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Merging of two BH (36 and 29 M⊙) 410 Mpc away, 
emitting 3 M⊙ in GW 

GW: science fiction come true! 



BH radius:   

RBH =
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relativistic velocities! 

BH radius:   

RBH =
2MBH GN

c2 =106 km MBH

36M⊕
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Edge of observable universe 



Energetic output  
≈ 3 M☉ in 0.1 s  

 
 
 
 
 
3 M☉ = 2×1041 kWh ≈ 1034 Hiroshima 
 
Power:  3 M☉ / 0.1 s = 1046 kW =  3×1022 L☉ 
Stars in the universe: 1022-1024  



Flux:  5×10-3 W/m2 = 4×10-6 F☉ 
Strain: 10-21-10-22 of 4 km arms   
        ⇒ 10-18 m ≈ 10-3 proton radius 



Not only a fantastic tool for astronomy,  
but a new testing ground for fundamental physics 

 
Testing gravity under extreme conditions 

§  gravitational field is strong and rapidly changing 
§  curvature of spacetime is large 
§  dynamics of event horizons 
§  velocities are relativistic 

GW can be used to test:  
equivalence principle, modifications of gravity, 

quantum structure of BH, propagation of GW, ...  



Search for new physics in the form of  
Exotic Compact Objects (ECO) 

 
§  DM primary motivation 
§  New light elusive particles that can coalesce into ECOs 
§  GW o"er unique tool for probing the existence of ECOs 



Boson stars 
 

§  Supported by Heisenberg’s principle 

R ~ 
mBc

    no gravitational collapse if R > RBH =
2GNM
c2 ⇒

§  Supported by repulsive self-interaction 

§  Non-topological solitons (localized solutions of EoM in 
presence of a conserved charge Q and with trivial asymptotic behaviour) 



Fermion stars 
Supported by Fermi pressure 

Multi-component stars 
Mixtures of exotic or ordinary/exotic matter components 

Dark-matter stars 
§  Strongest motivation for exotic matter 
§  Is DM collisionless?  
Problems of simulations 
with collisionless DM: 

⇒
σ
mDM

≈ 0.1−1 cm2

g
ECO formation? 

•  profiles of dwarf galactic haloes too cuspy 
•  too many satellite galaxies 
•  dwarf galaxies too massive 
  + indications from gravitational lensing of 
elliptical galaxies falling into Abell 3827 cluster 



Dark-energy stars (gravastars) 

relativistic fluid 
p = ρ 

vacuum energy  
p = −ρ0 



Limits from 
microlensing in the LMC 

For M ~ 1 to tens of M⊙ 
20-40% of halo DM is 

allowed: 
•  ECO can be as numerous 

as ordinary stars 
•  ECO could be made of 

DM, if DM is both in dust 
and compact objects 

Brandt 1605.03665 



LIGO sensitivity to ECO binary mergers 
In terms of the astrophysical parameters only: 

•  mass M (for M1=M2)  
•  compactness C = M/R   (CBH=1/2)   

GW frequency grows as the two objects approach ⇒ 
sensitivity to size 

 
At innermost stable orbit: 
 
 
       Signal/noise must be su#ciently large (depends on DL) 

f = 2C3/2

3 3π M
fLIGO ~ 50−1000 Hz
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Interesting for 
axion-like DM: 

Interesting for 
asymmetric DM: 



How to detect ECO in a single GW event 

Inspiral 
§  post-Newtonian expansion 
§  chirp mass 

§  redshi$ (from the way frequency 
and amplitude change) 

Merger 
§  numerical relativity (progress in 

the last 10 yrs)  
§  need to develop ECO 

simulations  
Ringdown 

§  QNM as perturbations of 
Kerr BH solution 



Extraordinary sensitivity 
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m1 = 43.4 M�

m2 = 28.0 M�

m1 = 39.4 M�

m2 = 30.9 M�

Inspiral Merger Ringdown

Black: LIGO best fit 
Red: same chirp mass, 
but mass ratio excluded 
@ 90% CL 



What can be learned from GW event distributions? 
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Conventional heavy objects: 
§  NS: most massive observed M=2.01±0.04 M⊙ and most models 

hardly exceed 2 M⊙ (0.13≤C≤0.23) 
§  Stellar BH: mass distribution expected to start at 5 M⊙ (C=0.5) 
Mass gap can be explained in stellar evolution models  
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§  Filling the gap is evidence of a new population of 
exotic objects 

§  Distribution is an essential tool to understand ECO 
mass function and formation process 



Test of Area &eorem 
 

Hawking’s Area &eorem: the sum of the horizon areas of a system of 
BHs never decreases 
It follows from GR + null energy condition 
 
Hawking’s radiation: M decreases ⇒ R decreases  ⇒ A decreases 
Violation of the theorem?  
 
&ermodynamics interpretation: BH temperature T = MP

2/M 
                                                          BH entropy S = A/4 
Second law of thermodynamics ⇒ Area &eorem 
Once the entropy of the emitted radiation is taken into account, no 
violation of the “generalized” second law of thermodynamics 



Test of Area &eorem in BH mergers 
 

For a Kerr BH: 
 
 
Hawking’s Area &eorem: 
 
 
 
 
 
 
 
Hawking’s Area &eorem:  
lower bound on Mf ⇒ upper bound on e#ciency of GW emission 
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What if the Area &eorem is observed to be violated? 
A BH-mimicker ECO can violate it by emitting dark radiation 
§  Test of fundamental principles 
§  Test of undetected radiation  



Conclusions 
 

§  GW observations have opened a new avenue in astronomy 
§  A unique tool to test gravity in the regime of strong and 

rapidly-changing field, and relativistic velocities 
§  Search for new forms of matter in compact objects 
§  Probing DM clumping in astronomical bodies 
§  Probing a variety of new-physics ideas 
§  Information in single GW events and event distribution 
§  Testing Hawking’s Area &eorem can probe dark radiation   

 
 


