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The MoEDAL detector

DETECTOR SYSTEMS

@ Low-threshold NTD
(LT-NTD) array
e Z/B>"~5
@ Very High Charge
Catcher NTD
(HCC-NTD) array
« Z/B>"~50
@ TimePix radiation
background
monitor

MOoEDAL is unlike any other LHC experiment: (@ Monopole Trapping
detector (MMT)

= mostly passive detectors; no trigger; no readout

= the largest deployment of passive Nuclear Track Detectors (NTDs)
at an accelerator

= the 15 time trapping detectors are deployed as a detector
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Beyond magnetic monopoles
MoEDAL detectors have

« Key feature: high ionisation a threshold of z/§ ~ 5

charge _
V/C - Z/B

velocity: B =

Electric charge

Bethe-Bloch formula

« Achieved, e.g., by magnetic monopoles due to ionisation 68.52 times higher
than minimum ionising particle

» Actually any (meta-)stable massive charged particle, (M)SMCP, (hence slow
moving) with electric charge should give a track in Nuclear Track Detectors

» For singly charged particles to be detected in NTDs, velocity should be B < 0.2

» Moreover in some cases they may lose all of their momentum, mainly from
ionisation energy loss, and come to rest within the magnetic trappers, MMTs

= if metastable, they may be monitored with a dedicated detector system in an
underground laboratory over a long period for their decay
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Stable charged particles in BSM scenarios

Scenarios with Extra Dimensions
= |ong-lived microscopic black holes

= microscopic black hole remnants

o |ong-lived Kaluza-Klein particles from UED
D matter

= electrically-charged D-particles

See previous talk by
Long-lived heavy quarks Nick Mavromatos

Fourth-generation fermions

Multiparticle excitations
o Q-balls
o strangelets

o quirks

Supersymmetry
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Supersymmetry (SUSY)

» Global symmetry between fermions & bosons
* Motivation

= Higgs mass stabilisation against loop
corrections (fine-tuning problem)

= unification of gauge couplings at single scale
= dark matter candidate

 Particle stability mechanisms L booo
a) lightest state (LSP) carrying a s Sl e
conserved gquantum number: . .
. . _ 3(B-L)+25 S 60 -\\1/a. = 60 Vo,
R-parity: R =(-1) . o O MSSM
b) suppressed (effective) coupling o o N
l/a, .
c) lack of phase space for decay, e.g. 3 3 \w
mass degeneracies 2 2 -
0 0 - ‘
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LHC sensitivity to sparticle direct production

» Metastable particles = they live long enough to Integrated luminosities needed for
pass through detector discovery at LHC at 14 TeV (solid),
« Detection in ATLAS and CMS 10 TeV (dashed) and 5 TeV (dotted)
= large ionisation energy loss dE/dx, e.g. time-over- * signal efficiency of 20% (5%) for
threshold in ATLAS Transition Radiation Tracker electrically charged (strongly

interacting) SMCPs

= nuclear interactions (R-hadron) in calorimeters
* 1 bkg event for 100 pb!

= delay (time of flight) reconstructed in muon
chambers

*
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*
*

—T1, (14 TeV)

---T (10 TeV)
T (5 TeV)

—%, (14 TeV)

=%, (10 TeV)

..... %, (5 TeV)
o — (14 TeV) yd

7 === (10 TeV)

£ g Tey)
W' (14 Tev)
W’ (10 Tev)
W (5 TeV)
(14 Tev)
A" (10 Tev)
H (5 Tev)

0.8

Integrated luminosity [pb™]

0.6

10?

T IHHII T IHHIII T IIIHIII T IIIIIH]

0.4
10

ITHIUI

0.2

T T A T Y AN P T T
100 200 300 400 500 600 700 800 900 1000
Massive metastable charged particle mass [GeV]

III|III|III|III||;_*I*

Raklev, Mod.Phys.Lett. A24 (2009) 1955



A,

ICNFP 2016 V.A. Mitsou

Long-lived particles in SUSY scenarios

SMP LSP Scenario Conditions

» GMSB: NLSP decays to gravitino LSP only

1 X1  MSSM 7 mass (determined by mZ, .. tan 3. and A.) close to Y}
via (small) gravitational coupling _, =
[ G GMSB] Large NV, small M . and/or large tan /3.
= N mes = 1: non‘p0| nh ng phOtonS gMSB  No detailed phenomenology studies. see [20].

SUGRA  Supergravity with a gravitino LSP, see [21].

~0 2
Xl G + y 71 MSSM  Small mz, , and/or large tan 3 and/or very large A-.
. AMSB  Small mq. 1 tan 3.
= N, ..> 1: penetrating sleptons R el fEe
JMSB Generic in minimal models.

”Z long (’\_“} g fn G GMSB 7 NLSP (see above). &; and ji; co-NLSP and also SMP for
> + small tan /7 and p.

1 JMSB ¢, and i, co-LSP and also SMP when stau mixing small.

« Split SUSY: squarks heavy, suppressing i isd m.. gy Sy Very large My2 22 TeV > il (Hig:
gluino decays — colored heavy particles

: X1 X ; X
"""""" A gsino region) or non-umiversal gaugino masses M = 4Ms.

with the latter condition relaxed to M, = M, for M, < |u|.
Natural 1n O-II models. where simultaneously also the § can
be long-lived near dgg = —3.

R ~ — ~ ~ E
R'had rons = gqq ° gqq q, gg AMSB| M, > M, natural. m; not too small. See MSSM above.
| q X5 MSSMI Very large mg > Mj. e.g split SUSY.

- AMSB: NXli and~X10 dare mass degenerate G  GMSB  SUSY GUT extensions [22-24].
_fj MSSM VCI'_V small Mz < 311_’_). O-II models near (5(‘,3 = 3.
GMSB  SUSY GUT extensions [22-26].

= |ong-lived chargino (= kink track)

t X7 MSSM  Non-umwversal squark and gaugino masses. Small m? and

~ * ~ 0 +
—_— M3, small tan 3. large A,;.
X1 X1 TT ~

b Small m? and Mj. large tan /3 and/or large A;, > Aq.

3 o Fairbai t al, Phys Rept 438 (2007) 1
Several SUSY-model signatures accessible to MoEDAL airbairn et al, Phys Rept 438 (2007)
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Long-lived sleptons — GMSB

. Gaugg-mediated Supersymmetry- . 7 7 10 yrs
Breaking (GMSB) _ /// 1yr
* Stau NLSP decays via gravitational ~_ 10° // v month
interaction to gravitino LSP ;;104 ' % // day
=» naturally long lifetime § 9 \,@G/ew( // ] hour
=» LSP dark matter candidate = 10 , '//L@(}/QQQ 2 min
 Long-lived staus S //\%,Q sec
= may be slow-moving when B //
produced at LHC 107 A

. . . . -3 -2 -1 2 3
= =¥ high ionisation 10=% 10=% 10 e [1Gev] 10 102 10
. 4 Hamaguchi, Nojiri, De Roeck,
~ - ) 1 my m% JHEP 0703 (2007) 046 [hep-ph/0612060]
I'l — IG) = 1——=
( 487 M2 m}, m?

2
m-=

4
average distance 1 (100GeV\® [ VF/k o , .
travelled L= Ky ( m ) (100TeV —5 —1x107%m VF s 10° GeV
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Long-lived sleptons — CMSSM

» Stau becomes long lived in MSSM when
m(%) - m(%,°) < m(x)

» Coannihilation region in CMSSM

» Consistent with cosmological constraints

» Lepton Flavour Violating (LFV) elements
in slepton mass matrix may decrease stau

lifetime o
N1 € 2 I8I0(I)I ISI)OCI)I I1I00I0I I1I100

(8¢ Yo = AMRR/ LL g M, , (GeV)

RR/LL 05 _ N/ e N/ [ ?

‘L\[R/La‘\[R/L,B 8 prorrrrrr e R e I P :

“F ]

T R "

- Stau remains metastable in large regions B 2 E, ]
of parameter space [ :
2 S wf . ;

92 (5. \2(1,L |2 R |2 s f®  gi8cy

P2-body = 5——(0m) (|91a1|" + l91e1]"), = 2 so@&= ;
T —-18 - -
Kaneko, Sato, Shimomura, Vives, Yamanaka, RETREED -10 100‘(%. ) ER >

PRD87 (2013) 039904 [arXiv:0811.0703]



],

ICNFP 2016 V.A. Mitsou

R-hadrons
* Gluinos in Split Supersymmetry /1 TV 5
o |ong-lived because squarks very heavy T~8 (I()Qmﬁ) ( m? ) S
g9

= possible gluino hadrons: R = 2qq, 29qq, 22
= gluino hadrons may flip charge as they pass
through matter
. S0 & T ; m(stbp) | | | | ]
e.g., 8uu + uud - guud + uu o oo ey 400 GeV |
- o may be missed by ATLAS and CMS ]

Diaz-Cruz et al, JHEP 0705 (2007) 003

10 10

s F

* R-parity violating SUSY 107}
Wiy = NyuUD; Dy + Xy LiQy Dy + A LiLy By + L H. § A 500(5 y
L e
= if A or A”’#0, stop NLSP case = stop R-hadron 3
- metastable charged particle in material 10
- detection in MoEDAL, if sufficiently slow 1~ D> t~6
« Moreover R-hadrons may be “trapped” in MMTs T AN
mg (GeV)

and decay at later times =® monitoring of MMTs after SQUID tests
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Why MoEDAL when searching MSPs?

» ATLAS and CMS triggers have to

= rely on other “objects”, e.g. E;™s, that accompany MSCP, thus
limiting the reach of the search
- final states with associated object present
- trigger threshold set high for high luminosity
= develop specialised triggers
- dedicated studies needed
- usually efficiency significantly less than 100%
* Timing: signal from (slow-moving) MSCP should arrive within
the correct bunch crossing

« MoEDAL mainly constrained by its geometrical acceptance

» When looking for trapped particles

= monitoring of detector volumes in an underground laboratory
has less background than using empty butches in LHC cavern
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Slepton searches comparison™

ATLAS / CMS MoEDAL comments
Velocity B>0.2 B<0.2 Complementarity
Constrained by LHC Constrained by NTD
bunch patern Z/B threshold
Efficiency ~100% (if B < 0.2) ©
€ x A order of 20%
Acceptance See limitations in ~ 50% for 2015
previous slide Scalable to higher
coverage
Background May be considerable or  Practically zero For same signal yield,
difficult to estimate MoEDAL should obtain
better cross-section
upper limits @)
Luminosity high factor of 10 less )

* Numbers are indicative
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Nuclear Track Detectors coverage

High acceptance in central region n~0

= back-to-back pair production means probability >~ 70% for at least one SMCP
to hit NTD

For particles over Z/B threshold, detection efficiency practically 100%

2015 NTDs

Credit: Daniel Felea
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ATLAS & CMS limits on LL SUSY particles

1. Stable charged (dE/dx)
2. Stopped gluinos

CMS long-lived particle searches, lifetime exclusions at 95% CL

RPV SUSY, T — bl, m({) = 420 GeV
8TeV,19.7 fb" (displaced leptons)

H—» XX (10%), X — ee, m(H) = 125 GeV, m(X) = 20 GeV
8TeV, 196" (displaced leptons)

H— XX (10%), X — g, m(H) = 125 GeV, m(X) = 20 GeV
8TeV,20.5fb" (displaced leptons)

GMSB SPSB, 5. — Gy, m%) = 250 GeV
8TeV,19.7fb" (disp. photon conv.)

GMSB SPS8, . — Gy, m@%) = 250 GeV
8TeV, 19.1 fb™ (disp. photon timing)

RPV SUSY, m(@) = 1000 GeV, m(3.) = 150 GeV
8TeV, 1851 (displaced dijets)

APV SUSY, m(@) = 1000 GeV, m(3.) = 500 GeV
8TeV, 18.5 b (displaced dijets)

AMSB %, %, = %, + «', m(%,) = 200 GeV
8TeV, 195" (disappearing tracks)

cloud model R-hadron, m(g) = 1000 GeV
8TeV, 186" (stopped particle)

AMSB %, tan(p) = 5, u >0, m(%) = 800 GeV

8 TeV, 18.8fb" (tracker + TOF)

AMSB %, tan(p) = 5, > 0, m(%.) = 200 GeV
8 TeV, 18.8fb" (tracker + TOF)

2200
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Lower limit on m g [GeV]
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2400 F

g R-hadron — g/qq Z? ;m s =100 GeV
1

Status: March 2016

ol ATLAS Preliminary -e- Expected
- 95% CL limits. cﬁ‘gfr‘; not included —e— Observed
C Displaced vertices Phys. Rev. D92, 072004
= Stopped gluino Phys. Rev. D88, 112003 }18.4-20.3 ib”, Vs=8 TeV
L e Stable charged JHEP 01 (2015) 068
[ @ Jets+ET"° ATLAS-CONF-2015-062 y
C Pixel dE/dx To appear } 3.2fb7, fs=13 Tev
Co i i P
o : ' P
e : ; Do :
- g - :
- I
- P ;@
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- - I
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MoEDAL sensitivity in SMCPs

Cross-section limits for electric charge assuming that:
=~ one MoEDAL event is required for discovery and ~100 events in the other LHC detectors
o integrated luminosities correspond to about two years of 14 TeV run

14 TeV PYTHIA Drell-Yan, m=1000 GeV
L Y 1 L B = o

10°

10*

cross section (fb)
T III|'|T|'| T IIII|T|'| TIrm

Q
I
O
o

10°

2
10 De Roeck, Katre, Mermod, Milstead,

Sloan, EPJC72 (2012) 1985 [arXiv:
1112.2999]

IIIII|T|'|

5
%
>

MoEDAL
10

_IIIIILI,I,I IIII|_|_LL| IIIIIL|,|,| IIIIILI,I,I IIII|_|_L|,| IIIIIL|,|,| IIIIL|,|]|

- 1 1 1 1 1 | 1 1 1 1 ‘ 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1
107 100 200 300 400 _ 500 _ 600

Electric charge (e)

P ™
* MoEDAL offers robustness against timing and well-estimated signal efficiency

* These results can be propagated to SUSY models featuring SMCPs in order to assess
the discovery reach
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Summary

» Apart from magnetic monopoles,
MoEDAL is also searching for
(meta)stable electrically-charged
massive particles

» Such particles arise in numerous
supersymmetric scenarios (an not only)

» MoEDAL should extend significantly the
discovery reach of the LHC w.r.t. such
states thanks to its trigger-free concept
of passive detectors

 Studies to assess discovery potential in
specific SUSY models currently underway



Spares
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& HI particle detection in NTDs

- The passage of a highly ionising particle through the plastic &1 =
track-etch detector (e.g. CR39®) is marked by an invisible | k/ R
damage zone (“latent track”) along the trajectory B
- The damage zone is revealed as a cone-shaped etch-pit when =
the plastic detector is etched in a controlled manner usinga & . ’”) e
hot sodium hydroxide solution bar ST
CR39
300y thick Y/

MAKROFOL

Aluminium back plate 2
3 sheets each P : /
200 um thick | 1

Looking for
aligned etch pits
in multiple sheets
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MMT: Magnetic Monopole Trapper

Binding energies of monopoles in nuclei Bupsontuctig
with finite magnetic dipole moments (100 keV)
MMTs analysed with superconducting Sample
(fixed to belt) Conveyor Belt —— >

~

guantum interference device (SQUID) h

Material: Aluminium

= |large nuclear dipole moment -
. " sauip
= relatlvely Cheap 8 (selsor and electronics)

Disadvantage: rather low geometrical acceptance

Advantages:

o speed: SQUID measurements & analysis take ~2 weeks

= complementarity: totally different concept from NTDs
=» different systematic uncertainties

= magnetic charge measurement with < 5% precision

= Bonus: monitoring for decay products of trapped
electrically-charged particles at underground laboratory
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scenarios relevant and accessible
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Analysis procedure

+ Track diameter: . L " F:\s;\ f,M:S::;rm SARV
+ D = 2v[(v,-vg)/(v,+vg)] 12

+ Track depth: o CR39 b
+L=(v¥p) t I

+ Reduced etch rate: [ Alaminim b
+p=valy, 7 Makrofol ! |

Electrically-charged particle: dE/dx ~ B2 = slows down appreciably within NTD
=> opening angle of etch-pit cone becomes smaller

Magnetic monopole: dE/dx ~ In3

= slow MM: slows down within an NTD stack =2 its ionisation falls => opening angle of the
etch pits would become larger

= relativistic MM: dE/dx essentially constant = trail of equal diameter etch-pit pairs

The reduced etch rate is simply related to the restricted energy loss
REL = (dE/dX)IOnm from track



