 0.3 | 0.1 | 0.3 | | Jet energy resolution | -0.1 | 0.0 | 0.2 | | b-tagging | - | 0.1 | 0.3 | | Misidentified leptons | - | - | 0.6 | | Analysis systematics | 2.7 | 0.6 | 3.3 | | Integrated luminosity | _ | - | 2.3 | | LHC beam energy | _ | - | 1.5 | | Total uncertainty | 2.7 | 0.6 | 4.4 | | | | | | | Uncertainty (fiducial $\sigma_{t\bar{t}}^{\mathrm{fid}}$) | $\Delta G_{e\mu}/G_{e\mu}$ [%] | $\Delta C_b/C_b$ [%] | $\Delta \sigma_{t \bar{t}}^{\mathrm{fid}} / \sigma_{t \bar{t}}^{\mathrm{fid}} \ [\%]$ | | $t\bar{t}$ NLO modelling | 0.5 | -0.1 | 0.6 | | $t\bar{t}$ hadronisation | -1.6 | 0.4 | 1.9 | | Parton distribution functions | 0.1 | - | 0.1 | | Other uncertainties (as above) | 0.8 | 0.4 | 1.5 | | Analysis systematics $(\sigma_{t\bar{t}}^{\text{fid}})$ | 1.8 | 0.6 | 2.5 | | Total uncertainty $(\sigma_{t\bar{t}}^{\mathrm{fid}})$ | 1.8 | 0.6 | 3.9 | | | | | | ## Differential distributions (Full phase-space) $$\frac{d\sigma^{\text{full}}}{dX^{i}} \equiv \frac{1}{\mathcal{L} \cdot \mathcal{B} \cdot \Delta X^{i}} \cdot \hat{f}_{\text{eff}}^{i} \cdot \sum_{j} \hat{\mathcal{M}}_{ij}^{-1} \cdot \hat{f}_{\text{acc}}^{j} \cdot \hat{f}_{\text{ljets}}^{i} \cdot \left(N_{\text{reco}}^{j} - N_{\text{bg}}^{j}\right)$$ $f_{\rm eff}$: eff. correction for events passing PL sel. but failing DL f_{ljets} : the fraction of single lepton tt events in the nom. sample f_{acc} : correction for events generated outside the FR but passed the detector-level selection *X* observable at particle level (PL) j bins of X at DL and i bins at PL ΔX^i bin width \mathcal{M}_{ij}^{-1} is the Bayesian unfolding ## Differential distributions (Full phase-space) ## Differential distributions (Fiducial phase-space) ## Pair production in association with Z/W boson - Systematics | Region | t + X | Bosons | Fake leptons | Total bkg. | $\Big t ar{t} W$ | $t ar{t} Z$ | Data | |--------------------|-------------------|-------------------|-------------------|-----------------|-------------------|-------------------|------| | 3ℓ -WZ-CR | 0.51 ± 0.13 | 26.9 ± 2.5 | 1.6 ± 1.7 | 29.0 ± 3.0 | 0.017 ± 0.005 | 0.71 ± 0.08 | 33 | | 4ℓ -ZZ-CR | 0.007 ± 0.006 | 37.9 ± 2.5 | 3.1 ± 0.9 | 41.0 ± 2.7 | < 0.001 | 0.031 ± 0.006 | 40 | | 2μ -SS | 1.00 ± 0.19 | 0.14 ± 0.06 | 1.7 ± 1.5 | 2.9 ± 1.5 | 2.28 ± 0.34 | 0.65 ± 0.07 | 9 | | 3ℓ -Z-2b4j | 1.06 ± 0.25 | 0.5 ± 0.4 | 0.1 ± 0.6 | 1.7 ± 0.8 | 0.061 ± 0.013 | 5.1 ± 0.5 | 8 | | 3ℓ -Z-1b4j | 1.23 ± 0.26 | 3.4 ± 2.2 | 2.0 ± 1.7 | 6.6 ± 2.8 | 0.037 ± 0.010 | 4.0 ± 0.4 | 7 | | 3ℓ -Z-2b3j | 0.64 ± 0.23 | 0.25 ± 0.18 | 0.1 ± 0.4 | 1.0 ± 0.5 | 0.082 ± 0.015 | 1.75 ± 0.20 | 4 | | 3ℓ -noZ- $2b$ | 0.95 ± 0.15 | 0.18 ± 0.09 | 3.6 ± 2.2 | 4.7 ± 2.2 | 1.55 ± 0.24 | 1.35 ± 0.16 | 10 | | 4ℓ -SF-1b | 0.198 ± 0.035 | 0.22 ± 0.08 | 0.112 ± 0.032 | 0.53 ± 0.09 | < 0.001 | 0.59 ± 0.05 | 1 | | 4ℓ -SF-2b | 0.130 ± 0.035 | 0.11 ± 0.05 | 0.053 ± 0.016 | 0.29 ± 0.07 | < 0.001 | 0.57 ± 0.05 | 1 | | 4ℓ -DF-1b | 0.21 ± 0.04 | 0.022 ± 0.011 | 0.105 ± 0.027 | 0.34 ± 0.05 | < 0.001 | 0.67 ± 0.05 | 2 | | 4ℓ-DF-2b | 0.15 ± 0.05 | < 0.001 | 0.055 ± 0.017 | 0.20 ± 0.05 | < 0.001 | 0.58 ± 0.05 | 1 | ## Inclusive cross section single top-quark in t-channel - Systematics | Source | $\Delta \sigma_{tq}/\sigma_{tq}$ [%] | $\Delta \sigma_{ar{t}q}/\sigma_{ar{t}q}$ [%] | |--|--------------------------------------|--| | Data statistics | ± 4.6 | ± 5.0 | | MC statistics | ± 6.3 | ± 6.5 | | | | | | Multijet normalisation | ± 0.8 | ± 2.4 | | Other background normalisation | ± 1.4 | ± 0.5 | | 3.5 | | 1 1 0 | | Muon uncertainties | ± 1.6 | ± 1.6 | | JES | ± 5.5 | ± 1.6 | | Jet energy resolution | ± 4.3 | ± 3.1 | | $E_{\mathrm{T}}^{\mathrm{miss}}$ modelling | ± 4.2 | ± 4.5 | | b-tagging efficiency | ± 7.1 | ± 7.5 | | c-tagging efficiency | < 0.5 | < 0.5 | | Light-jet tagging efficiency | < 0.5 | < 0.5 | | Pile-up reweighting | ± 1.2 | ± 3.2 | | W+jets modelling | ± 2.3 | $\pm \ 1.0$ | | $t\bar{t},Wt$ and s-channel shower generator | < 0.5 | ± 2.3 | | $t\bar{t},Wt$ and s-channel NLO matching | ± 2.7 | ± 2.0 ± 7.0 | | $t\bar{t},Wt$ and s-channel scale | ± 2.6 | ± 0.9 | | t-channel scale | ± 5.9 | ± 0.9 ± 7.7 | | | $\pm \ 3.9$ $\pm \ 11.0$ | ± 15.0 | | t-channel generator | | | | PDF | < 0.5 | ± 1.0 | | Luminosity | ± 5.0 | ± 5.0 | | Total systematic uncertainty | $\pm \ 18.4$ | ± 24.4 | | Total uncertainty | ± 19.0 | ± 25.0 | | | | | ## Inclusive cross section single top-quark in t-channel - Variables * The ten variables which are used in the training of the neural network ordered by their importance. | Variable | Corr. loss | Definition | |---|------------|---| | $m(\ell \nu b)$ | 31.8 % | top-quark mass reconstructed from the charged lepton, | | | | neutrino and b -quark jet | | m(jb) | 29.0~% | invariant mass of the tagged (b) and light-jet (j) | | $m_{ m T}(W)$ | 23.1~% | transverse mass of the reconstructed W boson | | $ \eta(j) $ | 15.8~% | pseudorapidity of the light-jet (j) | | $m(\ell b)$ | 8.5~% | invariant mass of the charged lepton (ℓ) and the tagged jet (b) | | $\cos\Theta(\ell,j)_{\ell\nu b \text{ r.f.}}$ | 6.6~% | cosine of the angle θ between the charged lepton and the light-jet (j) | | | | in the rest frame of the reconstructed top quark | | $\Delta R(\ell u b,j)$ | 7.4~% | ΔR of the reconstructed top quark and the light-jet (j) | | $\eta(W)$ | 6.8~% | rapidity of the reconstructed W boson | | $\Delta p_{ m T}(\ell u b,j)$ | 5.5~% | Δp_{T} of the reconstructed top quark and the light-jet (j) | | $\Delta R(\ell,j)$ | 2.1 % | ΔR of the charged lepton and the light-jet (j) | ## Single top-quark production in Wt-channel | Variable | 1-jet, 1-tag | 2-jet 1-tag | 2-jet 2-tag | |--|--------------|-------------|-------------| | $p_{\mathrm{T}}^{\mathrm{sys}}\left(\ell_{1},\ell_{2},E_{\mathrm{T}}^{\mathrm{miss}},j_{1}\right)$ | 1 | | | | $p_{\mathrm{T}}^{\mathrm{sys}}$ (ℓ_1, ℓ_2, j_1) | 7 | | | | $p_{\mathrm{T}}^{\mathrm{sys}} \left(\ell_{1}, \ell_{2}\right)$ | 13 | | | | $p_{\mathrm{T}}^{\mathrm{sys}}\left(j_{1},j_{2} ight)$ | | 10 | 1 | | $p_{\mathrm{T}}^{\mathrm{sys}} \left(\ell_{1}, \ell_{2}, E_{\mathrm{T}}^{\mathrm{miss}}\right)$ | | 12 | 2 | | $p_{\rm T}^{\rm sys} \; (\ell_1, \ell_2, E_{\rm T}^{\rm miss}, j_1, j_2)$ | | 13 | | | $p_{\mathrm{T}}^{\mathrm{sys}}\left(\ell_{1},j_{1} ight)$ | | | 13 | | $\sigma(p_{\mathrm{T}}^{\mathrm{sys}}) \ (\ell_1, \ell_2, E_{\mathrm{T}}^{\mathrm{miss}}, j_1)$ | 4 | 5 | | | $p_{\mathrm{T}}(j_2)$ | | | 8 | | $\Delta p_{ m T} \; (\ell_1,\ell_2)$ | 8 | | | | $\Delta p_{\rm T} \ ((\ell_1, \ell_2, j_1), (E_{\rm T}^{\rm miss}))$ | 9 | | | | $\Delta p_{\mathrm{T}} \ (E_{\mathrm{T}}^{\mathrm{miss}}, j_{1})$ | | 9 | | | $\Delta p_{\mathrm{T}} \; (\ell_1, \ell_2, E_{\mathrm{T}}^{\mathrm{miss}}, j_1)$ | | 16 | | | $\Delta p_{ m T} \; (\ell_2,j_2)$ | | | 14 | | $\Delta R \; (\ell_1, j_1)$ | 2 | | 5 | | $\Delta R \; (\ell_2, j_1)$ | | 4 | 10 | | $\Delta R \; (\ell_2, j_2)$ | | 6 | | | $\Delta R \; (\ell_2, j_1)$ | | 11 | | | $\Delta R \; (\ell_1, \ell_2)$ | | 14 | | | $\Delta R \; ((\ell_1,\ell_2),j_2)$ | | | 9 | | m (ℓ_2, j_1) | 10 | 3 | 3 | | $m\;(\ell_1,j_2)$ | | 1 | 4 | | $m(j_1,j_2)$ | | 2 | | | $m\;(\ell_2,j_2)$ | | 7 | 7 | | $m (\ell_1, j_1)$ | | 8 | 6 | | $m (\ell_1, \ell_2)$ | | 15 | | | $m (\ell_2, j_1, j_2)$ | | | 11 | | $m\ (\ell_1,\ell_2,j_1,j_2)$ | | | 15 | | $m_{\mathrm{T}} \ (j_{1}, E_{\mathrm{T}}^{\mathrm{miss}})$ | 5 | | | | $m_{ m T2}$ | 11 | | | | $E/m\ (\ell_1,\ell_2,j_2)$ | | | 16 | | $\sum E_{\mathrm{T}}$ | 3 | | | | Centrality (ℓ_1, ℓ_2) | 6 | | | | Centrality (ℓ_1, j_1) | 12 | | | | Centrality (ℓ_2, j_2) | | | 12 | ## Evidence for single top-quark in s-channel - ME method - * The ME method directly uses theoretical calculations to compute a per-event signal probability - * The discrimination between signal and background is based on the computation of likelihood values $\mathcal{P}(X|H_{proc})$ for the hypothesis that a measured event with final state X is of a certain process type H_{proc} $$P(S|X) = \frac{\sum_{i} \alpha_{S_i} \mathcal{P}(X|S_i)}{\sum_{i} \alpha_{S_i} \mathcal{P}(X|S_i) + \sum_{j} \alpha_{B_j} \mathcal{P}(X|B_j)}$$ - * S_i and B_j denote all signal and background processes that are being considered - * a priori probabilities α_{S_i} and α_{B_j} given by the exp. fraction of events of each process in the set of selected events within the signal region - ullet P(S|X) is the value taken as the main discriminant in the signal extraction #### * Event selection: PV with > 4 tracks, one electron or muon, > 3 jets, at least one b-jet, one photon #### * Main uncertainties • Signal template modelling (6.6%), parton shower (7.3%) and jet modelling (16%) #### Theoretical NLO production $$\sigma^{Whizard}_{t\bar{t}\gamma} = 48.4 \pm 0.5 (stat.) \pm 9.7 (theo.) \text{ fb}$$ $$\sigma^{MadGraph}_{t\bar{t}\gamma} = 47.2 \pm 0.4 (stat.) \pm 9.4 (theo.) \text{ fb}$$ • First observation of tty process: 5.3σ $$\sigma_{t\bar{t}\gamma} \times BR = 63 \pm 8(stat.)^{+17}_{-13}(syst.) \pm 1(lumi.)$$ fb