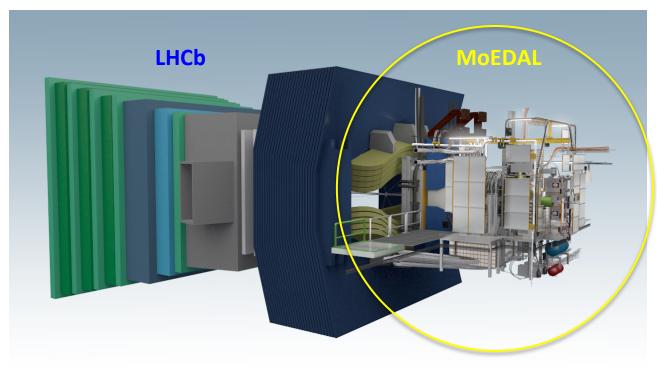


Exploring supersymmetry at the LHC using the MoEDAL detector

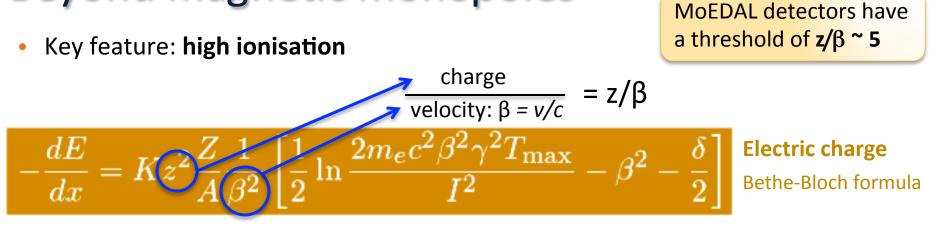
Vasiliki A. Mitsou (IFIC – CSIC / Valencia Univ.)


for the MoEDAL Collaboration

5th International Conference on New Frontiers in Physics ICNFP 2016

6 – 14 July 2016, Kolymbari, Crete, Greece

The MoEDAL detector


MoEDAL is unlike any other LHC experiment:

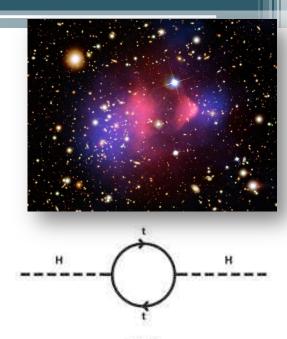
mostly passive detectors; no trigger; no readout

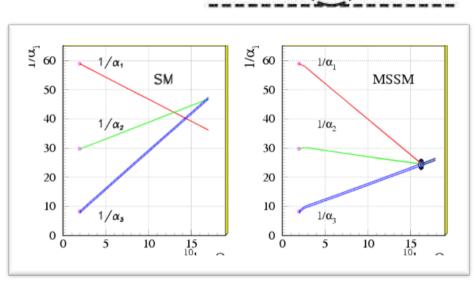
DETECTOR SYSTEMS

- Low-threshold NTD (LT-NTD) array
 - Z/β > ~5
- Very High Charge Catcher NTD (HCC-NTD) array
 Z/β > ~50
- ③ TimePix radiation background monitor
- ④ Monopole Trapping detector (MMT)
- the largest deployment of passive Nuclear Track Detectors (NTDs) at an accelerator
- the 1st time trapping detectors are deployed as a detector

Beyond magnetic monopoles

- Achieved, e.g., by magnetic monopoles due to ionisation 68.5² times higher than minimum ionising particle
- Actually any (meta-)stable massive charged particle, (M)SMCP, (hence slow moving) with electric charge should give a track in Nuclear Track Detectors
- For singly charged particles to be detected in NTDs, velocity should be $\beta \lesssim 0.2$
- Moreover in some cases they may lose all of their momentum, mainly from ionisation energy loss, and come to rest within the magnetic trappers, MMTs
 - if metastable, they may be monitored with a dedicated detector system in an underground laboratory over a long period for their decay

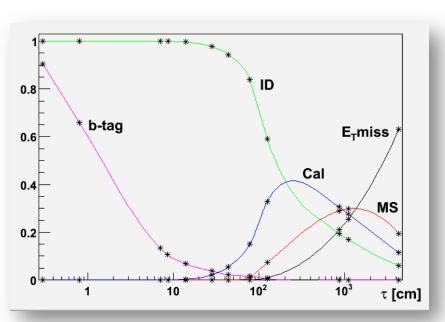

Stable charged particles in BSM scenarios

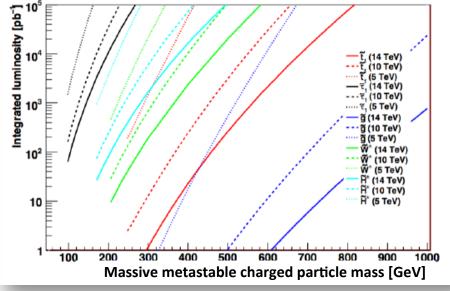

- Scenarios with Extra Dimensions
 - long-lived microscopic black holes
 - microscopic black hole remnants
 - long-lived Kaluza-Klein particles from UED
- D matter
 - electrically-charged D-particles
- Long-lived heavy quarks
- Fourth-generation fermions
- Multiparticle excitations
 - Q-balls
 - strangelets
 - quirks
- •••
- Supersymmetry

See previous talk by Nick Mavromatos

Supersymmetry (SUSY)

- Global symmetry between fermions & bosons
- Motivation
 - Higgs mass stabilisation against loop corrections (fine-tuning problem)
 - unification of gauge couplings at single scale
 - dark matter candidate
- Particle stability mechanisms
 - a) lightest state (LSP) carrying a conserved quantum number:
 R-parity: R = (-1)^{3(B-L)+2s}
 - b) suppressed (effective) coupling
 - c) lack of phase space for decay, e.g. mass degeneracies




LHC sensitivity to sparticle direct production

- Metastable particles = they live long enough to pass through detector
- Detection in ATLAS and CMS
 - large ionisation energy loss dE/dx, e.g. time-overthreshold in ATLAS Transition Radiation Tracker
 - nuclear interactions (R-hadron) in calorimeters
 - delay (time of flight) reconstructed in muon chambers

Integrated luminosities needed for discovery at LHC at 14 TeV (solid), 10 TeV (dashed) and 5 TeV (dotted)

- signal efficiency of 20% (5%) for electrically charged (strongly interacting) SMCPs
- 1 bkg event for 100 pb⁻¹

Raklev, Mod.Phys.Lett. A24 (2009) 1955

Long-lived particles in SUSY scenarios

- **GMSB**: NLSP decays to gravitino LSP only via (small) gravitational coupling
 - N_{mes} = 1: non-pointing photons

$$\widetilde{\chi}_1^0 \rightarrow \widetilde{G} + \gamma$$

N_{mes} > 1: penetrating sleptons

 $\xrightarrow{\text{long}} \widetilde{G} + \ell$

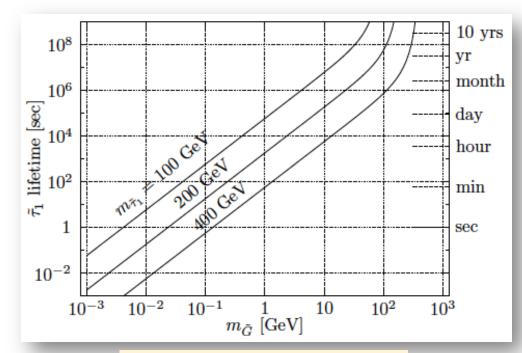
Split SUSY: squarks heavy, suppressing gluino decays \rightarrow colored heavy particles

R-hadrons

$$R = \widetilde{g}q\overline{q}, \, \widetilde{g}qqq, \, \widetilde{g}g$$

- **AMSB:** χ_1^{\pm} and χ_1^{0} are mass degenerate
 - long-lived chargino (\rightarrow kink track)

$$\widetilde{\chi}_1^{\pm} \longrightarrow \widetilde{\chi}_1^0 + \pi^{\pm}$$


SMP	LSP	Scenario	Conditions	
$ ilde{ au}_1$	$\tilde{\chi}_1^0$	MSSM	$\tilde{\tau}_1$ mass (determined by $m^2_{\tilde{\tau}_{L,R}}$, μ , $\tan \beta$, and A_{τ}) close to $\tilde{\chi}^0_1$ mass.	
	\tilde{G}	GMSB	Large N, small M, and/or large $\tan \beta$.	
		\tilde{g} MSB	No detailed phenomenology studies, see [20].	
		SUGRA	Supergravity with a gravitino LSP, see [21].	
	$ ilde{ au}_1$	MSSM	Small $m_{\tilde{\tau}_{L,R}}$ and/or large $\tan\beta$ and/or very large $A_{\tau}.$	
		AMSB	Small m_0 , large $\tan \beta$.	
		\tilde{g} MSB	Generic in minimal models.	
$\tilde{\ell}_{i1}$	\tilde{G}	GMSB	$\tilde{\tau}_1$ NLSP (see above). \tilde{e}_1 and $\tilde{\mu}_1$ co-NLSP and also SMP for small $\tan\beta$ and $\mu.$	
	$\tilde{\tau}_1$	\tilde{g} MSB	\tilde{e}_1 and $\tilde{\mu}_1$ co-LSP and also SMP when stau mixing small.	
$\tilde{\chi}_1^+$	<i>χ</i> ₁ ⁰	MSSM	$m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^0} \lesssim m_{\pi^+}$. Very large $M_{1,2} \gtrsim 2 \text{ TeV} \gg \mu $ (Higgsino region) or non-universal gaugino masses $M_1 \gtrsim 4M_2$, with the latter condition relaxed to $M_1 \gtrsim M_2$ for $M_2 \ll \mu $. Natural in O-II models, where simultaneously also the \tilde{g} can be long-lived near $\delta_{\text{GS}} = -3$.	
		AMSB	$M_1 > M_2$ natural. m_0 not too small. See MSSM above.	
\tilde{g}	$\tilde{\chi}_1^0$	MSSM	Very large $m_{\tilde{q}}^2 \gg M_3$, e.g. split SUSY.	
	\tilde{G}	GMSB	SUSY GUT extensions [22-24].	
	\tilde{g}	MSSM	Very small $M_3 \ll M_{1,2},$ O-II models near $\delta_{\mathrm{GS}} = -3.$	
		GMSB	SUSY GUT extensions [22-26].	
\tilde{t}_1	$\tilde{\chi}_1^0$	MSSM	Non-universal squark and gaugino masses. Small $m^2_{\tilde{q}}$ and $M_3,$ small $\tan\beta,$ large $A_t.$	
\tilde{b}_1			Small $m_{\tilde{q}}^2$ and M_3 , large $\tan\beta$ and/or large $A_b \gg A_t$.	

Fairbairn et al, Phys Rept 438 (2007) 1 Several SUSY-model signatures accessible to MoEDAL

Long-lived sleptons – GMSB

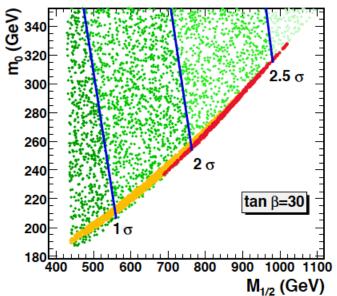
- Gauge-mediated Supersymmetry-Breaking (GMSB)
- Stau NLSP decays via gravitational interaction to gravitino LSP
 - → naturally long lifetime
 - → LSP dark matter candidate
- Long-lived staus
 - may be slow-moving when produced at LHC
 - → high ionisation

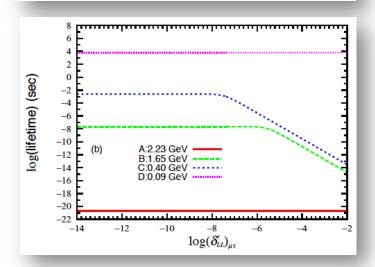
$$\Gamma(\tilde{l} \to l\tilde{G}) = \frac{1}{48\pi M_*^2} \frac{m_{\tilde{l}}^5}{m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{l}}^2} \right]^4$$

Hamaguchi, Nojiri, De Roeck, JHEP 0703 (2007) 046 [hep-ph/0612060]

average distance
travelled
$$L = \frac{1}{\kappa_{\gamma}} \left(\frac{100 \text{GeV}}{m}\right)^5 \left(\frac{\sqrt{F/k}}{100 \text{TeV}}\right)^4 \sqrt{\frac{E^2}{m^2} - 1} \times 10^{-2} \text{cm } \sqrt{F} \gtrsim 10^6 \text{ GeV}$$

Long-lived sleptons – CMSSM


- Stau becomes long lived in MSSM when m(τ̃) - m(χ̃₁⁰) < m(τ)
- Coannihilation region in CMSSM
- Consistent with cosmological constraints
- Lepton Flavour Violating (LFV) elements in slepton mass matrix may decrease stau lifetime

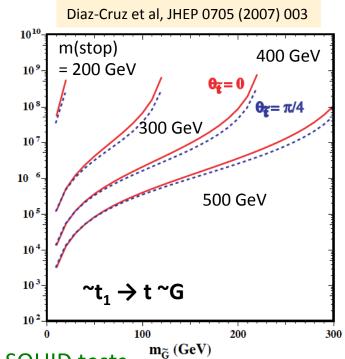

$$(\delta^{e}_{RR/LL})_{\alpha\beta} = \frac{\Delta M^{e\ 2}_{RR/LL}}{M^{e}_{R/L\alpha}M^{e}_{R/L\beta}},$$

 Stau remains metastable in large regions of parameter space

$$\Gamma_{2-\text{body}} = \frac{g_2^2}{2\pi m_{\tilde{\tau}_1}} (\delta m)^2 (|g_{1\alpha 1}^L|^2 + |g_{1\alpha 1}^R|^2),$$

Kaneko, Sato, Shimomura, Vives, Yamanaka, PRD87 (2013) 039904 [arXiv:0811.0703]

R-hadrons


- Gluinos in Split Supersymmetry
 - long-lived because squarks very heavy
 - possible gluino hadrons: $R = \tilde{g}q\bar{q}, \tilde{g}qqq, \tilde{g}g$
 - gluino hadrons may flip charge as they pass through matter
 - e.g., $gu\bar{u} + uud \rightarrow guud + u\bar{u}$
 - may be missed by ATLAS and CMS
- *R*-parity violating SUSY

 $W_{RV} = \lambda_{ijk}^{\prime\prime} \bar{U}_i \bar{D}_j \bar{D}_k + \lambda_{ijk}^{\prime} L_i Q_j \bar{D}_k + \lambda_{ijk} L_i L_j \bar{E}_k + \mu_i L_i H_i$

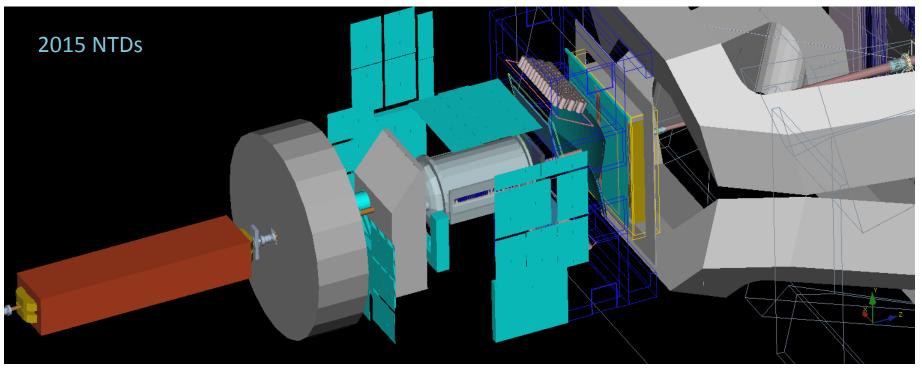
- if λ' or λ"≠0, stop NLSP case → stop R-hadron
 → metastable charged particle in material
 → detection in MoEDAL, if sufficiently slow
- Moreover R-hadrons may be "trapped" in MMTs
 and decay at later times

 monitoring of MMTs after SQUID tests

$$\tau \simeq 8 \left(\frac{m_S}{10^9 \text{ GeV}}\right)^4 \left(\frac{1 \text{ TeV}}{m_{\tilde{g}}}\right)^5 \text{s}$$

Why MoEDAL when searching MSPs?

- ATLAS and CMS triggers have to
 - rely on other "objects", e.g. E_T^{miss}, that accompany MSCP, thus limiting the reach of the search
 - final states with associated object present
 - trigger threshold set high for high luminosity
 - develop specialised triggers
 - dedicated studies needed
 - usually efficiency significantly less than 100%
- Timing: signal from (slow-moving) MSCP should arrive within the correct bunch crossing
- MoEDAL mainly constrained by its geometrical acceptance
- When looking for trapped particles
 - monitoring of detector volumes in an underground laboratory has less background than using empty butches in LHC cavern


Slepton searches comparison*

	ATLAS / CMS	MoEDAL	comments
Velocity	β > 0.2 Constrained by LHC bunch patern	β < 0.2 Constrained by NTD Z/β threshold	Complementarity 😄
Efficiency	ε×A order of 20%	~ 100% (if β < 0.2)	
Acceptance	See limitations in previous slide	~ 50% for 2015 Scalable to higher coverage	
Background	May be considerable or difficult to estimate	Practically zero	For same signal yield, MoEDAL should obtain better cross-section upper limits 😊
Luminosity	high	factor of 10 less	—

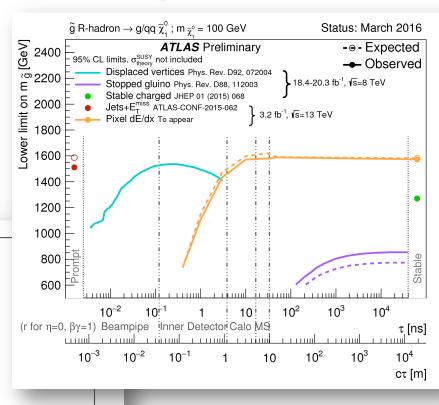
* Numbers are indicative

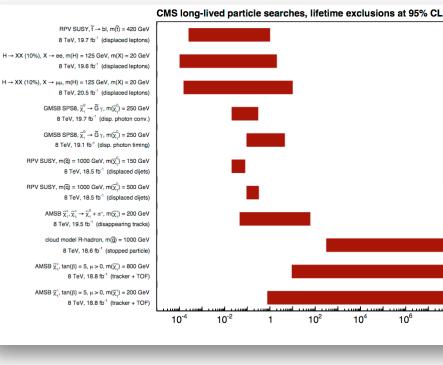
Nuclear Track Detectors coverage

- High acceptance in central region η~0
 - back-to-back pair production means probability >~ 70% for at least one SMCP to hit NTD
- For particles over Z/β threshold, detection efficiency practically 100%

Credit: Daniel Felea

10¹⁰

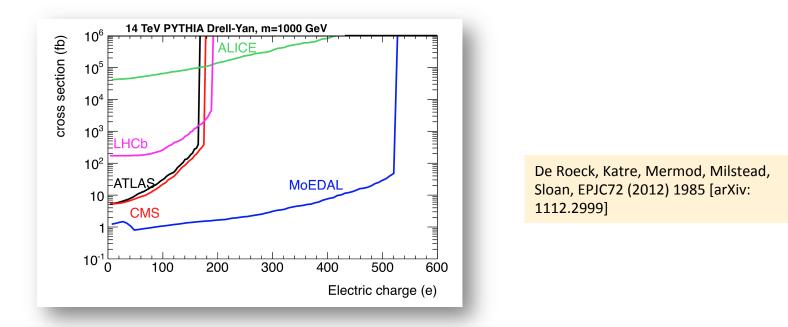

10⁸


10¹²

Cτ [m]

ATLAS & CMS limits on LL SUSY particles

- 1. Stable charged (dE/dx)
- 2. Stopped gluinos



MoEDAL sensitivity in SMCPs

Cross-section limits for electric charge assuming that:

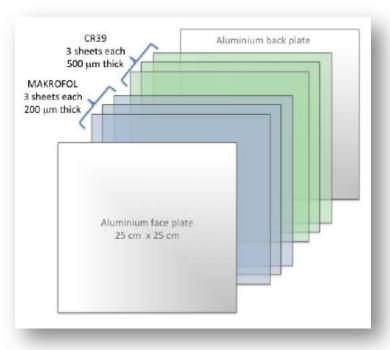
- ~ one MoEDAL event is required for discovery and ~100 events in the other LHC detectors
- integrated luminosities correspond to about two years of 14 TeV run

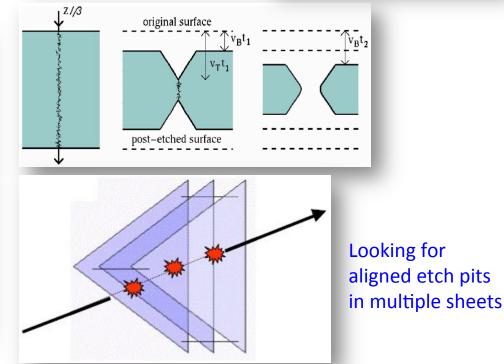
- MoEDAL offers robustness against timing and well-estimated signal efficiency
- These results can be propagated to SUSY models featuring SMCPs in order to assess the discovery reach

Summary

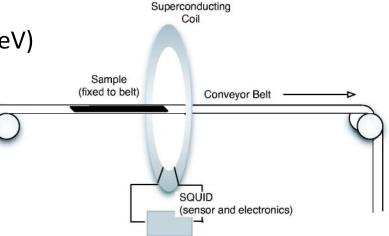
- Apart from magnetic monopoles, MoEDAL is also searching for (meta)stable *electrically-charged* massive particles
- Such particles arise in numerous supersymmetric scenarios (an not only)
- MoEDAL should extend significantly the discovery reach of the LHC w.r.t. such states thanks to its trigger-free concept of passive detectors
- Studies to assess discovery potential in specific SUSY models currently underway

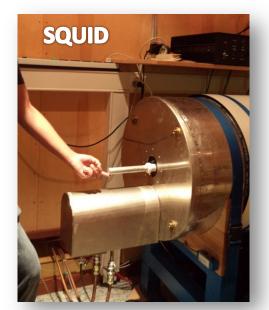
ICNFP 2016 V.A. Mitsou




1&2 HI particle detection in NTDs

- The passage of a highly ionising particle through the plastic track-etch detector (e.g. CR39[®]) is marked by an invisible damage zone ("latent track") along the trajectory
- The damage zone is revealed as a cone-shaped etch-pit when the plastic detector is etched in a controlled manner using a hot sodium hydroxide solution


18



4 MMT: Magnetic Monopole Trapper

- Binding energies of monopoles in nuclei with finite magnetic dipole moments $\mathcal{O}(100 \text{ keV})$
- MMTs analysed with superconducting quantum interference device (SQUID)
- Material: Aluminium
 - large nuclear dipole moment
 - relatively cheap
- Disadvantage: rather low geometrical acceptance
- Advantages:
 - speed: SQUID measurements & analysis take ~2 weeks
 - complementarity: totally different concept from NTDs
 different systematic uncertainties
 - magnetic charge measurement with < 5% precision
 - Bonus: monitoring for decay products of trapped electrically-charged particles at underground laboratory

International Journal of Modern Physics A Vol. 29, No. 23 (2014) 1430050 (91 pages) © World Scientific Publishing Company DOI: 10.1142/S0217751X14300506

The physics programme of the MoEDAL experiment at the LHC

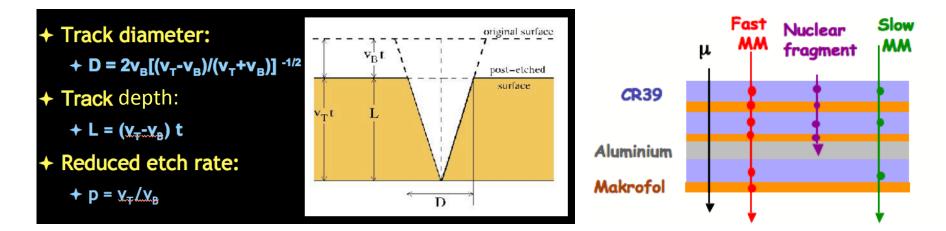
B. Acharya,^{1,2} J. Alexandre,¹ J. Bernabéu,³ M. Campbell,⁴ S. Cecchini,⁵
J. Chwastowski,⁸ M. De Montigny,⁹ D. Derendarz,⁸ A. De Roeck,⁴ J. R. Ellis,^{1,4}
M. Fairbairn,¹ D. Felea,¹⁰ M. Frank,¹¹ D. Frekers,¹² C. Garcia,³ G. Giacomelli,^{5,6}, *
J. Jakůbek,¹³ A. Katre,¹⁴ D.-W. Kim,¹⁵ M. G. L. King,³ K. Kinoshita,¹⁶
D. Lacarrere,⁴ S. C. Lee,¹⁵ C. Leroy,¹⁷ A. Margiotta,⁶ N. Mauri,^{5,6}
N. E. Mavromatos,^{1,4} P. Mermod,¹⁴ V. A. Mitsou,³ R. Orava,¹⁸ L. Pasqualini,^{5,6}
L. Patrizii,⁵ G. E. Păvălaş,¹⁰ J. L. Pinfold,^{9,†} M. Platkevič,¹³ V. Popa,¹⁰
M. Pozzato,⁵ S. Pospisil,¹³ A. Rajantie,¹⁹ Z. Sahnoun,^{5,7} M. Sakellariadou,¹
S. Sarkar,¹ G. Semenoff,²⁰ G. Sirri,⁵ K. Sliwa,²¹ R. Soluk,⁹
M. Spurio,^{5,6} Y. N. Srivastava,²² R. Staszewski,⁸ J. Swain,²² M. Tenti,^{5,6}
V. Togo,⁵ M. Trzebinski,⁸ J. A. Tuszyński,⁹ V. Vento,³ O. Vives,³
Z. Vykydal,¹³ A. Widom²² and J. H. Yoon²³

(for the MoEDAL Collaboration)

¹Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, UK ²International Centre for Theoretical Physics, Trieste, Italy ³IFIC, Universitat de València - CSIC, Valencia, Spain ⁴Physics Department, CERN, Geneva, Switzerland ⁵ INFN, Section of Bologna, 40127, Bologna, Italy ⁶Department of Physics & Astronomy, University of Bologna, Italy ⁷Centre on Astronomy, Astrophysics and Geophysics, Algiers, Algeria ⁸Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland ⁹Physics Department, University of Alberta, Edmonton Alberta, Canada ¹⁰Institute of Space Science, Măgurele, Romania ¹¹Department of Physics, Concordia University, Montreal, Quebec, Canada ¹²Physics Department, University of Muenster, Muenster, Germany ¹³IEAP, Czech Technical University in Prague, Czech Republic ¹⁴Section de Physique, Université de Genève, Switzerland ¹⁵Physics Department, Gangneung-Wonju National University, Gangneung, Korea ¹⁶ Physics Department, University of Cincinnati, Cincinnati OH, USA ¹⁷ Physics Department, University de Montréal, Montréal, Québec, Canada ¹⁸Physics Department, University of Helsinki, Helsinki, Finland ¹⁹Physics Department, Imperial College London, UK ²⁰Department of Physics, University of British Columbia, Vancouver BC, Canada ²¹Department of Physics and Astronomy, Tufts University, Medford MA, USA ²²Department of Physics, Northeastern University, Boston, USA ²³Physics Department, Konkuk University, Seoul, Korea [†]jpinfold@ualberta.ca

Many more interesting theoretical scenarios relevant and accessible to MoEDAL not presented here:

- doubly-charged Higgs
- black-hole remnants
- quirks
- Q-balls
- CHAMPS
-


Complete and detailed review on MoEDAL impact on searches for exotic models

MoEDAL physics program: IJMP A29 (2014) 1430050 arXiv:1405.7662

MoEDAL web page:

http://moedal.web.cern.ch/

Analysis procedure

- <u>Electrically-charged particle</u>: dE/dx ~ β⁻² → slows down appreciably within NTD
 → opening angle of etch-pit cone becomes smaller
- <u>Magnetic monopole</u>: $dE/dx \sim ln\beta$
 - slow MM: slows down within an NTD stack → its ionisation falls → opening angle of the etch pits would become larger
 - relativistic MM: dE/dx essentially constant \rightarrow trail of equal diameter etch-pit pairs
- The reduced etch rate is simply related to the restricted energy loss REL = (dE/dx)_{10nm from track}