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STRONG CP PROBLEM AND AXIO



THE STRONG CP PROBLEM
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A Dependence on the thetterm must exist for correct QCD predictions.

A However, it results in GRnd Rviolation, unless theuarks mass matriis finely tuned!

At the same time, J DJ-[J D
A The electric dipole moment of hadrons will imply-@Rd Rviolation in QCD. / \ A : A
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than expected.

A ( More accurately, <1®while expecting ~1. A finining nonanthropic issue. )

Why is the CP symmetry conserved by QCD? "Strong CP Problem"



ENTER THE AXION

Why is the CP symmetry conserved by QCD? "Strong CP Problem”

Peccei & Quinn ('77):

c:

The Strong CP Problem conceatea symmetry.
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The potential of theta is modified.

Cc:

Cc:

Theta is a dynamical variable, with perturbative effects "pulling" it towards zero.

A Axion: the quantum of oscillation of the QCParameter. (Weinberg, Wilczek '78)

Andaldng the way it prove

a greatDM canmdidate. :
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ELECTRIC DIPOLE MOMEMPMIONS

Searches at CAPP: Two sides of the same coin

The axion was invented to solve
the "Strong CP Problem":
Why is the neutron EDM10orders of magnitude
smaller than its expected value?

Microwave cavities Accelerator experiments

DIRECT AXION DETECTION HADRONIC ELECTRIC DIPOLE
MOMENT MEASUREMENTS
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H. Baer et al. / Physics Reports 555 (2015) 1-60

Initially the vev was thought to be of the order of EW
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Axion mass> ~100 keV. ) | ]
Then a success of the model occured: It was heavily 2 ¢ etk
constrained by indirect lab searches and cosmology " 3 [ l P
Axion mass> less than 18eV. sk —_— .
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Today, more elaborate models give naturally rise to light B eatory 0"

axions.
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detection ... until 1983 (see sl.9).

Main invisible axion models:
KSVZ (KirBhifmanVainshteinZakharov)
DFSZ (DinEischlerSrednickiZhitnitskii)




COSMOLOGICAL AXIONS

10% ;
LSW
(ALPS)
-8
0% 104 10" 102 10" 10 10 10% 107 106 105 10° < 1o
Q
‘ <) Helioscopes
SN1987a (g,yy) = 1010 (CAST) .
HBin GC (g,,,) o) Hassive Stars ‘ g
. | E
Too much CDM HB in GC (g) E . Hal e
u aloscopes e i,(‘_
Anthropic CDM Hot dark matter 3 10 [ADM)?) :
o =
ADMX Wcrst 3 @
é 10—14
104 107 105 105 10~ 10-* 102 10-' 10° 10" 102 103
m, (eV)
10718 . Wl . . . . . .
o7 0f 0 w0t 10?0 ? 0

=
=}

Axion Mass mp (eV)

AGood dark matter candidate if mass, is between 1 and 30&V.
AKinetic energy-10° m, (cold dark matter).
ACoherent field.

ACosmological and astrophysical constraints. E.g.:

10

AStellar evolution: Axions emitted in stellar processes would dissipate more

energy and stellar evolution would be accelerated.

10

ASN1987a: If the collapsing core is also cooled by axion emission, the duration

of the neutrino signal will be shorter.



DIRECAXION DETECTIONALOSCOPE



DIRECT AXION DETECTION
Detection scheme by.FSikivie(PRL 51:1415 1983)

A Axionswill convert to photons in a strong magnetic field. ("reveBsenakoffeffect")
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A Process proceeding through loop; both regusl and new U(1) couplings of axion to

fermions.



DIRECT AXION DETECTION

A Powerful magnets.

A Very weak signal (~20W)
Y Cryogenic temperatures.
Y Resonant radiofrequency (RF) cavities for enhancement.
Y Tunableovera good frequencyange.

At the cavity's resonant frequencies the microwaves reinforce 7
. A . K ™ 010 /G -

to form standing waves in the cavity. Therefore, the cavity P >—®

functions similarly to an organ pipe or sound box in a musical instrument

oscillating preferentially at a series of frequencies, its resonant frequencies.

To RF Receiver

photon
axion i’;

Virtual photon

Primakoff Effect
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HALOSCOPES AND HELIOSCOPES

Axions will convert to photons in a strong magnetic field. ("reverse Primakoff effect")

Helioscopes a g Haloscopes

Pointing to the Sun for axions % Looking for ambient axions from
produced by photons. 5 the Milky Way's DM halo (~1bcnm3).
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Axion Conversion Power: P=15x10W| 5= [ ¢ )(i] [i]( Pu 3) 20ueV [ Q 3)_
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Signal to Noise Ratio: SNR = (P,/Py)Vbt = (P,/ksTsWi/b.

To RF Receiver

photon
axion q:j

Virtual photon

Primakoff Effect

What can be improved?




Axion Conversion Power: P-l_ixm'“w[ Ifm ‘ @ Eﬂne?]()
10 Gev 8T :mMew.:m m, w
Signal to Noise Ratio: = (P,/PyVb J_ (P

To RF Receiver

photon
axion q:j

Virtual photon

Primakoff Effect

What can be improved?




TECHNOLOGIES FOR ADVANCING HALOSCOPES

Axion Conversion Power: P-l.sxm'“w{ By ][ ¢ E] (3(}(} P, )[EGFEV][/Q\)

10°GeV | 10.69 /\8T MeV/cm® 0 x1

Signal to Noise Ratio: SNR = (P,/Py)Vbt = ,@) t/b.

SQUID Amplifier

i To RF Receiver jdzl yidzy tAYAOGD F2NIy2A4S wp
E:l?éggemcs with KRISS (Korea Research Institute of Standards and Sc

with KAIST (Korea Advanceg
Institute of Science and
Technology)
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axion |

Superconducting Cavity

H Igh Field SC Magnet virtual photon superconducting coating, high-@ctor
12T-> 25T-> 35T / 40T 1 with KAIST (Korea Advanced Institute of Science and Techr

with Korean company / BNL
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Primakoff Effect

Multiple cavities readout Giant toroidal cavity

increased volume in high frequencies gain 1620x
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CAPP ROADMAP

Expected coverage:
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by YunChang Shin

A Collaboration: Indiana, Nevada, Stanford Universities, CAPP.

A R&D in progress.
A Data taking in 20109.
A Poster at Patras2016

ARIADNE:

A rotating mass will induce spin precession
and magnetization detectable by SQUIDS.

Explores monopotdipole interactions in the
axion lagrangian.
(No dark matter assumed.)

A. Arvanitakj A. AGeracj arXiv:1403:1290

PQ Axion f,in GeV
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Axion Resonant InterAction DetectioN Experiment

Experimental Bounds

Astrophysical and Experimental Bounds
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Force Range in cm

Projected reach for monopoldipole
axion mediated interaction
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https://indico.desy.de/contributionDisplay.py?sessionId=1&contribId=93&confId=13889




