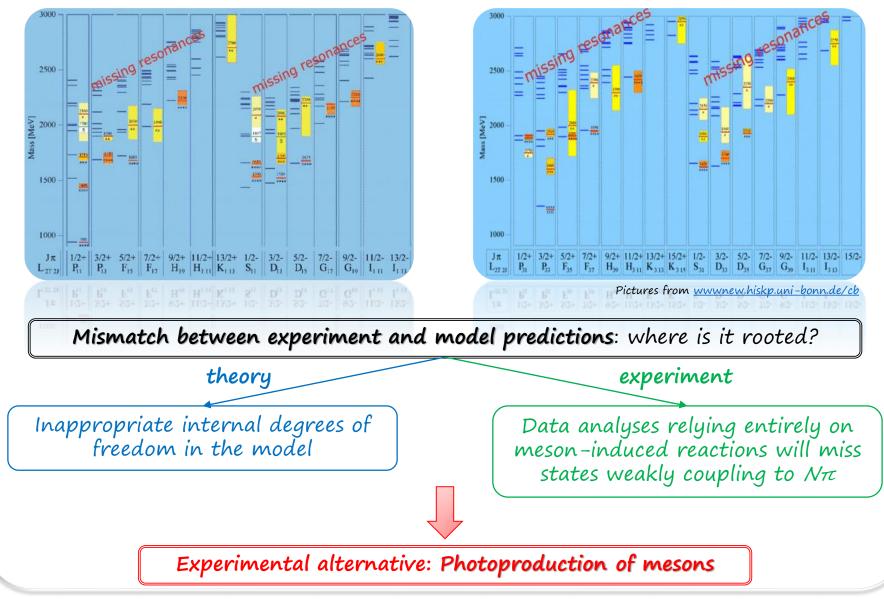
Recent results on doublypolarised pion photoproduction and the GDH sum rule on the nucleon at MAMI

Susanna Costanza

Università degli Studi di Pavia – INFN Pavia on behalf of the A2 Collaboration @ MAMI

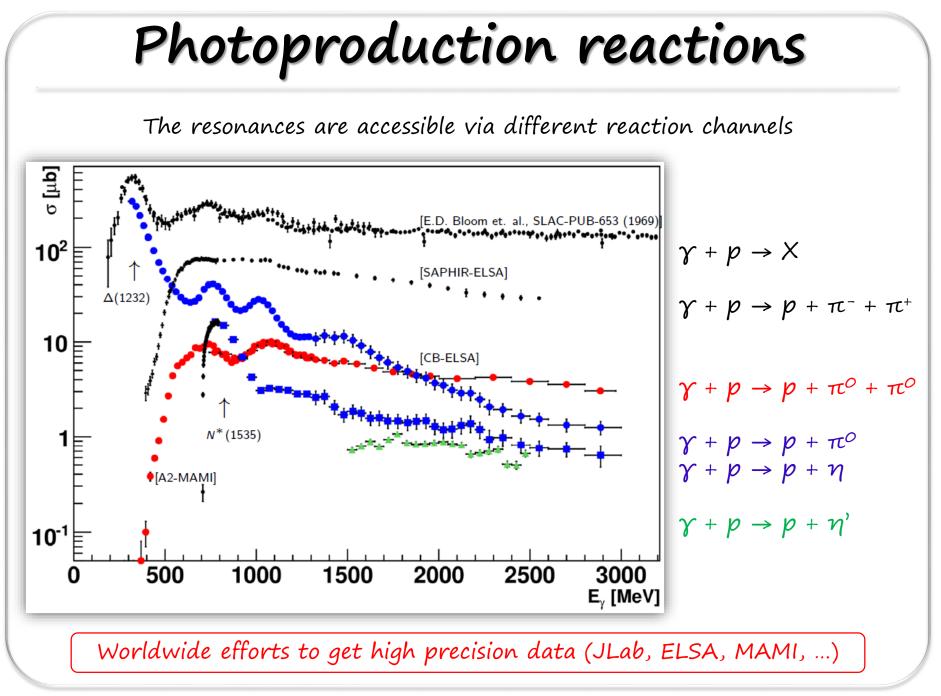
5th International Conference on New Frontiers in Physics ICNFP2016

Kolymvari (Crete), 6 – 14 July 2016


Introduction

The excitation spectra of protons and neutrons allow to draw conclusions on the dynamics of the nucleons constituents

How can we study the excited states of the nucleon?

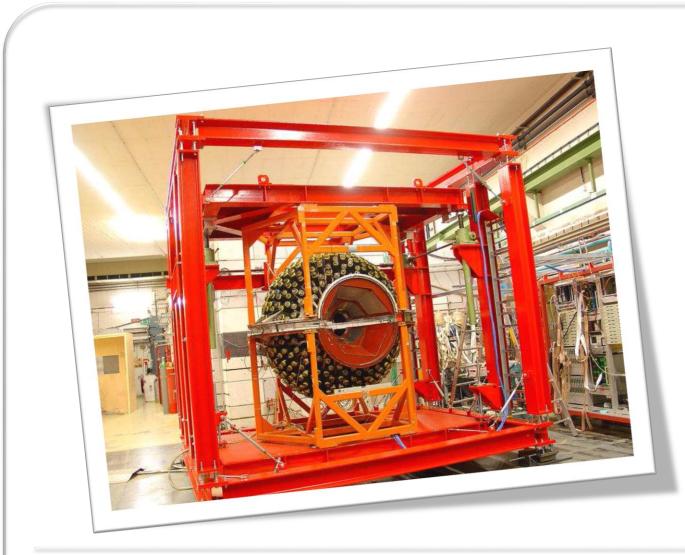

- Perturbative QCD → MEANINGLESS!!
 - Low energy regime ↔ non perturbative approach
- Phenomenological Quark Models → LIMITED SUCCESS
 - Based on internal degrees of freedom
 - Three equivalent constituent quarks, quark-diquark structures, quark and flux tubes
 - Based on residual interactions of the quarks
 - Gluon exchange, Goldstone boson exchange
 - Can serve as:
 - approximation of the nucleon structure
 - guidance about the relevant interaction properties by comparison with the observed excitation spectrum

Looking for missing resonances

Susanna Costanza

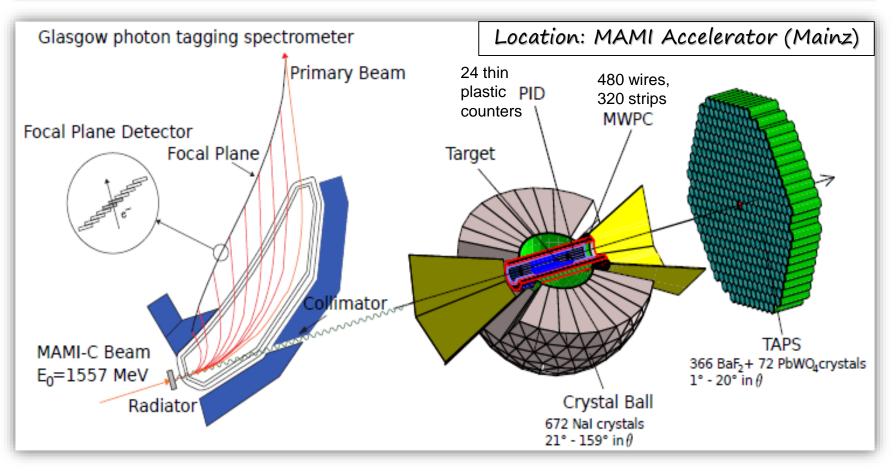
Kolymbari, 11/07/2016

Polarisation observables


Measurable observables ↔ Multipoles ↔ Resonance parameters

- Scattering amplitude $f \leftrightarrow 4$ complex amplitudes (CGLN-amplitudes): $f(F_i(W, \cos\theta_{cm}))$
- PWA: the F_i s are linear combinations of multipoles ($E_{l\pm}(W)$, $M_{l\pm}(W)$) and Legendre polynomials $P'_{l\pm 1}(\cos\theta_{cm})$
- From 4 complex amplitudes it is possible to construct 16 bilinear products \rightarrow 16 polarisation observables

Photon polarization		Target polarization		Recoil nucleon polarization		Target and Recoil polarizations						
		X	Y	Z (beam)	Χ,	Ŷ	Z'	X, X,	X' Z	Z' X	Z' Z	
unpolarized linear Circular	σ Σ -	– H F	T (-P) -	- G E	- O _x C _x	P (-T) -	$\overline{O_z}$ $\overline{C_z}$	T_x (-L _z) -	L _x (T _z)	T_z (L _x)	L _z (-T _x)	


1 unpolarised, 3 single polarised, 12 <u>double</u> polarised measurements

The measurement of 7 (8) (**properly chosen**) observables is necessary to <u>unambiguously</u> (in a model independent way) determine the scattering amplitudes ("complete analysis")

A2 @ MAMI

A2@MAMI: detector overview

Beam:

- photon beam produced by bremsstrahlung process and tagged by the magnetic spectrometer
- \dot{E}_{γ} < 1.5 GeV, ΔE_{γ} = 2 4 MeV Linear and circular polarisations available

Physics at A2@MAMI

Double polarisation observables G and E

- Determination of G and E
- 🖝 Results
- 🖝 The GDH sum rule
 - 🖝 Physics motivation

Double polarisation observables E and G

First experimental attempt to measure E and G with longitudinally polarised electron beam incident on a diamond crystal (→ using linearly and circularly polarised photons at the same time!) with a longitudinally polarised butanol target

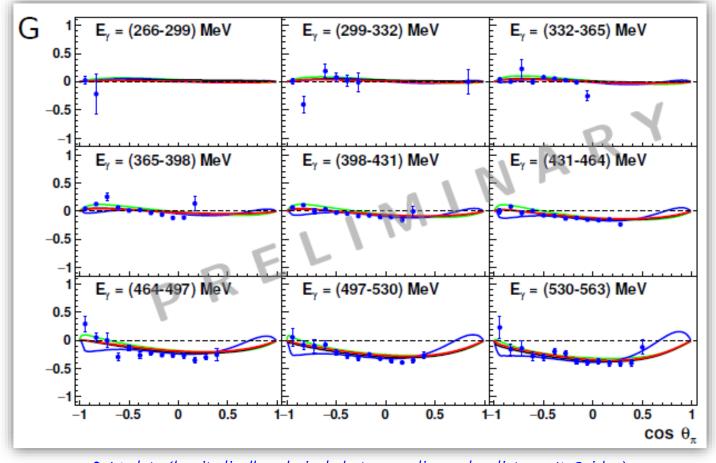
Differential cross section for pseudo-scalar meson photoproduction using elliptically polarised photons in combination with a longitudinally polarised target:

$$\frac{d\sigma}{d\Omega}(\theta,\phi) = \frac{d\sigma}{d\Omega_0}(\theta) \left[1 - P_{lin} \Sigma \cos(2(\alpha - \phi)) - P_z \left(- P_{lin} G \sin(2(\alpha - \phi)) + P_{circ} E \right) \right]$$

Integrating over
$$\phi \rightarrow E$$

$$N_B\Big|_{\pm 1}^{\pm P_z}(\theta) = N_B(\theta) \cdot \left[1 - dP_{circ}P_z\mathbf{E}\right] \qquad \qquad \mathbf{E} = \frac{\sigma^{1/2} - \sigma^{3/2}}{\sigma^{1/2} + \sigma^{3/2}} = \frac{N_B^{1/2} - N_B^{3/2}}{N_B^{1/2} + N_B^{3/2}} \cdot \frac{1}{d} \cdot \frac{1}{P_{circ}P_z}$$

d = dilution factor = amount of polarisable protons in the data $d=1-s_c\cdot rac{N_C}{N_B}$

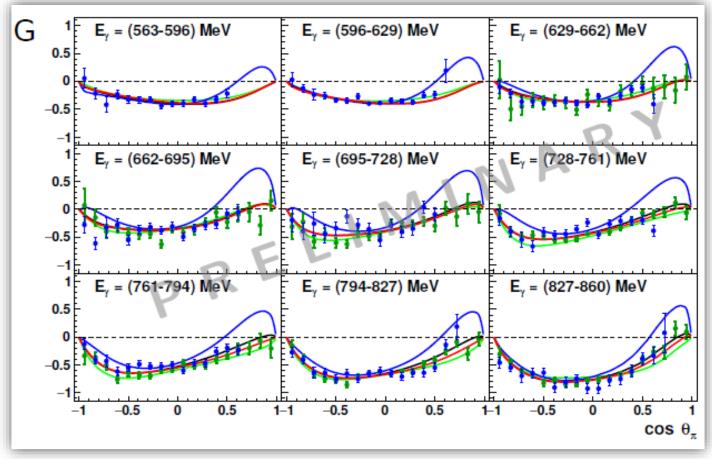

 s_c = scaling factor for flux and acceptance difference between carbon and butanol beamtimes

Integrating over all possible helicity states
$$\rightarrow G$$
:
 $N_B \Big|_{\pm \alpha}^{\pm P_z} (\theta, \phi) = N_B(\theta) \cdot \left[1 - P_{lin} \Sigma_B \cos(2(\alpha - \phi)) + dP_{lin} P_z G \sin(2(\alpha - \phi))\right]$

Susanna Costanza

Double polarisation observable G

266 MeV – 563 MeV

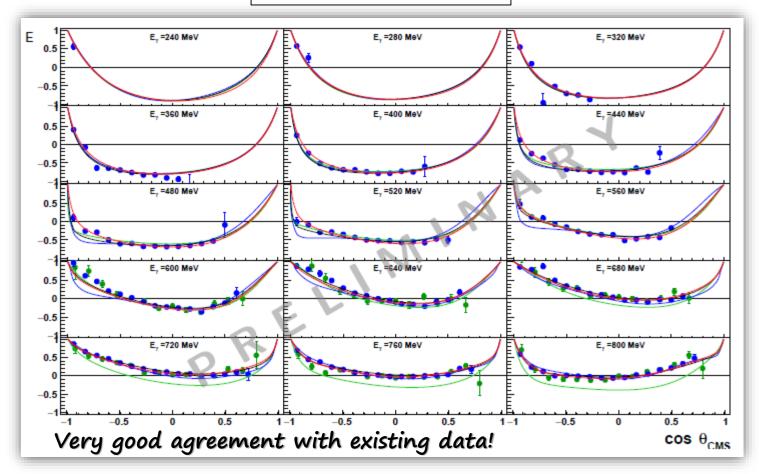


A2 data (longitudinally polarised electrons + diamond radiator – K. Spieker)

CBELSA/TAPS data (unpolarised electrons – A. Thiel et al., Phys. Rev. Lett. 109 (2012) 102001)
 BnGa_2014_02 (PWA fit) – BnGa_2014_01 (PWA fit) – MAID 2007 (PWA pred.) – SAID-CM12 (PWA pred)

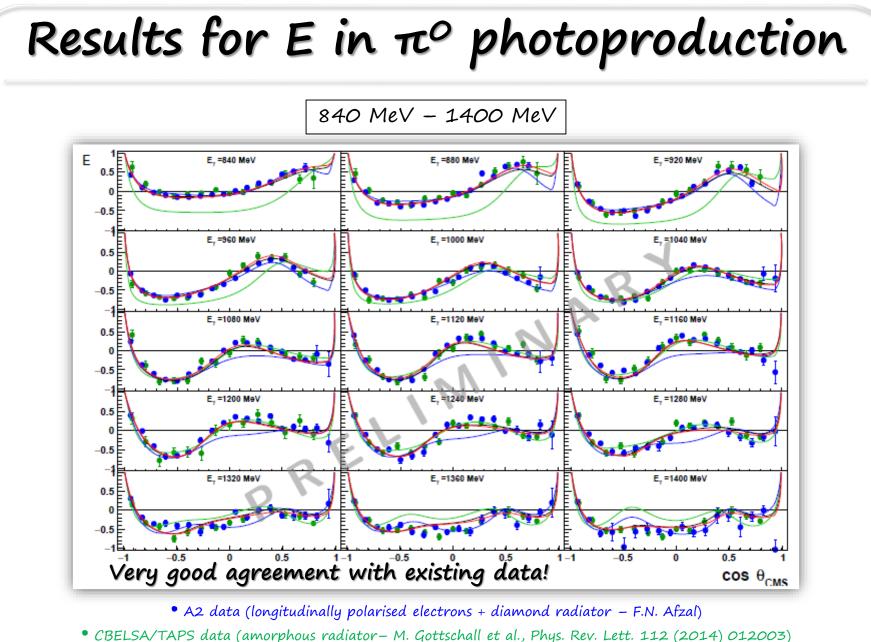
Double polarisation observable G

563 MeV – 860 MeV



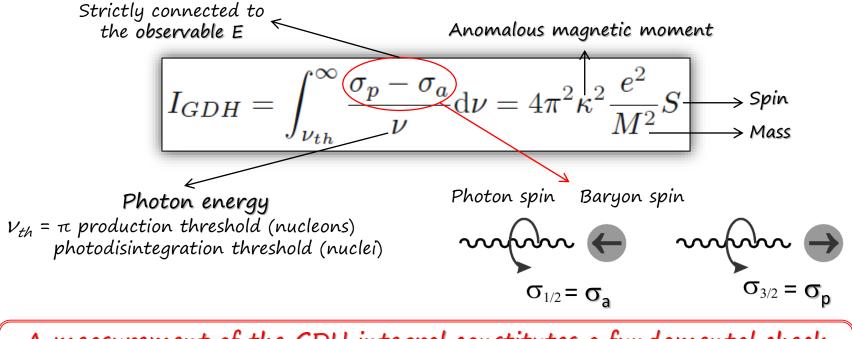
• A2 data (longitudinally polarised electrons + diamond radiator – K. Spieker)

CBELSA/TAPS data (unpolarised electrons – A. Thiel et al., Phys. Rev. Lett. 109 (2012) 102001)
 BnGa_2014_02 (PWA fit) – BnGa_2014_01 (PWA fit) – MAID 2007 (PWA pred.) – SAID-CM12 (PWA pred)


Results for E in π^o photoproduction

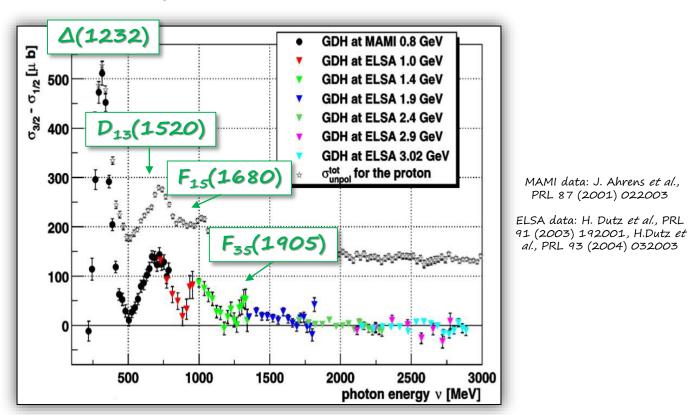
240 MeV – 800 MeV

• A2 data (longitudinally polarised electrons + diamond radiator – F.N. Afzal)


CBELSA/TAPS data (amorphous radiator – M. Gottschall et al., Phys. Rev. Lett. 112 (2014) 012003)
 BnGa_2014_02 (PWA fit) – BnGa_2014_01 (PWA fit) – MAID 2007 (PWA pred.) – SAID-CM12 (PWA pred)

- BnGa_2014_02 (PWA fit) - BnGa_2014_01 (PWA fit) - MAID 2007 (PWA pred.) - SAID-CM12 (PWA pred)

The GDH sum rule

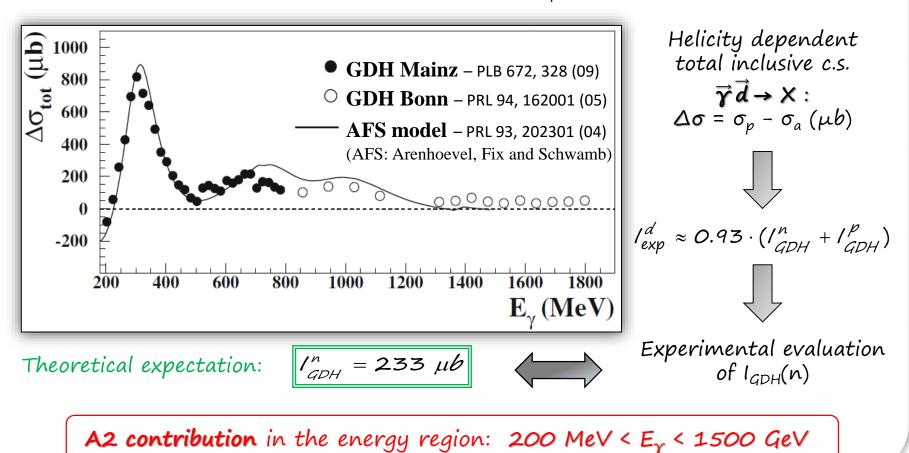

- Proposed by Gerasimov Drell Hearn in 1966
- Fundamental connection between the ground state properties of a particle and a moment of the entire excitation spectrum
- Gives a prediction on the absorption of circularly polarised photons by longitudinally polarised nucleons/nuclei:

A measurement of the GDH integral constitutes a fundamental check of our knowledge of both the photon and the nucleon (nucleus)

The GDH sum rule on the proton

First experimental evaluation on the proton (0.2 < E_{γ} < 2.9 GeV) [+ MAID/SAID contribution (E_{γ} < 0.2 GeV) + theoretical estimates (E_{γ} < 2.9 GeV)]

$I_{GDH}(p) = 211 \pm 5 \pm 12 \ \mu b$

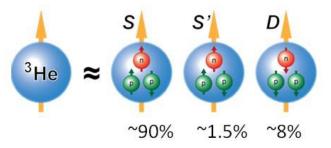

Agreement between the GDH sum rule value and the experimental one BUT no agreement with theoretical estimates $(I_{GDH} (p) = 239 \mu b)$

The GDH sum rule on the neutron

The measurement of I_{GDH} (n) is complicated by the lack of free neutron targets

2H:

System of one proton and one neutron with paired spins, in relative s states (96% probability) $\rightarrow \mu \approx \mu_p + \mu_n$



The GDH sum rule on the neutron

The measurement of I_{GDH} (n) is complicated by the lack of free neutron targets

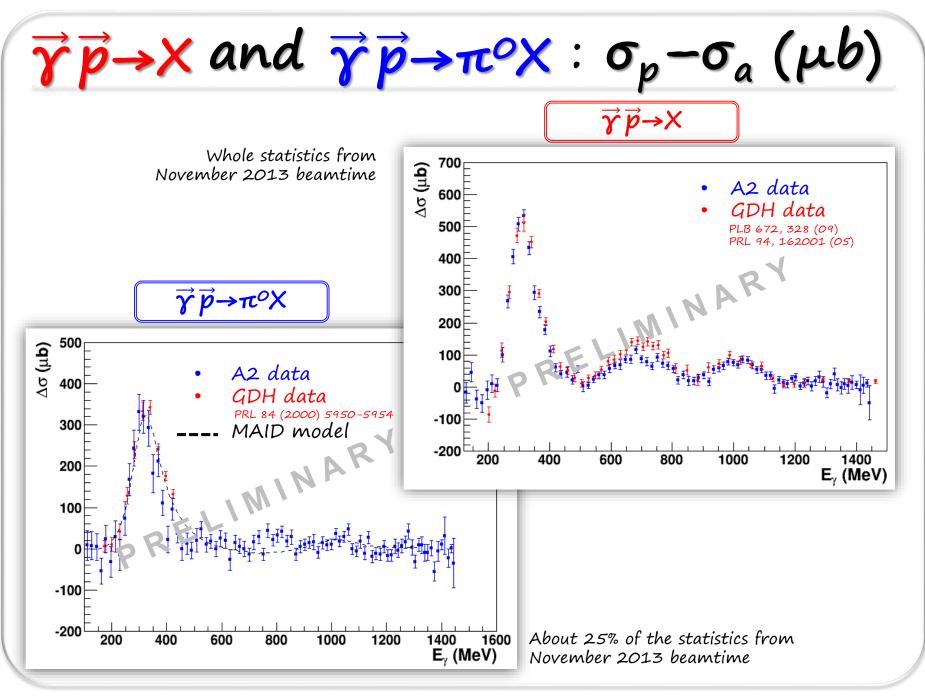
³He:

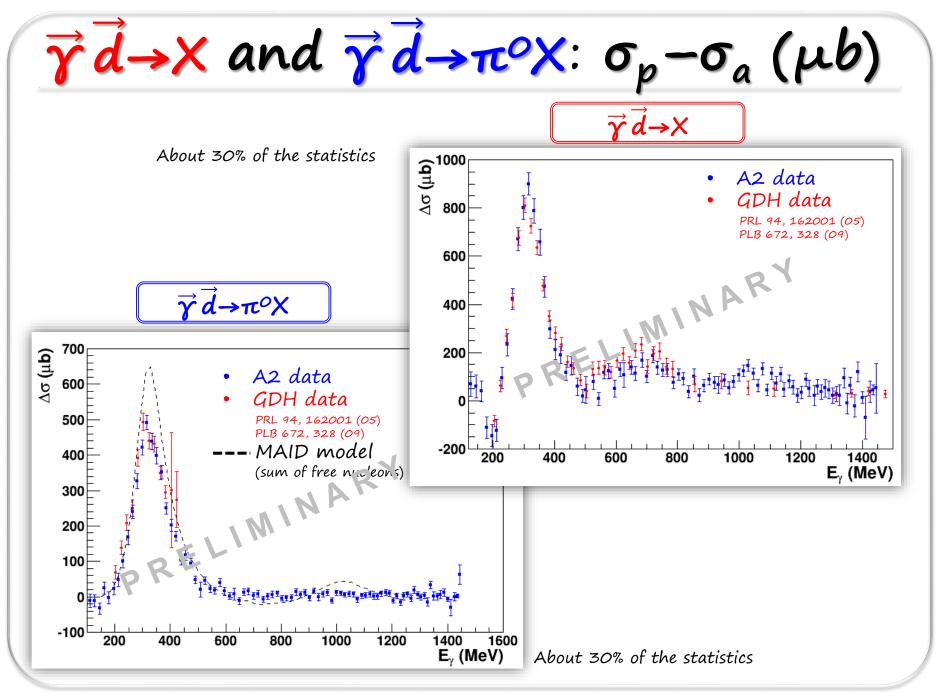
System of two protons with spins paired off and an «active» unpaired neutron, in relative *s* states (~ 90% probability)

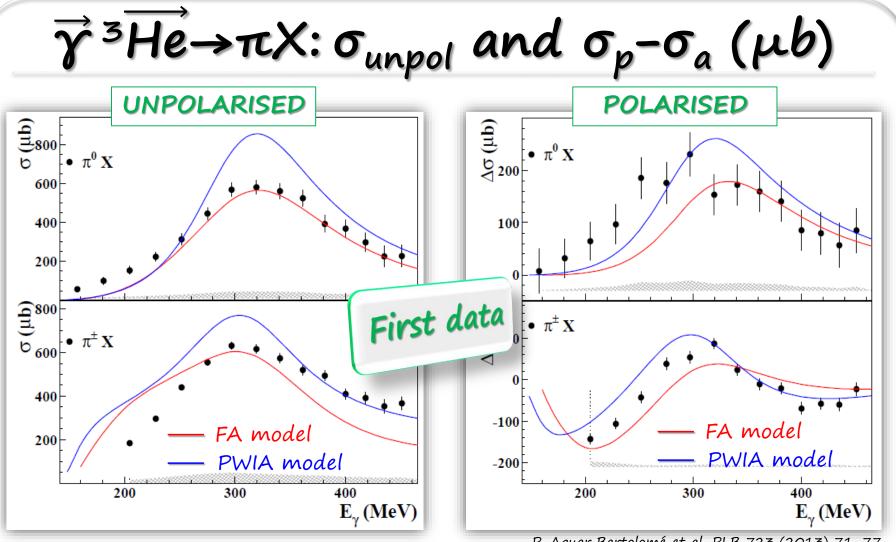
The proton contribution is small: $\mu \approx \mu_{\rm n}$

Direct access to the free neutron contribution, usually prevented by nuclear structure effects and FSI

• For $v_{th} > m_{\pi} (\pi \text{ photoproduction threshold on free nucleon}), I_{GDH}(^{3}He) ~ I_{GDH}(n);$ $I_{GDH}^{^{3}He}\Big|_{v > m_{\pi}} \approx -2 \cdot 0.026 \cdot I_{GDH}^{p} + 0.87 \cdot I_{GDH}^{n}$


• For 8 MeV < v_{th} < m_{π} (photodisintegration region), contribution of nuclear structure effects to $I_{GDH}({}^{3}He)$:


$$I_{GDH}(^{3}He) = 4\pi^{2}S\left(\frac{1}{S}\mu - \frac{Q}{M}\right)^{2} = \int_{\nu_{th}}^{\infty} \frac{\sigma_{3/2}(\nu) - \sigma_{1/2}(\nu)}{\nu} d\nu \approx 498\mu b \gg I_{GDH}(n)$$


@ MAMI, from π photoproduction threshold

• test the GDH sum rule on the neutron and ³He models

• both through the inclusive and the partial channel measurements.

P. Aguar Bartolomé et al, PLB 723 (2013) 71–77

FA (Fix-Arenhövel) model: Fermi motion + nuclear structure effects PWIA (Plane-Wave Impulse Approximation) model: incoherent sum of quasi-free single nucleon contributions (from MAID multipole analysis smeared with Fermi motion)

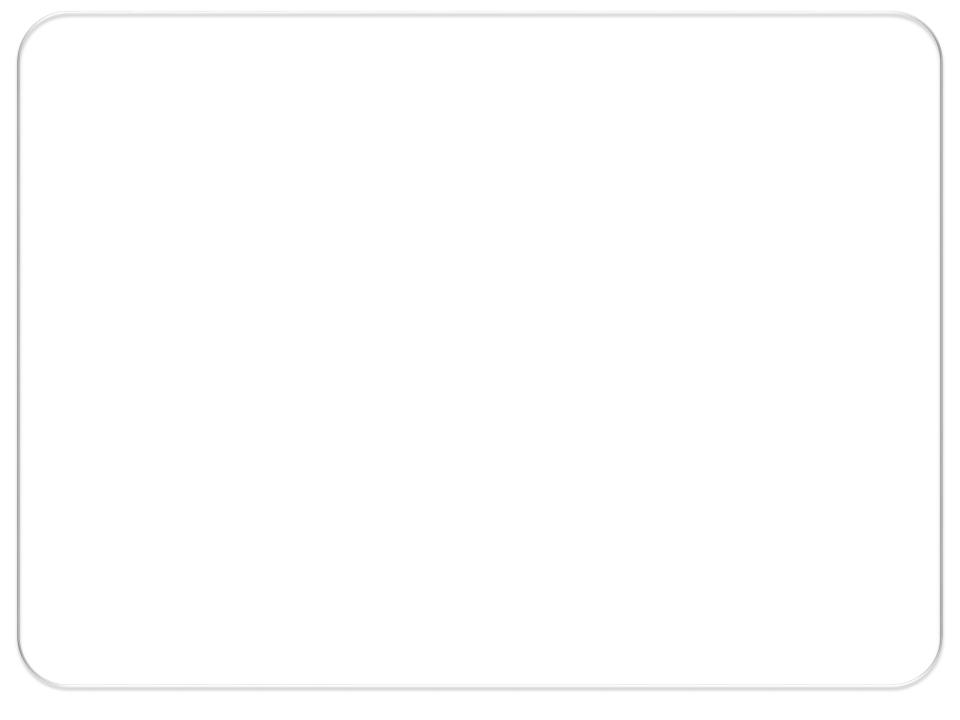
 $\vec{\gamma}^{3}$ He $\rightarrow \pi^{o}X$: $(d\sigma_{p}/d\Omega) - (d\sigma_{a}/d\Omega) (\mu b/sr)$ S. Costanza et al, $\Delta \sigma \, (\mu b/sr)$ 50 319 MeV 297 MeV EPJA (2014) 50: 173 341 MeV 361 MeV 25 First data!! 381 MeV 400 MeV 20 0 CB data PWIA model -20 FA model π^{03} He 50 100 150 50 150 100 ······· FA model π^oppn θ_{π} (deg) θ_{π} (deg) \cdot - FA model π^{o} pd

Susanna Costanza

Summary

An overview was given on recent results from the photoproduction of mesons from nucleons and nuclei at A2@MAMI

 \blacksquare Our data cover energy range down to the $\Delta(1232)$ resonance region \rightarrow complementary to CBELSA/TAPS and CLAS data


■ Both for the double polarisation observables G/E and the GDH sum rule results, good agreement between our results and existing data

A2 can contribute to many topics of nuclear physics

In particular, A2 can help to get a more precise estimation of the properties of baryonic resonances

A lot of collected data to be analysed... and a lot to come!

Thank you for your attention!

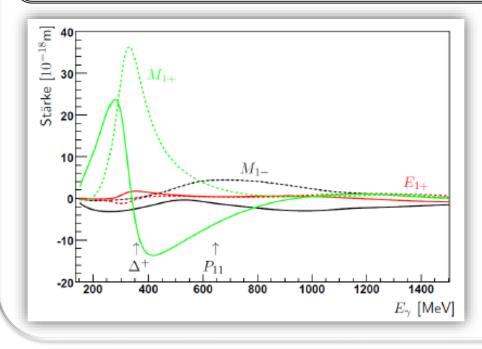
Meson photoproduction

PROs:

- Prime tool for the experimental investigation of the excitation spectrum of the nucleon
- Accuracy in measuring photon induced reactions is comparable to that of hadron induced reactions
- ✓ Possible due to the large progress in accelerator and detector technology
- ✓ Possibility to explore multiple meson production reactions (ππ, πη, ...)
- ✓ Access to resonances that decay via intermediate excited states
- ✓ Electromagnetic couplings are related to spin-flavour correlations of the states → information about configuration mixing

CONs:

- × Electromagnetic cross sections are much smaller than the hadronic ones
- X Photon induced reactions can have significant non-resonant «background»

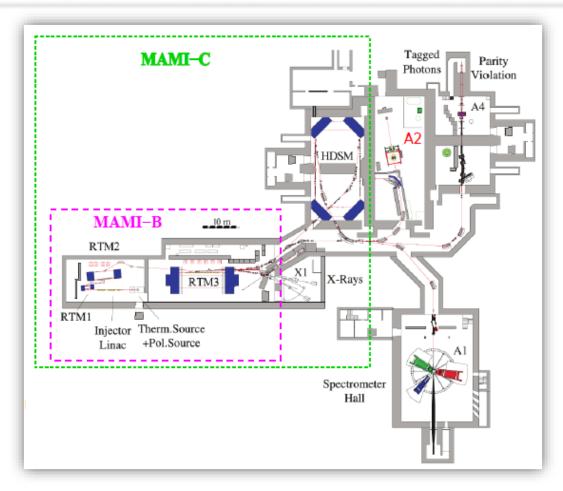

Susanna Costanza

Polarisation observables

Examples of multipole expressions: $\sigma \sim |E_{0+}|^2 + |E_{1+}|^2 + |M_{1+}|^2 + |M_{1-}|^2 + \dots$

 $\Sigma \sim -2E_{1+}^*M_{1+} + 2M_{1-}^*E_{1+} - 2M_{1-}^*M_{1+} + \dots$

Multipole expression of G for $l \le 1$ in single pion photoproduction off the proton $\frac{d\sigma}{d\Omega} \cdot G(\cos \theta) = Im\{M_{1-}^*(E_{1+} - M_{1+}) - 2E_{1+}^*M_{1+}\} \cdot 3\sin^2 \theta \approx ImM_{1-}ReM_{1+} \cdot 3\sin^2 \theta$



• Sensitive to the M₁₋ partial wave

• Sensitive to $P_{11}(1440)$ resonance

Solid line: real part; Dotted line: imaginary part

MAinzer Mikrotron MAMI

- Located at the Inst. of Nuclear Physics, Mainz, Germany
- Unpolarised or longitudinally polarised electrons Acceleration in 3 race track microtrons (RTM1-3) to 855 MeV (MAMI-B)
- Acceleration in harmonic double-sided microtron (HDSM) to 1600 MeV (MAMI-C)

A2@MAMI: main physics goals

Mainly involving low cross sections and/or precision measurements

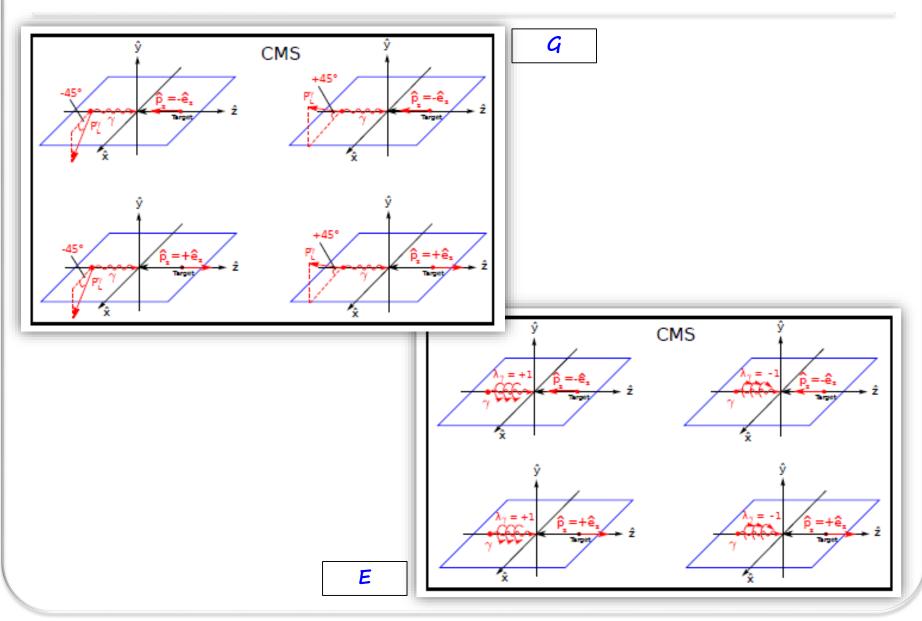
- Precision spectroscopy of low lying baryonic states
 - $\Delta(1232)$ from $\gamma p \rightarrow \pi^{o} \gamma' p$ and $\pi^{+} \gamma' n$
 - $S_{11}(1535)$ from $\gamma p \rightarrow \eta \gamma' p$ reaction
- Threshold meson production (test of LET/ChPT)
 - Strangeness ($\gamma N \rightarrow \Lambda K$)
 - π^{o} photoproduction at threshold
- Ambiguity free amplitude analysis of meson photoproduction
 - Requires double polarisation measurements: $\gamma N \rightarrow N\pi(\pi)$, $N\eta(\rho, ...)$
- Tests of fundamental symmetries (C, CP, CPT, ...)
 - Rare η , η ' decays
- Studies of nuclear structure ($\gamma A \rightarrow p X$)
- In medium properties of hadrons
 - Meson photoproduction on nuclei

Double polarisation observables G

First experimental attempt to measure E and G with longitudinally polarised electron beam incident on a diamond crystal (→ using linearly and circularly polarised photons at the same time!) with a longitudinally polarised butanol target

Differential cross section for pseudo-scalar meson photoproduction using elleptically polarised photons in combination with a longitudinally polarised target: $\frac{d\sigma}{d\Omega}(\theta,\phi) = \frac{d\sigma}{d\Omega_0}(\theta) \left[1 - P_{lin} \Sigma \cos(2(\alpha - \phi)) - P_z \left(-P_{lin} G \sin(2(\alpha - \phi)) + P_{circ} E\right)\right]$

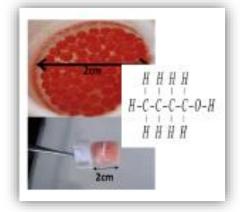
Butanol (
$$C_4H_9OH$$
) has unpolarised protons in carbon and oxygen:

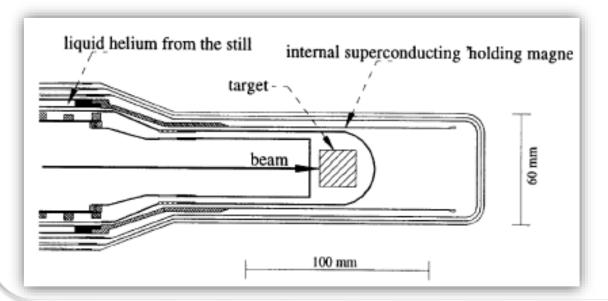

$$N_{B}\Big|_{\pm\alpha}^{\pm\Lambda_{Z}}(\theta,\phi) = \underbrace{(N_{H}+N_{C})}_{N_{H}}(\theta) \cdot \left((1-\underbrace{\left(\frac{N_{H}\Sigma_{H}+N_{C}\Sigma_{C}}{N_{H}+N_{C}}\right)}_{N_{H}+N_{C}}\delta_{l}\cos 2(\phi-\alpha) + \underbrace{\left(\frac{N_{H}}{N_{H}}\right)}_{N_{H}+N_{C}}\delta_{l}\Lambda_{Z}G_{H}\sin 2(\phi-\alpha)\right)$$

 \square Σ_b contains distribution for bound protons

 \square The double polarisation observable G requires longitudinally polarised target \rightarrow determine the fraction of polarised protons \rightarrow dilution factor:

$$D = \frac{N_H}{N_H + N_C} = \frac{N_H}{N_B} = \frac{N_B - s(E_\gamma)N_C}{N_B} = 1 - s(E_\gamma)\frac{N_C}{N_B} \text{ with } N_B \approx N_H + N_C$$

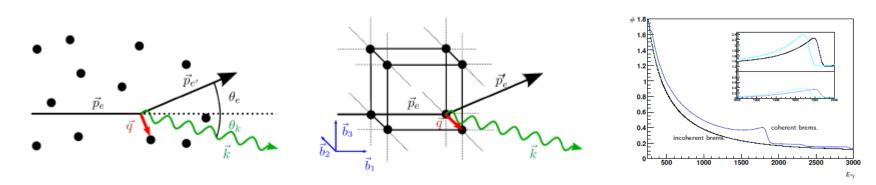

Determination of E and G



Frozen spin Butanol target

Polarization via Dynamic Nuclear Polarization (DNP)

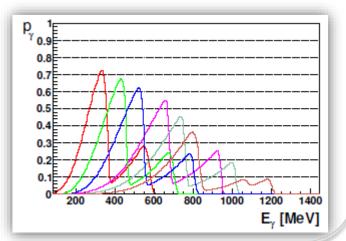
- Butanol target is doped with paramagnetic radicals
- Electrons are polarised with a 2.5 T magnetic field at 1 K
- Electron polarisation can be transferred to the nucleons by microwave irradiation (70 GHz)
- «Freeze» the spin: 3He/4He dilution cryostat with \approx 25 mK holding coil and 0.63 T



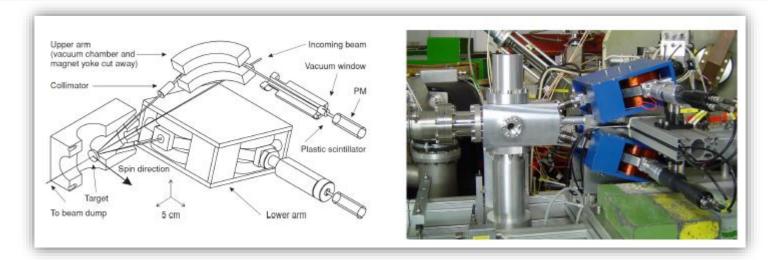
- high relaxation time (≈ 2000 h)
- 9.10²² polarised protons per cm² in the target cell

–
$$p_{ op}$$
 up to 90%

Linearly polarised photons

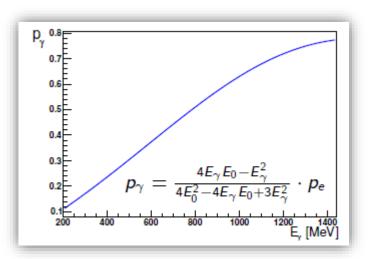


Incoherent bremsstrahlung:


only one single atom of the crystal absorbs the recoiling momentum \rightarrow no preferred plane between incoming electron and outgoing photon \rightarrow no favored orientation of the electric field vector of the photons \rightarrow no polarised photons

- Coherent bremsstrahlung:

if $\vec{q} = n\vec{g}$ with $\vec{g} = \sum_{i=1}^{3} \vec{b}_{i} \cdot h_{i} \rightarrow \text{single atoms}$ can interfere constructively! \rightarrow preferred plane between incoming electron and outgoing photon \rightarrow orientation of the field vector of the photon \rightarrow polarised photons

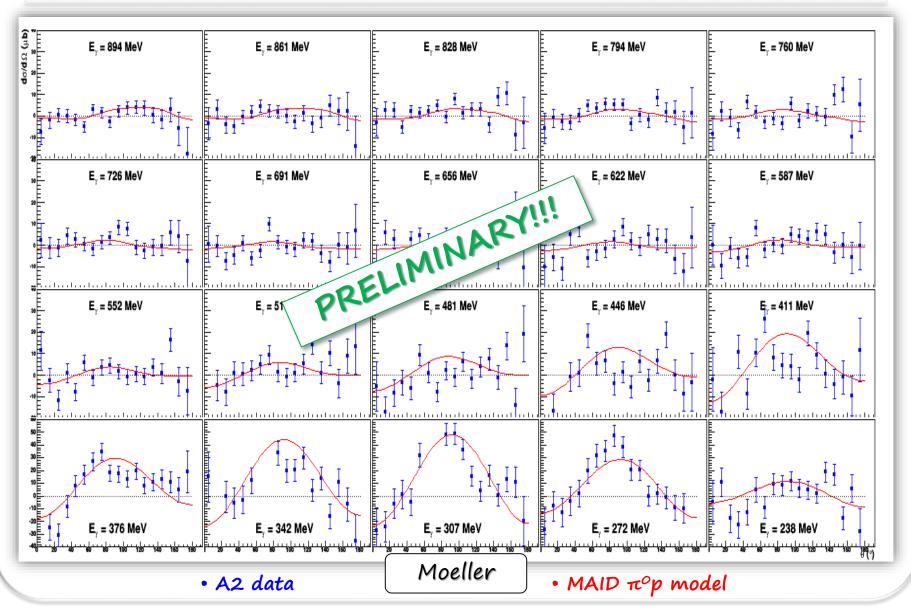

Circularly polarised photons

- Mott scattering:

electrons in gold (Z=79) interact via spin-orbit coupling with the longitudinally polarised electrons from MAMI \rightarrow asymmetry in backscattering \rightarrow polarisation degree of electrons

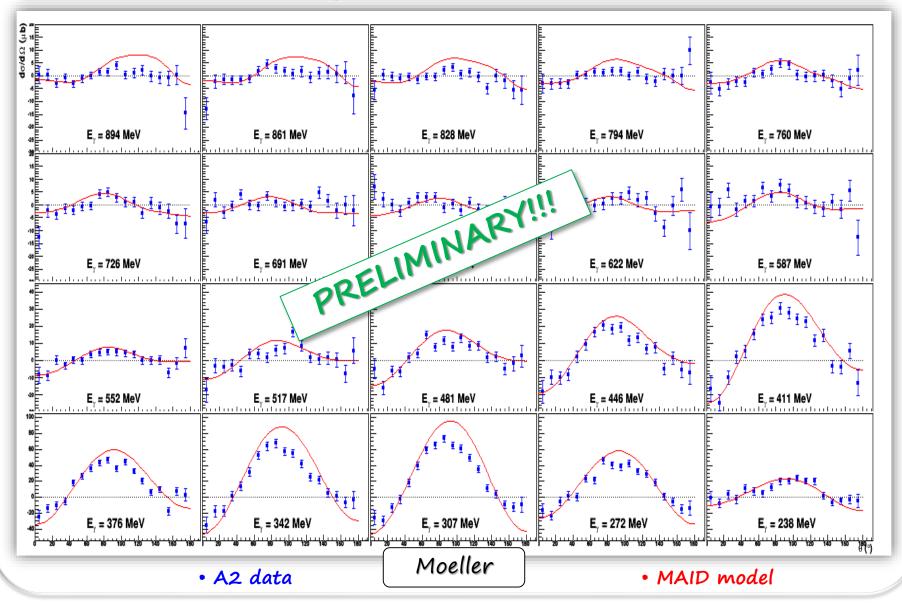
Helicity transfer from electrons to photons → circularly polarised photons

The GDH sum rule on the proton					
	o _H (p) = 211 ± 5 ± 12 μ	Ь			
E _r (GeV)	Who	Ι _{GDH} (μ b)			
< 0.20	MAID/SAID				
0.20 - 2.90	MAMI+ELSA (measured)	$254 \pm 5 \pm 12$			
> 2.90 (Regge approach)	Simula et al. Bianchi–Thomas	-13 -14			
Total		211 ± 5 ± 12			
GDH sum rule		205			

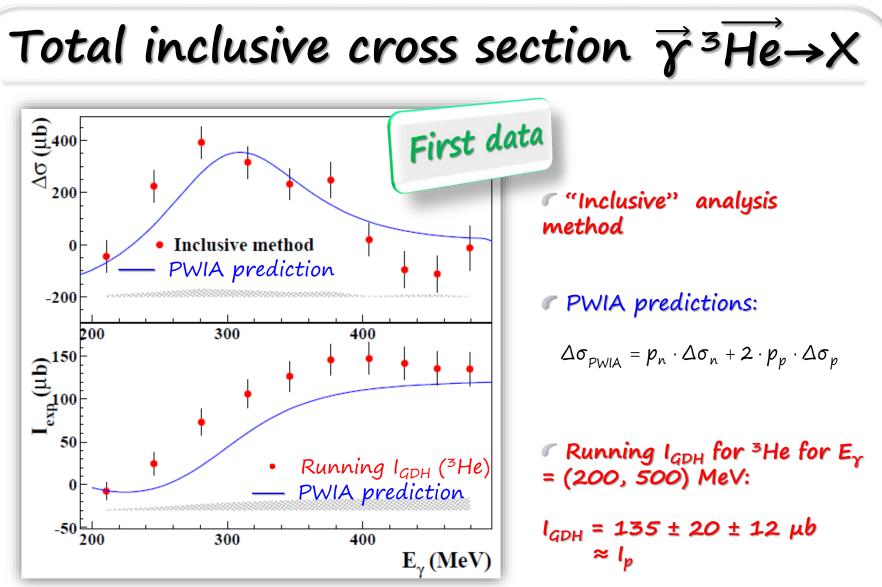

Agreement (within errors) between the GDH sum rule value and the experimental one: GDH sum rule experimentally (almost) demonstrated!!!

The GDH sum rule: theoretical estimates

Partial channels	Models	I _{GDH} (р) [µb]	Ι _{GDH} (n) [μ b]	
$\gamma p \rightarrow N \pi$	SAID-FA07K [MAID07]	172 [164]	147 [131]	
$\gamma p \rightarrow N \pi \pi$	Fix, Arenhoevel EPJA 25, 114 (2005)	94	82	
$\gamma p \rightarrow N \eta$	MAID	-8	-6	
$\gamma p \rightarrow K \Lambda(\Sigma)$	Sumowidagdo <i>et al.</i> PRC 65, 0321002 (02)	-4	2	
$\gamma p \rightarrow N \rho(\omega)$	Zhao <i>et al.</i> PRC 65, 032201 (03)	0	2	
Regge contribution	Bianchi-Thomas PLB 450, 439(99)	-14	20	
Total		239 [231]	244 [231]	
GDH sum rule		205	233	


Comparing the GDH sum rule value and the theoretical predictions: NO AGREEMENT for the proton ... but ... AGREEMENT for the neutron

>π°X: (dσ_p/dΩ)-(dσ_a/dΩ) (µb/sr)



Susanna Costanza

 $\vec{\gamma} d \rightarrow \pi^{o} X$: $(d\sigma_{p}/d\Omega) - (d\sigma_{a}/d\Omega) (\mu b/sr)$

Susanna Costanza

P. Aguar Bartolomé et al, PLB 723 (2013) 71-77

Reasonable agreement between data and PWIA predictions