5th International Conference on New Frontiers in Physics ICNFP2016, 6-14 July 2016

LHCb detector and trigger performance in Run II

Francesca DORDEI, CERN On behalf of the LHCb Collaboration

The LHCb EXPERIMENT

- LHCb: single arm spectrometer at LHC dedicated to beauty and charm physics
 - Covering a pseudorapidity range unique among the LHC detectors, $2 < \eta < 5$
- Primary goal: look for indirect evidence of new physics in CP-violation and rare decays of beauty and charms hadrons

- This requires:
 - 1. Excellent tracking (momentum, impact parameters and primary vertex resolution)
 - 2. Excellent decay time resolution
 - 3. Excellent particle identification

LHCb Detector Performance Int. J. Mod. Phys. A30 (2015)1530022

SETTING THE STAGE

Recent past, Run I (2010 - 2012)

- Very successful running and triggering over 300 publications so far
- 1/2 fb⁻¹ collected at beam energy 7/8 TeV
- p-A collisions also recorded
- Still a lot to do with Run I data

Present, Run II (2015 - 2018)

- Increased beam energy 8 TeV \rightarrow 13 TeV Similar luminosity as in Run I ($\mathcal{L} = 4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$)
- Identical LHCb detector
- Completely revised trigger

Future, called Upgrade, Run III, (2020++)

• Many changes to the detector foreseen.

LHCh BANKIN

<u>Framework TDR for the LHCb Upgrade:</u> <u>Technical Design Report (2012)</u>

LHCb detector and trigger performance in Run II

Technical Design Report

HCb

THE TRACKER BEFORE MAGNET

THE TRACKER AFTER MAGNET

THE TRACKER AFTER MAGNET

PARTICLE IDENTIFICATION

PARTICLE IDENTIFICATION

Electromagnetic CAL & Hadron CAL

- Scintillator planes + absorber material planes
- Used in the hardware trigger (L0) selection

MUON CHAMBERS 5 stations, each equipped with • 276 multi-wire proportional chambers Inner part of the first station equipped with 12 GEM M3 M4 M5 detectors Used in L0 trigger selection HCAI • BCAL. Magnet T3 RICH2 ICH1 LHCb Detector Performance 5m Int. J. Mod. Phys. A30 (2015) 1530022 Performance of the Muon Identification system 10m 15m 20m JINST 8 (2013) P10020 5m LHCb detector and trigger performance in Run II F. Dordei

PARTICLE IDENTIFICATION

Magnet

5m

ICH1

5m

Electromagnetic CAL & Hadron CAL

- Scintillator planes + absorber material planes
- Used in the hardware trigger (L0) selection

LHCb Detector Performance

Int. J. Mod. Phys. A30 (2015) 1530022

PID performance in Run I:

- Kaon ID eff. ~95%
- Pion mis-ID fraction of ~10% over the full 2-100GeV/c momentum range

T3 RICH2

10m

15m

LHCb detector and trigger performance in Run II

• Muon ID eff. ~97%

MUON CHAMBERS

- 5 stations, each equipped with 276 multi-wire proportional chambers
- Inner part of the first station equipped with 12 GEM detectors
- Used in L0 trigger selection

M5

20m

Performance of the Muon Identification system JINST 8 (2013) P10020

F. Dordei

TRIGGER PRINCIPLES

BEAUTY SIGNATURES

- Mass $m(B^+) = 5.28 \text{ GeV}$
- Daughter $p_T O(1 \text{ GeV})$
- Lifetime $\tau(B^+) \sim 1.6 \text{ ps}$
- Flight distance $\sim 1 \text{ cm}$
- Common signature: detached $\mu\mu$ $B \rightarrow J/\Psi(\rightarrow \mu\mu)X$

CHARM SIGNATURES

Mass m(
$$D^0$$
) = 1.86 GeV

- Sizeable daughter p_T
- Lifetime $\tau(D^0) \sim 0.4$ ps
 - Flight distance $\sim 4 \text{ mm}$
 - Can be produced in B decays

For LHCb, more data is more important than higher energy

- **Direct searches:** more energy \rightarrow new particles could appear above threshold.
- Indirect searches: precision measurement → gain from increased production rates.
- However, digesting more data is a **challenge**

45 kHz

TRIGGER CONFIGURATION IN RUN I

Hardware trigger (L0): LHCb detector read out at 1 MHz

- Based on multiplicity, calorimeters and muon detectors.
- Fixed latency of 4 μ s.
- Reduces rate to 1 MHz.

Software trigger (HLT): Runs on HLT farm Split in two stages

1. HLT1 performs a partial event reconstruction and an inclusive selection of signal candidates.

1. HLT2

- full simplified event reconstruction
- Output rate 5 kHz
- In 2012 introduced the <u>deferred trigger</u>: keep the trigger farm busy between fills
- Total time budget $\mathcal{O}(35)$ ms/event

OFFLINE & ONLINE RECONSTRUCTION

Online reconstruction:

- Best possible within CPU budget
- Preliminary alignment and calibration of the detector
- Faster but less performing track and PID reconstruction (only part of the PID information available)

Offline reconstruction:

- Best performance regardless of CPU Differences
- Full and best performing detector alignment and calibration
- Full reconstruction including full PID information

Trigger \neq Offline

Disadvantages of this model

- Takes time: alignment and calibration applied after data taking, reconstruction run twice.
- Costs money: uses a lot of computing resources;
- Costs physics: loss of imperfectly reconstructed data in trigger.

OFFLINE & ONLINE RECONSTRUCTION

Online reconstruction:

- Best possible within CPU budget
- Preliminary alignment and calibration of the detector
- Faster but less performing track and PID reconstruction (only part of the PID information available)

Offline reconstruction:

- Best performance regardless of CPU Differences
- Full and best performing detector alignment and calibration
- Full reconstruction including full PID information

Trigger \neq Offline

Disadvantages of this model

- Takes time: alignment and calibration applied after data taking, reconstruction run twice.
- Costs money: uses a lot of computing resources;
- Costs physics: loss of imperfectly reconstructed data in trigger.

NOVEL CONCEPT IN HEP

Do physics directly on the HLT output!

Advantages:

- Same reconstruction online and offline
- No need of offline data processing (data available ~ immediately after HLT2 has processed them)
- Save only candidates used in the trigger → possibility to reduce the pre-scaling of high branching ratio channels (like for charm physics)

Do much more physics with the given resources!

But, it is a difficult challenge:

- Do the full reconstruction in few hundreds ms achieving offline performance (same or better than in Run I)
- Managing to do the full alignment and calibration of the detectors in real-time
- Being able to select efficiently many signals already at trigger level

TRIGGER CONFIGURATION IN RUN II

- Same LO hardware trigger as in Run I, with higher thresholds
- HLT software 40% faster
- All events are buffered to disk before running second software level of trigger
 - Stable beams 30-70(!)% of the time
 Buffer events to allow for out of fill processing
 5 PB (10 PB) buffer on local disks in 2015(2016)

It gives us enough time to:

- Perform calibration of PID detectors and alignment of the full tracking system in real-time
 - → Same alignment and calibration constants online and offline
- Last trigger level runs the offline-quality reconstruction
 - → Same full reconstruction online and offline: best performance

Trigger = Offline

• Output rate 12.5 kHz

ALIGNMENT AND CALIBRATION IN RUN II

Same online and offline reconstructions requires prompt alignment and calibration:

TRACKER ALIGNMENT IN RUN II

Alignment is evaluated by minimizing the residuals of the track hits

- Automatic evaluation at regular intervals, once per fill
- Dedicated data sample collected with specific trigger selection line for each system, e.g. $D^0 \rightarrow K^+\pi^-$ for Tracker and $J/\Psi \rightarrow \mu^+\mu^-$ for Muon system.
- Compute the new alignment constants in few minutes after enough data is collected
- Update the constants only if needed
- The same new alignment constants are used both by the trigger and the offline reconstruction

TRACKER ALIGNMENT IN RUN II

- **~ 700 elements to be aligned** for translations and rotations. Each task takes ~7 minutes
- 1. VELO updates every 2-3 fills.
- 2. Tracker (TT, IT, OT) updates every several fills and at magnet polarity change.
- **3.** Muon runs as monitoring, constants updated only after hardware intervention.

New plots from 2016!

ALIGNMENT IMPORTANCE

Physics performance relies on spatial alignment and calibration of the detector

• Examples: VELO alignment is essential for PV discrimination, **IP and proper time resolution, better alignment improves mass** resolution, use of PID allows for more exclusive selections

TRIGGER PERFORMANCE

Improvement of the trigger efficiency thanks to e.g.

- Run the same offline reconstruction in the trigger
- Having the detector fully calibrated and aligned
- Using PID selection in the trigger

Efficiency of the HLT2 inclusive beauty trigger as a function of B p_T

LHCb detector and trigger performance in Run II

RUN II DETECTOR PERFORMANCE

Same or better than offline performances for tracking and PID in Run I but directly at trigger level!!!

LHCb detector and trigger performance in Run II

TURBO AND TURBO++

Part of the physics programme needs billions of recorded candidates (e.g. charm analyses): but with no need for the rest of the event.

Saves candidates directly after the trigger:

- Reduced event size:
 - ~5 kB vs ~70 kB
- No need of offline reconstruction: possible to perform analysis immediately after data taking
- Dedicated ~2.5 kHz of the output (10 kHz for full)

Persistency of the Reconstruction info for the Full,

in addition to those selected by the trigger

• Plus higher level variables (i.e. hits in a cone region around the track) available for few lines.

Out of the 420 HLT2 lines in 2016, 150 choose Turbo.

HLT2 output (12.6 kHz)

Time shown to process 3GB raw data file

TURBO AND TURBO++

LHCb detector and trigger performance in Run II

TURBO AND TURBO++

F. Dordei

CONCLUSIONS

Completely revised strategy implemented at LHCb for Run II:

LHCb is the first HEP experiment with a full calibration, alignment and reconstruction done in real-time!

- Run I offline performances are already achieved in the trigger;
- Turbo increase our physics program using same resources, allowing to make analyses ~24h after data taking;
- New development for 2016: Turbo++. o choose how much, and which variables of the events to be computed and saved according to the physics measurement;
- Not the end of the story: working on improving and speeding up the reconstruction, alignment, calibration and data processing.
- Coming also soon: upgrade!

Thanks for your attention!

Backup slides

DATA TAKING

Luminosity levelling

Stable running and trigger conditions for LHCb even with LHC running at high luminosity.

Achieved changing the beam focus before collisions.

Extremely large σ **(bb) and** σ **(cc) in LHC hadron collisions.**

Conditions for Run 2:

- $\sigma(bb) \sim 45$ kHz and $\sigma(cc) \sim 1$ MHz, at 13TeV in acceptance [HF cross section $\sim 2 \times$ with respect to Run 1]
- Bunch spacing 25ns (smaller pileup)
- Almost same luminosity

DATA PROCESSING IN RUN I

LHCb processed data similar to the other LHC experiments:

Disadvantages of this model

- Takes time: alignment and calibration applied after data taking, reconstruction run twice.
- Costs money: uses a lot of computing resources;
- Costs physics: loss of imperfectly reconstructed data in trigger.

ALIGNMENT IN RUN II

RICH ALIGNMENT

- Cherenkov photons focused on photon- detector plane by spherical and flat mirrors
- Center of Cherenkov ring corresponds to the intersection point of the track.
- Alignment is determined by fitting the Cherenkov opening angle as a function of the azimuthal angle of the ring
- 110 mirror pairs to align: **1090 constants**

Runs only as monitoring every fill

New for 2016: Optimization and speed up!

31

CALIBRATION

Calibrations run on the monitoring histograms for ~every run

- **OT calibration**: global time alignment of the OT wrt LHC clock
- **RICH**: refractive index calibration and HPD image calibration
- Calorimeter calibrations run on monitoring histograms for ~every fill [stable L0 conditions]

OPTIMIZATION OF RECONSTRUCTION IN RUN II

New resources: farm nearly doubled wrt Run I, 10PB disk space to buffer the events between HLT1 and HLT2

- Big effort in speeding up the reconstruction:
 - Code optimization (vectorization, memory access)
 - New reconstruction chain in HLT1 and simplified geometry in Kalman filter
 - Re-implementation and/or re-tuning of the algorithms (HLT1 and HLT2)
 - Run I offline reconstruction 2 times faster

Offline Run I reconstruction can run in the Trigger in Run II, with same or better performance!!