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STRONG CP PROBLEM AND AXIONS



THE STRONG CP PROBLEM

The QCD lagrangian contains an “absent” term:
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Dependence on the theta-term must exist for correct QCD predictions.

However, it results in CP- and P-violation, unless the quarks mass matrix is finely tuned!

At the same time, i

The electric dipole moment of hadrons will imply CP- and P-violation in QCD. (//8"\‘ .
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However, neutron EDM < 3.0 x 1026 e-cm and proton EDM < 7.9 x 102> e-cm. b 8’//
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These experimental limits mean that the “theta phase” in the lagrangian is ~10 orders lower

than expected.

( More accurately, <10° while expecting ~1. A fine-tuning non-anthropic issue. )

Why is the CP symmetry conserved by QCD? "Strong CP Problem"



ENTER THE AXION

Why is the CP symmetry conserved by QCD? "Strong CP Problem"

Peccei & Quinn ('77):
» The Strong CP Problem conceals a new symmetry.

» The global Um(l) “ quasisymmetry.

> The potential of theta is modified.

> Theta is a dynamical variable, with perturbative effects "pulling" it towards zero.

* Axion: the quantum of oscillation of the QCD 8 parameter. (Weinberg, Wilczek '78)

And along the'.Way.-it :prOVed

a greagBM candidate..,” :
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ELECTRIC DIPOLE MOMENTS - AXIONS

Searches at CAPP: Two sides of the same coin

The axion was invented to solve
the "Strong CP Problem":
Why is the neutron EDM ~10 orders of magnitude
smaller than its expected value?

Microwave cavities Accelerator experiments
DIRECT AXION DETECTION HADRONIC ELECTRIC DIPOLE
MOMENT MEASUREMENTS
XA
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AXION “EVOLUTION”

Initially the vev was thought to be of the order of EW
scale.

Axion mass -> ~100 keV.

Then a success of the model occured: It was heavily
constrained by indirect lab searches and cosmology "

Axion mass -> less than 1073 eV.

Today, more elaborate models give naturally rise to light
axions.

Initially dubbed “invisible axions” for their impossible
detection ... until 1983 (see sl.9).

H. Baer et al. / Physics Reports 555 (2015) 1-60
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Main invisible axion models:
KSVZ (Kim-Shifman-Vainshtein-Zakharov)
DFSZ (Dine-Fischler-Srednicki-Zhitnitskii)




COSMOLOGICAL AXIONS
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* Good dark matter candidate if mass m, is between 1 and 300peV.

* Kinetic energy ~10® m, (cold dark matter).

e Coherent field.

* Cosmological and astrophysical constraints. E.g.:

« Stellar evolution: Axions emitted in stellar processes would dissipate more

energy and stellar evolution would be accelerated.

* SN1987a: If the collapsing core is also cooled by axion emission, the duration

of the neutrino signal will be shorter.

10



DIRECT AXION DETECTION / HALOSCOPES



DIRECT AXION DETECTION
Detection scheme by P. Sikivie (PRL 51:1415 1983)

* Axions will convert to photons in a strong magnetic field. ("reverse Primakoff effect")
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* Process proceeding through loop; both regular SM and new U(1) couplings of axion to

fermions.
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DIRECT AXION DETECTION

e Powerful magnets.

* Very weak signal (~1021 W)
— Cryogenic temperatures.

—> Resonant radiofrequency (RF) cavities for enhancement.

= Tunable over a good frequency range.

At the cavity's resonant frequencies the microwaves reinforce

to form standing waves in the cavity. Therefore, the cavity

functions similarly to an organ pipe or sound box in a musical instrument,
oscillating preferentially at a series of frequencies, its resonant frequencies.

To RF Receiver

photon

axion

Virtual photon

Primakoff Effect
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HALOSCOPES AND HELIOSCOPES

Axions will convert to photons in a strong magnetic field. ("reverse Primakoff effect")

Helioscopes a Y Haloscopes

Pointing to the Sun for axions Looking for ambient axions from

produced by photons. XE the Milky Way's DM halo (~10%* cm™3).







Axion Conversion Power: p-l_sxm-nw[ 8 ][ ¢ )(3 ][E]( P, )[2““‘*"][ 0 )
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Signal to Noise Ratio: SNR = (P,/Py)vbt = (P,/kzTsWi/b.

To RF Receiver

photon

axion '{

Virtual photon

Primakoff Effect

What can be improved?




Axion Conversion Power: P-l_ixm‘“w[ I‘f“‘ff )ﬂ @ [Zﬂﬂe‘f][)
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To RF Receiver

photon

axion {

Virtual photon

Primakoff Effect

What can be improved?
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TECHNOLOGIES FOR ADVANCING HALOSCOPES

Axion Conversion Power: P-l.sxm‘“w{ l‘f“” ] ] ( )[m‘wv][ /Q\ )
107 GeV 069 8T 300 MeWLm O x1
Signal to Noise Ratio: SNR = (P,/Py)Vbt = (P‘

SQUID Amplifier
e : To RF Receiver quantum limit for noise [50mK-f(GHz)]
LS Clrg(/)OEe nics with KRISS (Korea Research Institute of Standards and Science)
< m

with KAIST (Korea Advanced
Institute of Science and
Technology)

photon

axion

~Superconducting Cavity

ngh Field SC Magnet Virtual photon superconducting coating, high Q-factor
12T -> 25T -> 35T / 40T ) with KAIST (Korea Advanced Institute of Science and Technology)

with Korean company / BNL

ey

Primakoff Effect

Multiple cavities readout Giant toroidal cavity

increased volume in high frequencies gain 10-20x




CAPP ROADMAP

Expected coverage:
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ARIADNE: PQ Axion f,in GeV
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Axion Resonant InterAction DetectioN Experiment N Experimentl Bounds

Astrophysical and Experimental Bounds

A rotating mass will induce spin precession
and magnetization detectable by SQUIDS.
Explores monopole-dipole interactions in the
axion lagrangian.

(No dark matter assumed.)

by YunChang Shin A. Arvanitaki, A. A. Geraci, arXiv:1403:1290 ‘ o L T

Projected reach for monopole-dipole
axion mediated interaction
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* Collaboration: Indiana, Nevada, Stanford Universities, CAPP. e
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https://indico.desy.de/contributionDisplay.py?sessionId=1&contribId=93&confId=13889
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CULTASK: CAPP ULTRA-LOW TEMPERATURE AXION SEARCH IN KOREA

New lab space - February -> June 2016

Two Bluefors dilution refrigerators LD400
Nominal temperature 10mK (~*50mK with load)
8T magnet

Cu cavity. 9cm ¢ -> ~2GHz -> ~10peV axion mass

Sapphire tuning rod

by WooHyun Chung

Talk at Patras2016



https://indico.desy.de/contributionDisplay.py?contribId=50&confId=13889
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CULTASK: CAPP ULTRA-LOW TEMPERATURE AXION SEARCH IN KOREA

New lab space - February -> June 2016

Two Bluefors dilution refrigerators LD400
Nominal temperature 10mK (~*50mK with load)
8T magnet

Cu cavity. 9cm ¢ -> ~2GHz -> ~10peV axion mass

Sapphire tuning rod

Installations J

Engineering runs J
RF chain, DAQ commissioning J

Cavity R&D J

Reasonable sensitivity data expected in 2016.

by WooHyun Chung

Talk at Patras2016



https://indico.desy.de/contributionDisplay.py?contribId=50&confId=13889

CAPPuccino SUBMARINE

CAPPuccino
submarine

Talk at Patras2016
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Very small toroid for R&D J

*  Major radius 1.4cm, minor radius 0.2cm.

Precursor to small toroid

*  Magnetic field 12T. Major radius 50cm, minor radius 10cm, volume ~80 liters.
e 1.3-1.8 GHz.

Precursor to giant toroidal cavity

*  Magnetic field 5T. Major radius 2m, minor radius 0.5m, volume ~10,000 liters.

* Lessthan 1GHz (axion mass ~4ueV).

Why toroid:

* Better form factor (EM field coverage)

* Less fringe magnetic field

* No losses from mode crossing (between different EM modes)



https://indico.desy.de/contributionDisplay.py?contribId=49&confId=13889
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CAPP-CAST EXPERIMENT

Collaboration with the CAST experiment at CERN.

Rectangular cavity inside the dipole magnet bore.
Frequency 5-6 GHz. Axion mass 20-24 peV.
Cavity installed in June '16. /

Talk at Patras2016



https://indico.desy.de/contributionDisplay.py?contribId=53&confId=13889

23

SUMMARY (ROADMAP, AGAIN)

Expected coverage:
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) The IBS Center for Axion and Precision Physics Research (KAIST campus, Daejeon)

. Institute for Basic Science (IBS):
Founded in November 2011.
Currently 26 Centers.

https://www.ibs.re.kr/

« CAPP: Founded in October 2013:

http://capp.ibs.re.kr/

. Director: Prof. Yannis K. Semertzidis
. Currently:
~15 research fellows + visitor program,

~10 students, ~5 administrators.
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https://www.ibs.re.kr/
http://capp.ibs.re.kr/

The IBS Center for Axion and Precision Physics Research (KAIST campus, Daejeon)

TR
Korea Undergraduate / Gra

Axion and Precision
Physics Research

7CAPP Tone - H.S. Science P KUSP)
z 12th Patras Workshop on Axions, i A Appﬁ';ggi Kzg;fr;u(mmer o
lﬂMlMPs and WISPs

- Cutting edge research (cryogenics, SC, qguantum electronics, precision
accelerator physics and more).

The two sides of axionic

- Next generation of direct axion detection with RF cavities.
} CP-violation and DM searches.

- Closing in on theoretical limit of hadronic EDMs.

- Scientific potential, education & outreach.
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https://axion-wimp2016.desy.de/
http://kusp.ibs.re.kr/

Thank you

Haloscope Searches for DM Axions
at the Center for Axion and Precision Physics Research

Eleni Petrakou, CAPP

Institute for Basic Science, South Korea




