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STRONG CP PROBLEM AND AXIONS



THE STRONG CP PROBLEM
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• The QCD lagrangian contains an “absent” term: 

• Dependence on the theta-term must exist for correct QCD predictions. 

• However, it results in CP- and P-violation, unless the quarks mass matrix is finely tuned! 

At the same time, 

• The electric dipole moment of hadrons will imply CP- and P-violation in QCD. 

• However, neutron EDM < 3.0 x 10-26 eˑcm and proton EDM < 7.9 x 10-25 eˑcm. 

• These experimental limits mean that the “theta phase” in the lagrangian is ~10 orders lower 
than expected. 

• ( More accurately, <10-9 while expecting ~1. A fine-tuning non-anthropic issue. ) 

Why is the CP symmetry conserved by QCD? "Strong CP Problem" 



ENTER THE AXION 
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Why is the CP symmetry conserved by QCD? "Strong CP Problem" 

Peccei & Quinn ('77): 

 The Strong CP Problem conceals a new symmetry. 

 The global “ UPQ(1) “ quasisymmetry. 

 The potential of theta is modified.  

 Theta is a dynamical variable, with perturbative effects "pulling" it towards zero. 

• Axion: the quantum of oscillation of the QCD θ parameter. (Weinberg, Wilczek '78) 

And along the way it proved 

a great DM candidate...



ELECTRIC DIPOLE MOMENTS - AXIONS 
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Searches at CAPP: Two sides of the same coin

The axion was invented to solve 
the "Strong CP Problem": 

Why is the neutron EDM ~10 orders of magnitude 
smaller than its expected value? 

Microwave cavities Accelerator experiments

DIRECT AXION DETECTION HADRONIC ELECTRIC DIPOLE 
MOMENT MEASUREMENTS



AXION “EVOLUTION” 
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Initially the vev was thought to be of the order of EW 

scale. 

Axion mass -> ~100 keV. 

Then a success of the model occured: It was heavily 

constrained by indirect lab searches and cosmology ^^ 

Axion mass -> less than 10-3 eV. 

Today, more elaborate models give naturally rise to light 

axions. 

Initially dubbed “invisible axions” for their impossible 

detection ... until 1983 (see sl.9). 

Main invisible axion models: 

KSVZ (Kim-Shifman-Vainshtein-Zakharov) 

DFSZ (Dine-Fischler-Srednicki-Zhitnitskii) 



COSMOLOGICAL AXIONS 
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• Good dark matter candidate if mass ma is between 1 and 300μeV. 

• Kinetic energy ~10-6 ma (cold dark matter). 

• Coherent field. 

• Cosmological and astrophysical constraints. E.g.: 

• Stellar evolution: Axions emitted in stellar processes would dissipate more 

energy and stellar evolution would be accelerated. 

• SN1987a: If the collapsing core is also cooled by axion emission, the duration 

of the neutrino signal will be shorter. 



DIRECT AXION DETECTION / HALOSCOPES



Detection scheme by P. Sikivie (PRL 51:1415 1983) 

• Axions will convert to photons in a strong magnetic field. ("reverse Primakoff effect") 

• Process proceeding through loop; both regular SM and new U(1) couplings of axion to 

fermions. 

DIRECT AXION DETECTION 
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a

X



• Powerful magnets. 

• Very weak signal (~10-21 W) 

Cryogenic temperatures. 

Resonant radiofrequency (RF) cavities for enhancement. 

Tunable over a good frequency range. 

DIRECT AXION DETECTION 
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At the cavity's resonant frequencies the microwaves reinforce 
to form standing waves in the cavity. Therefore, the cavity 
functions similarly to an organ pipe or sound box in a musical instrument, 
oscillating preferentially at a series of frequencies, its resonant frequencies. 

Detector

axion

Virtual photon

photon

To RF Receiver

Primakoff Effect



HALOSCOPES AND HELIOSCOPES 
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Axions will convert to photons in a strong magnetic field. ("reverse Primakoff effect") 

Helioscopes Haloscopes

Pointing to the Sun for axions Looking for ambient axions from 

produced by photons. the Milky Way's DM halo (~1014 cm-3).

a

X
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HALOSCOPE PROGRAMME IN CAPP



ADVANCING HALOSCOPES 

Axion Conversion Power: 

Signal to Noise Ratio:

axion

Virtual photon

photon

To RF Receiver

Primakoff Effect

What can be improved?
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ADVANCING HALOSCOPES 

axion

Virtual photon

photon

To RF Receiver

Primakoff Effect

What can be improved?

Axion Conversion Power: 

Signal to Noise Ratio:
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TECHNOLOGIES FOR ADVANCING HALOSCOPES 

axion

Virtual photon

photon

SQUID Amplifier
quantum limit for noise [50mKˑf(GHz)] 
with KRISS (Korea Research Institute of Standards and Science) 

High Field SC Magnet
12T -> 25T -> 35T / 40T 
with Korean company / BNL 

Superconducting Cavity
superconducting coating, high Q-factor 
with KAIST (Korea Advanced Institute of Science and Technology) 

Cryogenics
< 100mK 
with KAIST (Korea Advanced 
Institute of Science and 
Technology) 

To RF Receiver

Primakoff Effect

Giant toroidal cavity
gain 10-20x 

Axion Conversion Power: 

Signal to Noise Ratio:

Multiple cavities readout 
increased volume in high frequencies 
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Major improvements in haloscopes 

expected within 5 years 

CAPP ROADMAP 

Expected coverage: 
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White Dwarf and Supernova Bounds

--- ADMX HF

--- Current plan
--- SC & large volume
--- B field 25 T
--- B field 40 T

• 2-3 years development 

• 2018: Main axion experiment

• R&D for higher and lower frequencies 

by WooHyun Chung 

e.g. 25μeV: 5.8GHz

CAPP Projected Sensitivity 

16 μ



Microwave 

cavities

Monopole-Dipole 

Interactions

• Collaboration: Indiana, Nevada, Stanford Universities, CAPP. 

• R&D in progress. 

• Data taking in 2019. 

• Poster at Patras2016

BEYOND DIRECT DETECTION: ARIADNE EXPERIMENT 

ARIADNE:

Axion Resonant InterAction DetectioN Experiment

A rotating mass will induce spin precession 
and magnetization detectable by SQUIDS.

Explores monopole-dipole interactions in the 
axion lagrangian.

(No dark matter assumed.)

A. Arvanitaki, A. A. Geraci, arXiv:1403:1290by YunChang Shin

Projected reach for monopole-dipole 
axion mediated interaction 
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https://indico.desy.de/contributionDisplay.py?sessionId=1&contribId=93&confId=13889


HALOSCOPE PROGRAMME IN CAPP: STATUS



• New lab space - February -> June 2016 

• Two Bluefors dilution refrigerators LD400 

• Nominal temperature 10mK (~50mK with load) 

• 8T magnet 

• Cu cavity. 9cm ø -> ~2GHz -> ~10μeV axion mass 

• Sapphire tuning rod 

CULTASK: CAPP ULTRA-LOW TEMPERATURE AXION SEARCH IN KOREA 

by WooHyun Chung 

Talk at Patras2016
19

https://indico.desy.de/contributionDisplay.py?contribId=50&confId=13889


• New lab space - February -> June 2016 

• Two Bluefors dilution refrigerators LD400 

• Nominal temperature 10mK (~50mK with load) 

• 8T magnet 

• Cu cavity. 9cm ø -> ~2GHz -> ~10μeV axion mass 

• Sapphire tuning rod 

• Installations 

• Engineering runs 

• RF chain, DAQ commissioning 

• Cavity R&D 

• Reasonable sensitivity data expected in 2016. 

CULTASK: CAPP ULTRA-LOW TEMPERATURE AXION SEARCH IN KOREA 

by WooHyun Chung 

Talk at Patras2016
20

https://indico.desy.de/contributionDisplay.py?contribId=50&confId=13889


• Very small toroid for R&D 
• Major radius 1.4cm, minor radius 0.2cm. 

• Precursor to small toroid 
• Magnetic field 12T. Major radius 50cm, minor radius 10cm, volume ~80 liters. 

• 1.3-1.8 GHz. 

• Precursor to giant toroidal cavity 
• Magnetic field 5T. Major radius 2m, minor radius 0.5m, volume ~10,000 liters. 

• Less than 1GHz (axion mass ~4μeV). 

• Why toroid: 
• Better form factor (EM field coverage) 

• Less fringe magnetic field 

• No losses from mode crossing (between different EM modes) 

CAPPuccino SUBMARINE 

... some day

CAPPuccino

submarine 

Talk at Patras2016
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https://indico.desy.de/contributionDisplay.py?contribId=49&confId=13889


• Collaboration with the CAST experiment at CERN. 

• Rectangular cavity inside the dipole magnet bore. 

• Frequency 5-6 GHz. Axion mass 20-24 μeV. 

• Cavity installed in June '16. 

CAPP-CAST EXPERIMENT 

Talk at Patras2016
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https://indico.desy.de/contributionDisplay.py?contribId=53&confId=13889


Major improvements in haloscopes 

expected within 5 years 

SUMMARY (ROADMAP, AGAIN) 

Expected coverage: 
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White Dwarf and Supernova Bounds

CAPP Projected Sensitivity 

--- ADMX HF

--- Current plan
--- SC & large volume
--- B field 25 T
--- B field 40 T

• 2-3 years development 

• 2018: Main axion experiment

• R&D for higher and lower frequencies 

23 μ



C A P P / I B S



• Institute for Basic Science (IBS):  

• Founded in November 2011. 

• Currently 26 Centers. 

• https://www.ibs.re.kr/

• CAPP: Founded in October 2013: 

• http://capp.ibs.re.kr/

• Director: Prof. Yannis K. Semertzidis 

• Currently: 

~15 research fellows + visitor program, 

~10 students, ~5 administrators. 

The IBS Center for Axion and Precision Physics Research (KAIST campus, Daejeon)
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Daejeon, S.Korea 

https://www.ibs.re.kr/
http://capp.ibs.re.kr/


- Green-field center. Motivation to play leading role in axion searches. 

- Cutting edge research (cryogenics, SC, quantum electronics, precision 

accelerator physics and more). 

- Next generation of direct axion detection with RF cavities. 

- Closing in on theoretical limit of hadronic EDMs. 

- Scientific potential, education & outreach. 

The two sides of axionic 
CP-violation and DM searches. 

26

The IBS Center for Axion and Precision Physics Research (KAIST campus, Daejeon)

Patras 2016

K U S P

https://axion-wimp2016.desy.de/
http://kusp.ibs.re.kr/
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