

SUSY searches with the ATLAS detector

Riccardo Maria BIANCHI (Pittsburgh) on behalf of the ATLAS Collaboration

ICNFP 2016, Kolymbari (Crete), Greece

ATLAS SUSY SEARCHES OVERVIEW

Supersymmetry

Supersymmetry

Supersymmetry

July 2016

Status: July 2016

Inclusive Searches

squarks

gen.

Long-lived

RPV

 $E_{
m T}^{
m miss}$ e, μ, τ, γ Jets $\int \mathcal{L} dt [fb^{-1}]$ Model Mass limit $\sqrt{s} = 7.8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$ Reference MSUGRA/CMSSM 0-3 e, μ/1-2 τ 2-10 jets/3 b Yes 20.3 1.85 TeV $m(\tilde{q})=m(\tilde{g})$ 1507.05525 \tilde{q}, \tilde{g} 2-6 jets 3.2 1.03 TeV $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ 0 Yes $m(\tilde{\chi}_1^0) < 250 \text{ GeV}, m(1^{\text{st}} \text{ gen}, \tilde{q}) = m(2^{\text{nd}} \text{ gen}, \tilde{q})$ 1605.03814 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ (compressed) 1-3 jets 3.2 608 GeV $m(\tilde{q})-m(\tilde{\chi}_1^0) < 5 \text{ GeV}$ mono-jet Yes 1604.07773 0 2-6 jets Yes 3.2 1.51 TeV $m(\tilde{\chi}_{1}^{0}) < 250 \, GeV$ 1605.03814 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_1^0$ 2-6 jets Yes 3.3 1.6 TeV $m(\tilde{\chi}_{1}^{0}) < 350 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$ $1 e, \mu$ 1605.04285 $2e,\mu$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_1^0$ 0-3 jets 20 1.38 TeV $m(\tilde{\chi}_1^0)=0$ GeV 1501.03555 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$ 7-10 jets Yes 3.2 1.4 TeV $m(\tilde{\chi}_{1}^{0}) = 100 \, \text{GeV}$ 0 1602.06194 1-2 τ + 0-1 ℓ GMSB (Î NLSP) 0-2 jets Yes 3.2 2.0 TeV To appear GGM (bino NLSP) 2γ 3.2 1.65 TeV cτ(NLSP)<0.1 mm Yes 1606.09150 GGM (higgsino-bino NLSP) γ Yes 20.3 1.37 TeV 1b $m(\tilde{\chi}_{1}^{0}) < 950 \text{ GeV}, c\tau(\text{NLSP}) < 0.1 \text{ mm}, \mu < 0$ 1507.05493 GGM (higgsino-bino NLSP) γ 2 iets Yes 20.3 1.3 TeV $m(\tilde{\chi}_1^0) < 850 \text{ GeV}, c\tau(NLSP) < 0.1 \text{ mm}, \mu > 0$ 1507.05493 GGM (higgsino NLSP) 2 jets 20.3 m(NLSP)>430 GeV $2 e, \mu (Z)$ Yes 900 GeV 1503.03290 $F^{1/2}$ scale Gravitino LSP 0 mono-jet Yes 20.3 865 GeV $m(\tilde{G}) > 1.8 \times 10^{-4} \text{ eV}, m(\tilde{g}) = m(\tilde{g}) = 1.5 \text{ TeV}$ 1502.01518 ⁴ gen. med. $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ 1.78 TeV 0 3 b Yes 3.3 $m(\tilde{\chi}_{1}^{0}) < 800 \, GeV$ 1605.09318 $\tilde{g}\tilde{g}, \tilde{\tilde{g}} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$ 0-1 e, µ 3bYes 3.3 1.8 TeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1605.09318 3rd Ĩ D 0-1 e, µ 1.37 TeV $m(\tilde{\chi}_1^0) < 300 \text{ GeV}$ 3bYes 20.1 1407.0600 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b t \tilde{\chi}_1$ 840 GeV $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ 0 2 b Yes 3.2 $m(\tilde{\chi}_{1}^{0}) < 100 \, \text{GeV}$ 1606.08772 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$ 2 e, µ (SS) 0-3 b Yes 3.2 \tilde{b}_1 325-540 GeV $m(\tilde{\chi}_{1}^{0})=50 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})=m(\tilde{\chi}_{1}^{0})+100 \text{ GeV}$ 1602.09058 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ 1-2 e, µ Yes 4.7/20.3 ĩ117-170 GeV 200-500 GeV $m(\tilde{\chi}_{1}^{\pm}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0}) = 55 \text{ GeV}$ 1209.2102. 1407.0583 1-2 b $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ or $t \tilde{\chi}_1^0$ 0-2 e, µ 0-2 jets/1-2 b Yes 20.3 90-198 GeV 205-715 GeV 745-785 GeV $m(\tilde{\chi}_1^0)=1 \text{ GeV}$ 1506.08616, 1606.03903 \tilde{t}_1 mono-jet/c-tag Yes $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ 0 20.3 \tilde{t}_1 90-245 GeV $m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0}) < 85 \, \text{GeV}$ 1407.0608 $\tilde{t}_1\tilde{t}_1$ (natural GMSB) \tilde{t}_1 $2 e, \mu (Z)$ 20.3 150-600 GeV $m(\tilde{\chi}_1^0) > 150 \text{ GeV}$ 1bYes 1403.5222 3rd dire $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ $3e, \mu(Z)$ 1bYes 20.3 \tilde{t}_2 290-610 GeV $m(\tilde{\chi}_{1}^{0}) < 200 \, GeV$ 1403.5222 $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$ $1 e, \mu$ 6 iets + 2 b Yes 20.3 \tilde{t}_2 320-620 GeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1506.08616 $2 e, \mu$ $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ 90-335 GeV 0 Yes 20.3 $m(\tilde{\chi}_1^0)=0$ GeV 1403.5294 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$ $2e,\mu$ 20.3 0 Yes ĩ. 140-475 GeV $m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ 1403.5294 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$ 2τ Yes 20.3 355 GeV $m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ 1407.0350 $\begin{array}{c} \tilde{\chi}_1^{\pm}, \\ \tilde{\chi}_1^{\pm}, \end{array}$ 3 e, µ EW direct $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_{\rm L} \nu \tilde{\ell}_{\rm L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{\rm L} \ell(\tilde{\nu}\nu)$ 0 Yes 20.3 715 GeV $m(\tilde{\chi}_{1}^{\pm})=m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 1402.7029
$$\begin{split} &\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ &\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, \ h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma \end{split}$$
2-3 e, µ 0-2 jets Yes 20.3 $m(\tilde{\chi}_1^{\pm}) = m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0) = 0$, sleptons decoupled 425 GeV 1403.5294, 1402.7029 $m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0$, sleptons decoupled e, μ, γ 0-2 b Yes 20.3 270 GeV 1501.07110 $\tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0},\tilde{\chi}_{2,3}^{0}\rightarrow\tilde{\ell}_{\mathrm{R}}\ell$ $4 e, \mu$ 0 Yes 20.3 $\tilde{\chi}^0_{2,3}$ 635 GeV $m(\tilde{\chi}_{2}^{0})=m(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{2}^{0})+m(\tilde{\chi}_{1}^{0}))$ 1405.5086 Yes GGM (wino NLSP) weak prod. $1 e, \mu + \gamma$ 20.3 Ŵ 115-370 GeV $c\tau < 1 \text{ mm}$ 1507.05493 GGM (bino NLSP) weak prod. 2γ Yes 20.3 Ŵ 590 GeV $c\tau < 1 \text{ mm}$ 1507.05493 Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Disapp. trk 1 jet Yes 20.3 270 GeV $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})\sim 160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{\pm})=0.2 \text{ ns}$ 1310.3675 Direct $\tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ dE/dx trk Yes 18.4 495 GeV $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})\sim 160$ MeV. $\tau(\tilde{\chi}_{1}^{\pm})<15$ ns 1506.05332 Stable, stopped g R-hadron 0 1-5 jets Yes 27.9 850 GeV $m(\tilde{\chi}_1^0)=100 \text{ GeV}, 10 \ \mu \text{s} < \tau(\tilde{g}) < 1000 \text{ s}$ 1310.6584 Stable g R-hadron trk 3.2 1.58 TeV 1606.05129 Metastable g R-hadron 3.2 1604.04520 dE/dx trk 1.57 TeV $m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, \tau>10 \text{ ns}$ GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ $1-2 \mu$ -19.1 537 GeV 10<tanβ<50 1411.6795 GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ 2γ Yes 20.3 440 GeV $1 < \tau (\tilde{\mathcal{X}}_{1}^{0}) < 3$ ns, SPS8 model 1409.5542 displ. $ee/e\mu/\mu\mu$ 20.3 1.0 TeV $7 < c\tau(\tilde{\chi}_1^0) < 740 \text{ mm}, \text{ m}(\tilde{g}) = 1.3 \text{ TeV}$ 1504.05162 $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow eev/e\mu v/\mu\mu v$ -GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$ displ. vtx + jets 20.3 1.0 TeV $6 < c\tau(\tilde{\chi}_1^0) < 480 \text{ mm}, m(\tilde{g}) = 1.1 \text{ TeV}$ 1504.05162 LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ $e\mu, e\tau, \mu\tau$ -20.3 1.7 TeV $\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$ 1503.04430 Bilinear RPV CMSSM $2 e, \mu$ (SS) 0-3 b Yes 20.3 \tilde{q}, \tilde{s} 1.45 TeV $m(\tilde{g})=m(\tilde{g}), c\tau_{LSP}<1 \text{ mm}$ 1404.2500 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e e \tilde{\nu}_{\mu}, e \mu \tilde{\nu}_e$ $4 e, \mu$ Yes 20.3 760 GeV $m(\tilde{\chi}_1^0) > 0.2 \times m(\tilde{\chi}_1^{\pm}), \lambda_{121} \neq 0$ 1405.5086 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \to W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \to \tau \tau \tilde{\nu}_e, e \tau \tilde{\nu}_\tau$ $3 e, \mu + \tau$ Yes 20.3 450 GeV $m(\tilde{\chi}_1^0) > 0.2 \times m(\tilde{\chi}_1^{\pm}), \lambda_{133} \neq 0$ 1405.5086 BR(t)=BR(b)=BR(c)=0%6-7 jets 20.3 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq$ 0 -917 GeV 1502.05686 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ 6-7 jets -20.3 0 980 GeV $m(\tilde{\chi}_{1}^{0})=600 \text{ GeV}$ 1502.05686 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$ $2 e, \mu$ (SS) 0-3 b Yes 20.3 880 GeV 1404.2500 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 2 jets + 2 b 3.2 0 -345 GeV ATLAS-CONF-2016-022 $\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$ $2 e, \mu$ 20.3 \tilde{t}_1 0.4-1.0 TeV $BR(\tilde{t}_1 \rightarrow be/\mu) > 20\%$ 2bATLAS-CONF-2015-015 Other Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$ 0 2 c Yes 20.3 510 GeV $m(\tilde{\chi}_{1}^{0}) < 200 \, GeV$ 1501.01325 lulv 2016 R.M. Bianchi - ATLAS SUSY searches **10**⁻¹

*Only a selection of the available mass limits on new states or phenomena is shown.

Mass scale [TeV]

1

ATLAS Preliminary

310	alus. July 2010						V	s = 7, 8, 13 lev
	Model	e, μ, τ, γ	⁄ Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	\sqrt{s} = 7, 8 TeV \sqrt{s} = 13 TeV	Reference
e Searches	$\begin{array}{l} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0} \\ \tilde{q}q, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0} \rightarrow qqW^{4} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\gamma'\nu) \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{g}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{g}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{g}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{0} \\ $	0-3 <i>e</i> , μ/1-2 τ 0 mono-jet 0	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets	b Yes Yes Yes Yes	20.3 3.2 3.2 3.2	$ \vec{q}, \vec{g} \vec{q} \vec{q} \vec{q} 1.03 Te \vec{q} 608 GeV \vec{q} \vec{q} GOTDONIC D $	1.85 TeV $m(\tilde{q})=m(\tilde{g})$ W $m(\tilde{\chi}_1^0)<250 \text{ GeV}, m(1^{st} \text{ gen.} \tilde{q})=m(2^{nd} \text{ gen.} \tilde{q})$ $m(\tilde{q})-m(\tilde{\chi}_1^0)<5 \text{ GeV}$ 1.51 TeV $m(\tilde{\chi}_1^0)<250 \text{ GeV}$	1507.05525 1605.03814 1604.07773 1605.03814 1605.04285 1501.03555 1602.06194
Inclusiv	GMSB (t NLSP) GGM (bino NLSP) GGM (higgsino-binc GGM (higgsino-binc GGM (higgsino NLSP) Gravitino LSP	2 <i>e</i> , μ (Z) 0	2 jets mono-jet	Yes Yes	20.3 20.3	ĝ 900 GeV F ^{1/2} scale 865 GeV	m(NLSP)>430 GeV m($ ilde{G}$)>1.8 × 10 ⁻⁴ eV, m($ ilde{g}$)=n($ ilde{q}$)=1.5 TeV	1606,09150 1507.05493 1507.05493 1503.03290 1502.01518
$\frac{3^{rd}}{\tilde{g}}$ gen.	$\begin{array}{l} \tilde{g}\tilde{g}, \; \tilde{g} {\rightarrow} b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} {\rightarrow} t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} {\rightarrow} b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> , μ 0-1 <i>e</i> , μ	3 b 3 b 3 b	Yes Yes Yes	3.3 3.3 20.1	φ. φ. φ. φ.	1.78 TeV m(k ⁰ ₁)<800 GeV 1.8 TeV m(k ⁰ ₁)=0 GeV 1.37 TeV m(k ⁰ ₁)<300 GeV	1605.09318 1605.09318 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1} \tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow b \tilde{\chi}_{1}^{0} \\ \tilde{b}_{1} \tilde{b}_{1}, \ \tilde{b}_{1} \rightarrow b \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1}, \ \tilde{t}_{1} \rightarrow b \tilde{\chi}_{1}^{0} \\ \tilde{t}_{2} \tilde{t}_{2}, \ \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \\ \tilde{t}_{2} \tilde{t}_{2}, \ \tilde{t}_{2} \rightarrow \tilde{t}_{1} + h \end{split} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1\text{-}2 \ e, \mu \\ 0\text{-}2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 \ e, \mu \end{array}$	2 b 0-3 b 1-2 b 0-2 jets/1-2 mono-jet/c-t 1 b 1 b 6 jets + 2	Yes Yes Yes ag Yes Yes Yes b Yes	3.2 3.2 4.7/20.3 20.3 20.3 20.3 20.3 20.3 20.3	b1 840 GeV b1 325-540 GeV i17-170 GeV 200-500 GeV i190-198 GeV 205-715 GeV i1 90-245 GeV i1 90-245 GeV i1 209-610 GeV i2 320-620 GeV	$\begin{array}{c} m(\tilde{\mathcal{K}}_{1}^{0}){<}100~GeV \\ m(\tilde{\mathcal{K}}_{1}^{0}){=}50~GeV, m(\tilde{\mathcal{K}}_{1}^{0}){=}m(\tilde{\mathcal{K}}_{1}^{0}){+}100~GeV \\ m(\tilde{\mathcal{K}}_{1}^{0}){=}50~GeV \\ m(\tilde{\mathcal{K}}_{1}^{0}){=}1~GeV \\ m(\tilde{\mathcal{K}}_{1}^{0}){=}1~GeV \\ m(\tilde{\mathcal{K}}_{1}^{0}){=}150~GeV \\ m(\tilde{\mathcal{K}}_{1}^{0}){=}150~GeV \\ m(\tilde{\mathcal{K}}_{1}^{0}){=}200~GeV \\ m(\tilde{\mathcal{K}}_{1}^{0}){=}0~GeV \end{array}$	1606.08772 1602.09058 1209.2102, 1407.0583 1506.08616, 1606.03903 1407.0608 1403.5222 1403.5222 1506.08616
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu (\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{0}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} (\ell \tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{0}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{0}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{0}^{0} , \tilde{\chi}_{2}^{0} \rightarrow \tilde{W} \tilde{\chi}_{1}^{0} \tilde{h} \tilde{\chi}_{1}^{0} \\ GGM (wino NLSP) weak program GGM (bino NLSP) weak program G$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 2 \ 3 \ e, \mu \\ 4 \ e, \mu, \gamma \\ 4 \ e, \mu \\ d. 1 \ e, \mu + \gamma \\ d. 2 \ \gamma \end{array}$	0 0 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{x}_{1}^{0}) = 0 \text{ GeV } \\ & m(\tilde{x}_{1}^{0}) = 0 \text{ GeV } m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{+}) + m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV }, m(\tilde{\tau}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{+}) + m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{+}) = m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) = o, m(\tilde{\tau}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{+}) + m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{+}) = m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) = o, sleptons decoupled \\ & m(\tilde{\chi}_{1}^{+}) = m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) = o, sleptons decoupled \\ & m(\tilde{\chi}_{2}^{0}) = m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) = o, o(m(\tilde{\chi}_{2}^{0}) + m(\tilde{\chi}_{1}^{0})) \\ & cr < 1 mm \\ \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	Direct $\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{-}$ prod., long-lived Direct $\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{-}$ prod., long-lived Stable, stopped \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{r}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu})$ - GMSB, $\tilde{\chi}_{1}^{0} \rightarrow c\tilde{c}$, long-lived $\tilde{\chi}$ $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/e\mu\nu/\mu\mu\nu$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G}$	$ \begin{array}{c} \tilde{\chi}_{1}^{\pm} & \text{Disapp. trk} \\ \tilde{\chi}_{1}^{\pm} & \text{dE/dx trk} \\ & 0 \\ & \text{trk} \\ \text{dE/dx trk} \\ \text{rf}(e,\mu) & 1{-}2\mu \\ 1 & 2\gamma \\ \text{displ. }ee/e\mu/_{j} \\ \text{displ. vtx + je} \end{array} $	t 1 jet - 1-5 jets - - - μμ - ets -	Yes Yes - - Yes - -	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} \mathfrak{m}(\tilde{\chi}_{1}^{n}) - \mathfrak{m}(\tilde{\chi}_{1}^{n}) - 160 \ \text{MeV}, \tau(\tilde{\chi}_{1}^{n}) = 0.2 \ \text{ns} \\ \mathfrak{m}(\tilde{\chi}_{1}^{n}) - \mathfrak{m}(\tilde{\chi}_{1}^{n}) - 160 \ \text{MeV}, \tau(\tilde{\chi}_{1}^{n}) < 115 \ \text{ns} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 100 \ \text{GeV}, 10 \ \mu s < \tau(\tilde{g}) < 1000 \ \text{s} \\ \hline \textbf{1.57 TeV} \\ \textbf{1.57 TeV} \\ \mathfrak{m}(\tilde{\chi}_{1}^{0}) = 100 \ \text{GeV}, \tau > 10 \ \text{ns} \\ 10 < \tan\beta - 50 \\ 1 < \tau(\tilde{\chi}_{1}^{0}) < 3 \ \text{ns}, \text{SPS8 model} \\ 7 < c\tau(\tilde{\chi}_{1}^{0}) < 740 \ \text{mm}, \mathfrak{m}(\tilde{g}) = 1.3 \ \text{TeV} \\ \textbf{6} < c\tau(\tilde{\chi}_{1}^{0}) < 480 \ \text{mm}, \mathfrak{m}(\tilde{g}) = 1.1 \ \text{TeV} \\ \end{array}$	1310.3675 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\\ Bilinear RPV CMSSM \\ \tilde{X}_{1}^{+}\tilde{X}_{1}^{-}, \tilde{X}_{1}^{+} \rightarrow W\tilde{X}_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}, e_{\mu}\\ \tilde{X}_{1}^{+}\tilde{X}_{1}^{-}, \tilde{X}_{1}^{+} \rightarrow W\tilde{X}_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow \tau\tau\tilde{v}_{e}, er\\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq\\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq\\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\bar{\chi}_{1}^{0}, \tilde{X}_{1}^{0} \rightarrow qqq\\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow f_{1}\tilde{t}, \tilde{t}_{1} \rightarrow bs\\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow bs\\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell \end{array} $	$\begin{array}{cccc} \mu\tau & e\mu, e\tau, \mu\tau \\ & 2 \ e, \mu \ (\text{SS}) \\ i \tilde{\nu}_e & 4 \ e, \mu \\ i \tilde{\nu}_{\tau} & 3 \ e, \mu + \tau \\ & 0 \\ & 0 \\ 2 \ e, \mu \ (\text{SS}) \\ & 0 \\ & 2 \ e, \mu \end{array}$	- 0-3 <i>b</i> - - 6-7 jets 0-3 <i>b</i> 2 jets + 2 2 <i>b</i>	- Yes Yes - Yes b -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c} \tilde{v}_{\tau} & & & \\ \tilde{q}_{\cdot} \tilde{g} & & & \\ \tilde{\chi}_{1}^{\pm} & & 760 \ \text{GeV} \\ \tilde{\chi}_{1}^{\pm} & & 450 \ \text{GeV} \\ \tilde{g} & & 917 \ \text{GeV} \\ \tilde{g} & & 980 \ \text{GeV} \\ \tilde{g} & & 980 \ \text{GeV} \\ \tilde{f}_{1} & & 345 \ \text{GeV} \\ \hline \tilde{t}_{1} & & 0.4-1.0 \ \text{TeV} \\ \end{array} $	1.7 TeV $\lambda_{j_{11}}=0.11, \lambda_{132/133/233}=0.07$ 1.45 TeV $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \text{ mm}$ $m(\tilde{\chi}^0)>0.2\times m(\tilde{\chi}^+_1), \lambda_{121}\neq 0$ $m(\tilde{\chi}^0_1)>0.2\times m(\tilde{\chi}^+_1), \lambda_{133}\neq 0$ BR(t)=BR(b)=BR(c)=0% $m(\tilde{\chi}^0_1)=600 \text{ GeV}$ V BR(\tilde{t}_1 \rightarrow bc/\mu)>20%	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1404.2500 ATLAS-CONF-2016-022 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	7 510 GeV R M Bianchi - ATLAS SLISV searches	${ m m}({ ilde t}_1^0)$ <200 GeV	1501.01325
*Onl sta	ly a selection of the avail tes or phenomena is sho	able mass lim	its on nev	N	1	0 ⁻¹	1 Mass scale [TeV]	

states or phenomena is shown.

Mass scale [TeV]

ATLAS Preliminary $\sqrt{6} = 7.8.12 \text{ To}/$

ATLAS SUSY Searches* - 95% CL Lower Limits Status: July 2016

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	b ⁻¹] Mass limit	$\sqrt{s} = 7, 3$	8 TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{0}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \text{(compressed)} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell \ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \nu_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \ell_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \ell_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \ell_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \ell_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \ell_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \ell_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \ell_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \ell_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \ell_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \ell_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / \ell_{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q (\ell / \ell_{V} / $	$\begin{array}{c} 0.3 \ e, \mu / 1-2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 0-3 jets 7-10 jets 0-2 jets 2 jets 2 jets 2 jets mono-jet	 b Yes Yes 	20.3 3.2 3.2 3.2 3.3 20 3.2 3.2 3.2 20.3 20.3	$egin{array}{cccccccccccccccccccccccccccccccccccc$	1.85 TeV 1.6 TeV 1.6 TeV 1.6 TeV 2.0 TeV 1.65 TeV 7 TeV TeV	$\begin{split} & m(\tilde{q}) = m(\tilde{g}) \\ & m(\tilde{t}^0_1) < 250 \; GeV, \; m(1^{st} \; gen. \; \tilde{q}) = m(2^{nd} \; gen. \; \tilde{q}) \\ & m(\tilde{t}^0_1) < 250 \; GeV \\ & m(\tilde{t}^0_1) < 250 \; GeV, \; m(\tilde{\chi}^+) = 0.5 (m(\tilde{\chi}^0_1) + m(\tilde{g})) \\ & m(\tilde{t}^0_1) = 0 \; GeV \\ & m(\tilde{t}^0_1) = 0 \; GeV \\ & cr(NLSP) < 0.1 \; mm \\ & m(\tilde{t}^0_1) < 950 \; GeV, \; cr(NLSP) < 0.1 \; mm, \; \mu < 0 \\ & m(\tilde{k}^0_1) < 950 \; GeV, \; cr(NLSP) < 0.1 \; mm, \; \mu > 0 \\ & m(N\tilde{k}^0_1) < 3430 \; GeV \\ & m(\tilde{G}) > 1.8 \times 10^{-4} \; eV, \; m(\tilde{g}) = 1.5 \; TeV \end{split}$	1507.05525 1605.03814 1604.07773 1605.03814 1605.04285 1501.03555 1602.06194 <i>To appear</i> 1606.09150 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 b 3 b 3 b	Yes Yes Yes	3.3 3.3 2	ž ž	1.78 TeV 1.8 TeV	$m(\tilde{k}_{1}^{0})$ <800 GeV $m(\tilde{k}_{1}^{0})$ =0 GeV $m(\tilde{k}_{1}^{0})$ <300 GeV	1605.09318 1605.09318 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} {\rightarrow} b \tilde{\chi}_{1}^{0} \\ \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} {\rightarrow} t \tilde{\chi}_{1}^{*} \\ \tilde{t}_{1} \tilde{t}_{1}, \tilde{t}_{1} {\rightarrow} b \tilde{\chi}_{1}^{*} \\ \tilde{t}_{1} \tilde{t}_{1}, \tilde{t}_{1} {\rightarrow} b \tilde{\chi}_{1}^{*} \\ \tilde{t}_{1} \tilde{t}_{1}, \tilde{t}_{1} {\rightarrow} \delta \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1}, \tilde{t}_{1} {\rightarrow} \delta \tilde{\chi}_{1}^{0} \\ \tilde{t}_{1} \tilde{t}_{1} (n taural GMSB) \\ \tilde{t}_{2} \tilde{t}_{2}, \tilde{t}_{2} {\rightarrow} \tilde{t}_{1} + Z \\ \tilde{t}_{2} \tilde{t}_{2}, \tilde{t}_{2} {\rightarrow} \tilde{t}_{1} + h \end{split} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 0-2 \ e, \mu \ (C) \\ 0 \\ 1-2 \ e, \mu \ (C) \\ 0 \\ 3 \ e, \mu \ (Z) \\ 1 \ e, \mu \end{matrix}$	2 b 0-3 b 1-2 b 0-2 jets/1-2 nono-jet/c-ta 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes ag Yes Yes Yes Yes	20.3 20.3 20.3	3RD GENERATION		$\begin{array}{l} m(\tilde{x}_{1}^{0}) \! < \! 100 \text{GeV} \\ m(\tilde{x}_{1}^{0}) \! = \! 50 \text{GeV}, m(\tilde{x}_{1}^{+}) \! = \! m(\tilde{x}_{1}^{0}) \! + \! 100 \text{GeV} \\ m(\tilde{x}_{1}^{+}) \! = \! 2m(\tilde{x}_{1}^{0}), m(\tilde{x}_{1}^{0}) \! = \! 55 \text{GeV} \\ m(\tilde{x}_{1}^{0}) \! = \! 1 \text{GeV} \\ m(\tilde{x}_{1}^{0}) \! < \! 85 \text{GeV} \\ m(\tilde{x}_{1}^{0}) \! < \! 155 \text{GeV} \\ m(\tilde{x}_{1}^{0}) \! < \! 200 \text{GeV} \\ m(\tilde{x}_{1}^{0}) \! = \! 0 \text{GeV} \\ \end{array}$	1606.08772 1602.09058 1209.2102, 1407.0583 1506.08616, 1606.03903 1407.0608 1403.5222 1403.5222 1506.08616
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tau \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_L \nu \tilde{\ell}_L \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_L \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 h \tilde{\chi}_1, h \rightarrow b \tilde{b} / W W / \tau \tau \\ \tilde{\chi}_2^0 \tilde{\chi}_3, \tilde{\chi}_{2,3}^0 \rightarrow \tilde{\ell}_R \ell \\ GGM (wino NLSP) weak prod. \\ GGM (bino NLSP) weak prod. \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ e, \mu, \gamma \\ e, \mu, \gamma \\ 4 \ e, \mu \\ 1 \ e, \mu + \gamma \\ 2 \ \gamma \end{array}$	0 0 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{ccccc} \tilde{\ell} & 90\mbox{-}335 \mbox{ GeV} \\ \tilde{\chi}_1^{\pm} & 140\mbox{-}475 \mbox{ GeV} \\ \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm} & 355 \mbox{ GeV} \\ \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm} & 715 \mbox{ GeV} \\ \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm} & 425 \mbox{ GeV} \\ \tilde{\chi}_2^{\pm}, \tilde{\chi}_2^{\pm} & 270 \mbox{ GeV} \\ \tilde{\chi}_{2,3}^{\pm} & 635 \mbox{ GeV} \\ \tilde{W} & 115\mbox{-}370 \mbox{ GeV} \\ \end{array} $	$m(\tilde{\chi}_1^{\pm})=$ $m(\tilde{\chi}_2^0)=$	$\begin{array}{l} m(\tilde{x}_{1}^{0}) \!=\! 0 \text{GeV} \\ m(\tilde{x}_{1}^{0}) \!=\! 0 \text{GeV}, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{+}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}) \!=\! 0 \text{GeV}, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{+}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}) \!=\! m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}^{0}) \!=\! 0, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{1}^{+}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{+}) \!=\! m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) \!=\! 0, \text{sleptons decoupled} \\ m(\tilde{\chi}_{1}^{0}) \!=\! m(\tilde{\chi}_{2}^{0}), m(\tilde{\xi}_{1}^{0}) \!=\! 0, m(\tilde{\ell}, \tilde{\nu}) \!=\! 0.5(m(\tilde{\chi}_{2}^{0}) \!+\! m(\tilde{\chi}_{1}^{0})) \\ c_{\tau} <\! 1 \text{mm} \\ c_{\tau} <\! 1 \text{mm} \end{array}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	Direct $\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\dagger}$ Direct $\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\dagger}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(\tilde{g}, \tilde{\chi}_{1}^{0}) \rightarrow \varphi \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow \varphi \varphi (\rho w) (\mu \mu w)$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G}$	Disapp. trk dE/dx trk 0 trk dE/dx trk dE/dx trk dE/dx trk e, μ) 1-2 μ 2 γ displ. $ee/e\mu/\mu$ displ. vtx + jet	1 jet - 1-5 jets - - - τ τ ts -	Yes Yes - - Yes - Yes	20.3 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.58 TeV 1.57 TeV	$\begin{split} & m(\tilde{k}_{1}^{*}) \cdot m(\tilde{k}_{1}^{0}) \sim 160 \; MeV, \tau(\tilde{k}_{1}^{*}) = 0.2 \; ns \\ & m(\tilde{k}_{1}^{*}) - m(\tilde{k}_{1}^{0}) \sim 160 \; MeV, \tau(\tilde{k}_{1}^{*}) < 15 \; ns \\ & m(\tilde{k}_{1}^{0}) = 100 \; GeV, \; 10 \; ms < \tau(\tilde{g}) < 1000 \; s \\ & m(\tilde{k}_{1}^{0}) = 100 \; GeV, \; \tau > 10 \; ns \\ & 10 < tan \rho < 50 \\ & 1 < \tau(\tilde{k}_{1}^{0}) < a \; ns, \; SPS8 \; model \\ & 7 < c\tau(\tilde{k}_{1}^{0}) < 740 \; mm, \; m(\tilde{g}) = 1.3 \; TeV \\ & 6 < c\tau(\tilde{k}_{1}^{0}) < 480 \; mm, \; m(\tilde{g}) = 1.1 \; TeV \end{split}$	1310.3675 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{c} LFV pp \rightarrow \tilde{v}_\tau + X, \tilde{v}_\tau \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \; RPV \; CMSSM \\ \tilde{X}_1^+ \tilde{X}_1^-, \tilde{X}_1^+ \rightarrow W \tilde{X}_1^0, \tilde{X}_1^0 \rightarrow ee\tilde{v}_\mu, e\mu \tilde{v}_e \\ \tilde{X}_1^+ \tilde{X}_1^-, \tilde{X}_1^+ \rightarrow W \tilde{X}_1^0, \tilde{X}_1^0 \rightarrow \tau\tau \tilde{v}_e, e\tau \tilde{v}_\tau \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\bar{q} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0, \tilde{X}_1^0 \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow fit, \tilde{t}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell \end{array} $	$\begin{array}{c} e\mu, e\tau, \mu\tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 0 \\ 2 \ e, \mu \end{array}$	- 0-3 b - 6-7 jets 6-7 jets 0-3 b 2 jets + 2 b 2 b	- Yes Yes - - Yes - Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c} \bar{\tilde{y}}_{\tau} & & & & \\ \bar{\tilde{y}}_{\tau} & & & & \\ \bar{\tilde{x}}_{1}^{\pm} & & 760 \text{ GeV} \\ \bar{\tilde{x}}_{1}^{\pm} & & 450 \text{ GeV} \\ \bar{\tilde{g}} & & & 917 \text{ GeV} \\ \bar{\tilde{g}} & & & 980 \text{ GeV} \\ \bar{\tilde{g}} & & & 980 \text{ GeV} \\ \bar{\tilde{g}} & & & 880 \text{ GeV} \\ \bar{\tilde{t}}_{1} & & & & \\ \bar{\tilde{t}}_{1} & & & & 0.4-1.0 \text{ TeV} \end{array} $	1.7 TeV .45 TeV	$\begin{split} &\mathcal{X}_{311} = 0.11, \mathcal{X}_{132/133/233} = 0.07 \\ &\mathbf{m}(\tilde{q}) = \mathbf{m}(\tilde{g}), c\tau_{LSP} < 1 \text{ mm} \\ &\mathbf{m}(\tilde{k}_{1}^{0}) > 0.2 \times \mathbf{m}(\tilde{k}_{1}^{+}), \mathcal{X}_{121} \neq 0 \\ &\mathbf{m}(\tilde{k}_{1}^{0}) > 0.2 \times \mathbf{m}(\tilde{k}_{1}^{+}), \mathcal{X}_{133} \neq 0 \\ &\mathbf{BR}(t) = \mathbf{BR}(t) = \mathbf{BR}(t) = \mathbf{BR}(t) = 0\% \\ &\mathbf{m}(\tilde{k}_{1}^{0}) = 600 \text{ GeV} \\ \end{split}$	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1404.2500 ATLAS-CONF-2016-022 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	č 510 GeV		m($ ilde{\mathcal{X}}_1^0$)<200 GeV	1501.01325
*Onl	y a selection of the availab	le mass limi	its on new	V	1	0^{-1} 1		Mass scale [TeV]	,

*Only a selection of the available mass limits on new states or phenomena is shown.

Mass scale [TeV]

ATLAS Preliminary $\sqrt{s} = 7.8.13$ TeV

Status: July 2016

Inclusive Searches

^d gen.

3rd ẽ Γ

squarks oduction

gen. ð

3rd ge

EW direct

Long-lived

PV

particles

 e, μ, τ, γ Jets $E_{\rm T}^{\rm miss} \int \mathcal{L} dt [{\rm fb}^{-1}]$ Reference Model Mass limit $\sqrt{s} = 7.8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$ MSUGRA/CMSSM 0-3 $e, \mu/1$ -2 τ 2-10 jets/3 bYes 20.3 \tilde{q}, \tilde{g} 1.85 TeV $m(\tilde{q})=m(\tilde{g})$ 1507.05525 2-6 jets 1.03 TeV $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ 0 Yes 3.2 ã $m(\tilde{\chi}_1^0) < 250 \text{ GeV}, m(1^{\text{st}} \text{ gen.} \tilde{q}) = m(2^{nd} \text{ gen.} \tilde{q})$ 1605.03814 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ (compressed) mono-jet 3.2 1-3 jets Yes q 608 GeV $m(\tilde{q})-m(\tilde{\chi}_1^0) < 5 \text{ GeV}$ 1604.07773 2-6 jets Yes 3.2 1.51 TeV m(X10)<250 GeV $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ 0 õ 1605.03814 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0}$ 1 e, µ 2-6 jets 3.3 1.6 TeV Yes $m(\tilde{\chi}_{1}^{0}) < 350 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$ 1605.04285 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_{1}^{0}$ $2e,\mu$ 0-3 jets 20 1.38 TeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1501.03555 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$ 7-10 jets Yes 3.2 $m(\tilde{\chi}_{1}^{0}) = 100 \, \text{GeV}$ 0 ĩ 1.4 TeV 1602.06194 GMSB (*l* NLSP) 0-2 jets Yes 3.2 2.0 TeV $1-2\tau + 0-1\ell$ To appear GGM (bino NLSP) 2γ cτ(NLSP)<0.1 mm Yes 3.2 1.65 TeV 1606.09150 GGM (higgsino-bino NLSP) γ 20.3 ĝ 1.37 TeV 1bYes $m(\tilde{\chi}_1^0) < 950 \text{ GeV}, c\tau(\text{NLSP}) < 0.1 \text{ mm}, \mu < 0$ 1507.05493 GGM (higgsino-bino NLSP) γ 2 iets Yes 20.3 1.3 TeV $m(\tilde{\chi}_{1}^{0}) < 850 \text{ GeV}, c\tau(\text{NLSP}) < 0.1 \text{ mm}, \mu > 0$ 1507.05493 GGM (higgsino NLSP) 2 e, µ (Z) 20.3 m(NLSP)>430 GeV 2 jets Yes 900 GeV 1503.03290 õ Gravitino LSP mono-jet Yes 20.3 $F^{1/2}$ scale 865 GeV $m(\tilde{G}) > 1.8 \times 10^{-4} \text{ eV}, m(\tilde{g}) = m(\tilde{g}) = 1.5 \text{ TeV}$ 1502.01518 0 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ 0 3bYes 3.3 ĩ 1.78 TeV m(X10)<800 GeV 1605.09318 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$ 0-1 e, µ 3bYes 3.3 ĩ 1.8 TeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1605.09318 0-1 e, µ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_1^*$ 3bYes 20.1 ĝ 1.37 TeV $m(\tilde{\chi}_{1}^{0}) < 300 \, GeV$ 1407.0600 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ 0 2 b Yes 3.2 840 GeV $m(\tilde{\chi}_{1}^{0}) < 100 \, GeV$ \tilde{b}_1 1606.08772 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$ 2 e, µ (SS) 0-3 hYes 3.2 \tilde{b}_1 325-540 GeV $m(\tilde{\chi}_{1}^{0})=50 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})=m(\tilde{\chi}_{1}^{0})+100 \text{ GeV}$ 1602.09058 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ 1-2 e, µ ĩ117-170 GeV 200-500 GeV $m(\tilde{\chi}_{1}^{\pm}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0}) = 55 \text{ GeV}$ 1209.2102. 1407.0583 1-2 b Yes 4.7/20.3 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ or $t \tilde{\chi}_1^0$ 0-2 e, µ 0-2 jets/1-2 b Yes 20.3 \tilde{t}_1 90-198 GeV 205-715 GeV 745-785 GeV $m(\tilde{\chi}_1^0)=1 \text{ GeV}$ 1506.08616, 1606.03903 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ 0 mono-jet/c-tag Yes 20.3 \tilde{t}_1 90-245 GeV $m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0}) < 85 \, \text{GeV}$ 1407.0608 t1t1 (natural GMSB) 2 e, µ (Z) 20.3 150-600 GeV 1bYes \tilde{t}_1 $m(\tilde{\chi}_{1}^{0}) > 150 \text{ GeV}$ 1403.5222 $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ $3 e, \mu (Z)$ 1bYes 20.3 \tilde{t}_2 290-610 GeV $m(\tilde{\chi}_{1}^{0}) < 200 \, GeV$ 1403.5222 $\tilde{t}_2\tilde{t}_2,\,\tilde{t}_2{\rightarrow}\tilde{t}_1+h$ 6 iets + 2 b Yes 20.3 320-620 GeV $1e,\mu$ \tilde{t}_2 $m(\tilde{\chi}_1^0)=0$ GeV 1506.08616 $2e,\mu$ $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ 0 Yes 20.3 90-335 GeV $m(\tilde{\chi}_1^0)=0$ GeV 1403.5294 $\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$ $2e,\mu$ 0 Yes 20.3 140-475 GeV $m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ 1403.5294 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$ 2τ $m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ 1407.0350 3 e, µ $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_L v \tilde{\ell}_L \ell(\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_L \ell(\tilde{\nu} \nu)$ 0 $=m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 1402.7029 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0}$ 2-3 e. µ 0-2 jet $m(\tilde{\chi}_1^{\pm}) = m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0) = 0$, sleptons decoupled 1403.5294, 1402.7029 $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 h \tilde{\chi}_1^0, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma$ **Electroweak Production** $m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0$, sleptons decoupled e, μ, γ 0-2 b 1501.07110 $\tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{\mathrm{R}}\ell$ 4 e, µ 0 $=m(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{2}^{0})+m(\tilde{\chi}_{1}^{0}))$ 1405.5086 GGM (wino NLSP) weak prod. $1 e, \mu + \gamma$ $c\tau < 1 \text{ mm}$ 1507.05493 GGM (bino NLSP) weak prod. $c\tau < 1 \text{ mm}$ 2γ 1507.05493 $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^{\pm}$ Direct $\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Disapp. trk 1 jet Yes 20.3 270 GeV $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})\sim 160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{\pm})=0.2 \text{ ns}$ 1310.3675 18.4 495 GeV Direct $\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ dE/dx trk Yes $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})\sim 160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{\pm})<15 \text{ ns}$ 1506.05332 Stable, stopped g R-hadron 0 1-5 jets Yes 27.9 ĝ 850 GeV $m(\tilde{\chi}_1^0)=100 \text{ GeV}, 10 \ \mu \text{s} < \tau(\tilde{g}) < 1000 \text{ s}$ 1310.6584 Stable g R-hadron ĝ trk 3.2 1.58 TeV 1606.05129 Metastable g R-hadron 3.2 ĝ dE/dx trk 1.57 TeV 1604.04520 $m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, \tau>10 \text{ ns}$ GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ 10<tan8<50 1-2 μ -19.1 537 GeV 1411.6795 ズズズズ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ 2γ Yes 20.3 440 GeV $1 < \tau(\tilde{\chi}_1^0) < 3$ ns. SPS8 model 1409.5542 displ. ee/eµ/µµ -20.3 1.0 TeV $7 < c\tau(\tilde{\chi}_1^0) < 740 \text{ mm}, \text{ m}(\tilde{g}) = 1.3 \text{ TeV}$ 1504.05162 $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/e\mu v/\mu\mu v$ -GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$ displ. vtx + jets 20.3 1.0 TeV $6 < c\tau(\tilde{\chi}_1^0) < 480 \text{ mm}, m(\tilde{g}) = 1.1 \text{ TeV}$ 1504.05162 \tilde{v}_{τ} LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ εμ,ετ,μτ -20.3 1.7 TeV $\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$ 1503.04430 Bilinear RPV CMSSM 20.3 2 e, µ (SS) 0-3 b Yes \tilde{q}, \tilde{g} 1.45 TeV $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP} < 1 \text{ mm}$ 1404.2500 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e e \tilde{\nu}_{\mu}, e \mu \tilde{\nu}_e$ $4 e, \mu$ Yes 20.3 $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^{\pm}$ 760 GeV $m(\tilde{\chi}_{1}^{0}) > 0.2 \times m(\tilde{\chi}_{1}^{\pm}), \lambda_{121} \neq 0$ 1405.5086 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \to W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \to \tau \tau \tilde{\nu}_e, e \tau \tilde{\nu}_\tau$ 20.3 $3 e, \mu + \tau$ Yes 450 GeV $m(\tilde{\chi}_{1}^{0}) > 0.2 \times m(\tilde{\chi}_{1}^{\pm}), \lambda_{133} \neq 0$ 1405.5086 BR(t)=BR(b)=BR(c)=0%6-7 jets 20.3 917 GeV ĝĝ, ĝ→qqq 0 ĝ 1502.05686 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}^0_1, \tilde{\chi}^0_1 \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$ 0 6-7 jets -20.3 ĩ 980 GeV m(X10)=600 GeV 1502.05686 2 e, µ (SS) 0-3 b Yes 20.3 ĝ 880 GeV 1404.2500 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 2 jets + 2 b 3.2 345 GeV 0 - \tilde{t}_1 ATLAS-CONF-2016-022 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$ $2e,\mu$ -20.3 0.4-1.0 TeV $BR(\tilde{t}_1 \rightarrow be/\mu) > 20\%$ ATLAS-CONF-2015-015 2b \tilde{t}_1 **Other** Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$ 20.3 ĩ 0 2cYes 510 GeV $m(\tilde{\chi}_{1}^{0}) < 200 \, GeV$ 1501.01325 10⁻¹

1

*Only a selection of the available mass limits on new states or phenomena is shown.

Mass scale [TeV]

ATLAS Preliminary

Status: July 2016

 e, μ, τ, γ Jets $E_{\rm T}^{\rm miss} \int \mathcal{L} dt [{\rm fb}^{-1}]$ Model Mass limit $\sqrt{s} = 7.8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$ Reference MSUGRA/CMSSM 0-3 $e, \mu/1$ -2 τ 2-10 jets/3 bYes 20.3 \tilde{q}, \tilde{g} 1.85 TeV $m(\tilde{q})=m(\tilde{g})$ 1507.05525 2-6 jets 1.03 TeV $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ 0 Yes 3.2 $m(\tilde{\chi}_1^0) < 250 \text{ GeV}, m(1^{\text{st}} \text{ gen.} \tilde{q}) = m(2^{nd} \text{ gen.} \tilde{q})$ 1605.03814 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ (compressed) mono-jet 3.2 Inclusive Searches 1-3 jets Yes q 608 GeV $m(\tilde{q})-m(\tilde{\chi}_1^0) < 5 \text{ GeV}$ 1604.07773 2-6 jets 3.2 1.51 TeV $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ 0 Yes õ $m(\tilde{\chi}_{1}^{0}) < 250 \text{ GeV}$ 1605.03814 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0}$ 1 e, µ 2-6 jets 3.3 1.6 TeV Yes $m(\tilde{\chi}_{1}^{0}) < 350 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$ 1605.04285 0-3 jets $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_{1}^{0}$ $2e,\mu$ 20 1.38 TeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1501.03555 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$ 7-10 jets Yes 0 3.2 ĩ 1.4 TeV $m(\tilde{\chi}_{1}^{0}) = 100 \, \text{GeV}$ 1602.06194 GMSB (*t* NLSP) 0-2 jets Yes 3.2 2.0 TeV $1-2\tau + 0-1$ To appear 1 GGM (bino NLSP) 2γ cτ(NLSP)<0.1 mm Yes 3.2 1.65 TeV 1606.09150 GGM (higgsino-bino NLSP) γ 20.3 1.37 TeV 1bYes ĝ $m(\tilde{\chi}_{1}^{0}) < 950 \text{ GeV}, c\tau(\text{NLSP}) < 0.1 \text{ mm}, \mu < 0$ 1507.05493 GGM (higgsino-bino NLSP) γ 2 iets Yes 20.3 1.3 TeV $m(\tilde{\chi}_{1}^{0}) < 850 \text{ GeV}, c\tau(\text{NLSP}) < 0.1 \text{ mm}, \mu > 0$ 1507.05493 GGM (higgsino NLSP) $2 e, \mu (Z)$ 20.3 m(NLSP)>430 GeV 2 jets Yes 900 GeV 1503.03290 õ Gravitino LSP mono-jet Yes 20.3 F1/2 scale 865 GeV $m(\tilde{G}) > 1.8 \times 10^{-4} \text{ eV}, m(\tilde{g}) = m(\tilde{g}) = 1.5 \text{ TeV}$ 1502.01518 0 ^d gen. $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ 0 3bYes 3.3 ĩ 1.78 TeV m(X10)<800 GeV 1605.09318 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$ 0-1 e, µ 3bYes 3.3 ĩ 1.8 TeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1605.09318 ₹ r $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b t \tilde{\chi}_1$ 0-1 e. µ Yes 20.1 1.37 TeV 3bĝ $m(\tilde{\chi}_{1}^{0}) < 300 \, GeV$ 1407.0600 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ 0 2 b Yes 3.2 840 GeV $m(\tilde{\chi}_1^0) < 100 \, \text{GeV}$ \tilde{b}_1 1606.08772 squarks oduction $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$ 2 e, µ (SS) 0-3 b Yes 3.2 \tilde{b}_1 325-540 GeV $m(\tilde{\chi}_{1}^{0})=50 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})=m(\tilde{\chi}_{1}^{0})+100 \text{ GeV}$ 1602.09058 1-2 e, µ ĩ117-170 GeV 200-500 GeV $m(\tilde{\chi}_{1}^{\pm}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0}) = 55 \text{ GeV}$ 1209.2102. 1407.0583 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ 1-2 b Yes 4.7/20.3 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ or $t \tilde{\chi}_1^0$ 0-2 e, µ 0-2 jets/1-2 b Yes 20.3 90-198 GeV 205-715 GeV 745-785 GeV 1506.08616, 1606.03903 \tilde{t}_1 $m(\tilde{\chi}_1^0)=1 \text{ GeV}$ gen. ð $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ 0 mono-jet/c-tag Yes 20.3 \tilde{t}_1 90-245 GeV $m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0}) < 85 \, \text{GeV}$ 1407.0608 ect t1t1 (natural GMSB) 2 e, µ (Z) 20.3 150-600 GeV 1bYes \tilde{t}_1 $m(\tilde{\chi}_{1}^{0}) > 150 \, GeV$ 1403.5222 3rd dire $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ $3 e, \mu (Z)$ 1bYes 20.3 \tilde{t}_2 290-610 GeV $m(\tilde{\chi}_{1}^{0}) < 200 \, GeV$ 1403.5222 $\tilde{t}_2\tilde{t}_2,\,\tilde{t}_2{\rightarrow}\tilde{t}_1+h$ 6 iets + 2 b Yes 20.3 320-620 GeV $1e,\mu$ \tilde{t}_2 $m(\tilde{\chi}_1^0)=0$ GeV 1506.08616 $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ 90-335 GeV $2e,\mu$ 0 Yes 20.3 $m(\tilde{\chi}_1^0)=0$ GeV 1403.5294 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$ $2e,\mu$ 20.3 $\tilde{\chi}_1^{\pm}$ 0 Yes 140-475 GeV $m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ 1403.5294 $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$ 2τ Yes 20.3 355 GeV $m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ 1407.0350 EW direct 3 e, µ $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$ $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_L v \tilde{\ell}_L \ell(\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_L \ell(\tilde{\nu} \nu)$ 0 Yes 20.3 715 GeV $m(\tilde{\chi}_{1}^{\pm})=m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 1402.7029 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0}$ $\tilde{\chi}_1^{\pm}, \tilde{\chi}$ 2-3 e. µ 0-2 jets Yes 20.3 1403.5294, 1402.7029 425 GeV $m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0$, sleptons decoupled $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 h \tilde{\chi}_1^0, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma$ $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$ $m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0$, sleptons decoupled e, μ, γ 0-2 b Yes 20.3 270 GeV 1501.07110 $\tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{\mathrm{R}}\ell$ 4 e, µ 0 Yes 20.3 $\tilde{\chi}_{2,3}^0$ 635 GeV $m(\tilde{\chi}_{2}^{0})=m(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{2}^{0})+m(\tilde{\chi}_{1}^{0}))$ 1405.5086 GGM (wino NLSP) weak prod. $1 e, \mu + \gamma$ Yes 20.3 Ŵ 115-370 GeV $c\tau < 1 \text{ mm}$ 1507.05493 GGM (bino NLSP) weak prod. Ŵ 2γ -Yes 20.3 590 GeV $c\tau < 1 \text{ mm}$ 1507.05493 $\tilde{\chi}_1^{\pm}$ 270 GeV Direct $\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Disapp. trk 1 jet Yes 20.3 $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})\sim 160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{\pm})=0.2 \text{ ns}$ 1310.3675 Direct $\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ dE/dx trk Yes $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})\sim 160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{\pm})<15 \text{ ns}$ 1506.05332 Long-lived Stable, stopped g R-hadron 0 1-5 jets Yes $m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, 10 \ \mu \text{s} < \tau(\tilde{g}) < 1000 \text{ s}$ 1310.6584 particles Stable g R-hadron trk 1606.05129 **Long-Lived Particles** Metastable g R-hadron dE/dx trk $m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, \tau>10 \text{ ns}$ 1604.04520 GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ 1-2 µ 10<tanβ<50 1411.6795 GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ 2γ Yes $1 < \tau(\tilde{\chi}_1^0) < 3$ ns. SPS8 model 1409.5542 displ. $ee/e\mu/\mu\mu$ $7 < c\tau(\tilde{\chi}_1^0) < 740 \text{ mm, m}(\tilde{g})=1.3 \text{ TeV}$ 1504.05162 $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/e\mu v/\mu\mu v$ -GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$ displ. vtx + jets $6 < c\tau(\tilde{\chi}_1^0) < 480 \text{ mm}, m(\tilde{g}) = 1.1 \text{ TeV}$ 1504.05162 20.3 1.0 Iev X1 \tilde{v}_{τ} LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ εμ,ετ,μτ -20.3 1.7 TeV $\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$ 1503.04430 Bilinear RPV CMSSM \tilde{q}, \tilde{g} 2 e, µ (SS) 0-3 b Yes 20.3 1.45 TeV $m(\tilde{g})=m(\tilde{g}), c\tau_{LSP} < 1 mm$ 1404.2500 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e e \tilde{\nu}_{\mu}, e \mu \tilde{\nu}_{e}$ $4 e, \mu$ Yes 20.3 $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^{\pm}$ 760 GeV $m(\tilde{\chi}_{1}^{0}) > 0.2 \times m(\tilde{\chi}_{1}^{\pm}), \lambda_{121} \neq 0$ 1405.5086 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \to W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \to \tau \tau \tilde{\nu}_e, e \tau \tilde{\nu}_\tau$ PV 20.3 $3 e, \mu + \tau$ Yes 450 GeV $m(\tilde{\chi}_{1}^{0}) > 0.2 \times m(\tilde{\chi}_{1}^{\pm}), \lambda_{133} \neq 0$ 1405.5086 BR(t)=BR(b)=BR(c)=0%6-7 jets 20.3 917 GeV ĝĝ, ĝ→qqq 0 ĝ 1502.05686 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}^0_1, \tilde{\chi}^0_1 \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$ 0 6-7 jets -20.3 ĩ 980 GeV m(X10)=600 GeV 1502.05686 2 e, µ (SS) 0-3 b Yes 20.3 ĝ 880 GeV 1404.2500 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 2 jets + 2 b 3.2 345 GeV 0 - \tilde{t}_1 ATLAS-CONF-2016-022 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$ $2e,\mu$ -20.3 0.4-1.0 TeV $BR(\tilde{t}_1 \rightarrow be/\mu) > 20\%$ 2b \tilde{t}_1 ATLAS-CONF-2015-015 **Other** Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$ ĩ 0 2cYes 20.3 510 GeV $m(\tilde{\chi}_{1}^{0}) < 200 \, GeV$ 1501.01325 10⁻¹ 1

*Only a selection of the available mass limits on new states or phenomena is shown.

Mass scale [TeV]

ATLAS Preliminary

Status: July 2016

Inclusive Searches

squarks

gen.

Long-lived

PV

 e, μ, τ, γ Jets $E_{\rm T}^{\rm miss} \int \mathcal{L} dt [{\rm fb}^{-1}]$ Model Mass limit $\sqrt{s} = 7.8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$ Reference MSUGRA/CMSSM 0-3 $e, \mu/1$ -2 τ 2-10 jets/3 bYes 20.3 \tilde{q}, \tilde{g} 1.85 TeV $m(\tilde{q})=m(\tilde{g})$ 1507.05525 2-6 jets 1.03 TeV $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ 0 Yes 3.2 $m(\tilde{\chi}_1^0) < 250 \text{ GeV}, m(1^{\text{st}} \text{ gen.} \tilde{q}) = m(2^{nd} \text{ gen.} \tilde{q})$ 1605.03814 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ (compressed) 1-3 jets mono-jet 3.2 Yes q 608 GeV $m(\tilde{q})-m(\tilde{\chi}_1^0) < 5 \text{ GeV}$ 1604.07773 2-6 jets Yes 3.2 1.51 TeV m(X10)<250 GeV $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ 0 õ 1605.03814 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0}$ 1 e, µ 2-6 jets 3.3 1.6 TeV Yes $m(\tilde{\chi}_{1}^{0}) < 350 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$ 1605.04285 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}_{1}^{0}$ $2e,\mu$ 0-3 jets 20 1.38 TeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1501.03555 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$ 7-10 jets Yes 3.2 $m(\tilde{\chi}_{1}^{0}) = 100 \, \text{GeV}$ 0 ĩ 1.4 TeV 1602.06194 GMSB (*l* NLSP) 0-2 jets Yes 3.2 2.0 TeV $1-2\tau + 0-1$ To appear 1 GGM (bino NLSP) 2γ cτ(NLSP)<0.1 mm Yes 3.2 1.65 TeV 1606.09150 GGM (higgsino-bino NLSP) γ 20.3 1.37 TeV 1bYes ĝ $m(\tilde{\chi}_1^0) < 950 \text{ GeV}, c\tau(\text{NLSP}) < 0.1 \text{ mm}, \mu < 0$ 1507.05493 GGM (higgsino-bino NLSP) γ 2 iets Yes 20.3 1.3 TeV $m(\tilde{\chi}_{1}^{0}) < 850 \text{ GeV}, c\tau(\text{NLSP}) < 0.1 \text{ mm}, \mu > 0$ 1507.05493 GGM (higgsino NLSP) $2 e, \mu (Z)$ 20.3 m(NLSP)>430 GeV 2 jets Yes 900 GeV 1503.03290 õ Gravitino LSP mono-jet Yes 20.3 F1/2 scale 865 GeV $m(\tilde{G}) > 1.8 \times 10^{-4} \text{ eV}, m(\tilde{g}) = m(\tilde{g}) = 1.5 \text{ TeV}$ 1502.01518 0 ^d gen. $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ 0 3bYes 3.3 ĩ 1.78 TeV m(X10)<800 GeV 1605.09318 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$ 0-1 e, µ 3bYes 3.3 ĩ 1.8 TeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1605.09318 3rd ẽ Γ 0-1 e, µ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b t \tilde{\chi}_1$ 3bYes 20.1 ĝ 1.37 TeV $m(\tilde{\chi}_{1}^{0}) < 300 \, GeV$ 1407.0600 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ 0 2 b Yes 3.2 840 GeV $m(\tilde{\chi}_1^0) < 100 \, \text{GeV}$ \tilde{b}_1 1606.08772 oduction $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$ 2 e, µ (SS) 0-3 hYes 3.2 \tilde{b}_1 325-540 GeV $m(\tilde{\chi}_{1}^{0})=50 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm})=m(\tilde{\chi}_{1}^{0})+100 \text{ GeV}$ 1602.09058 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ 1-2 e, µ ĩ117-170 GeV 200-500 GeV $m(\tilde{\chi}_{1}^{\pm}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0}) = 55 \text{ GeV}$ 1209.2102. 1407.0583 1-2 b Yes 4.7/20.3 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ or $t \tilde{\chi}_1^0$ 0-2 e, µ 0-2 jets/1-2 b Yes 20.3 \tilde{t}_1 90-198 GeV 205-715 GeV 745-785 GeV $m(\tilde{\chi}_1^0)=1 \text{ GeV}$ 1506.08616, 1606.03903 ð $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ 0 mono-jet/c-tag Yes 20.3 \tilde{t}_1 90-245 GeV $m(\tilde{t}_{1})-m(\tilde{\chi}_{1}^{0}) < 85 \, \text{GeV}$ 1407.0608 3rd ge t1t1 (natural GMSB) 2 e, µ (Z) 20.3 150-600 GeV 1bYes \tilde{t}_1 $m(\tilde{\chi}_{1}^{0}) > 150 \, GeV$ 1403.5222 $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ $3 e, \mu (Z)$ 1bYes 20.3 \tilde{t}_2 290-610 GeV $m(\tilde{\chi}_{1}^{0}) < 200 \, GeV$ 1403.5222 $\tilde{t}_2\tilde{t}_2,\,\tilde{t}_2{\rightarrow}\tilde{t}_1+h$ 6 iets + 2 b Yes 20.3 \tilde{t}_2 320-620 GeV $1e,\mu$ $m(\tilde{\chi}_1^0)=0$ GeV 1506.08616 $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ 90-335 GeV $2e,\mu$ 0 Yes 20.3 $m(\tilde{\chi}_1^0)=0$ GeV 1403.5294 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$ $2e,\mu$ 20.3 $\tilde{\chi}_1^{\pm}$ 140-475 GeV 0 Yes $m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ 1403.5294 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$ $\tilde{\chi}_1^{\pm}$ 2τ Yes 20.3 355 GeV $m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ 1407.0350 $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$ EW direct 3 e, µ $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_L v \tilde{\ell}_L \ell(\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_L \ell(\tilde{\nu} \nu)$ 0 Yes 20.3 715 GeV $m(\tilde{\chi}_{1}^{\pm})=m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$ 1402.7029 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0}$ $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$ 2-3 e. µ 0-2 jets Yes 20.3 425 GeV $m(\tilde{\chi}_1^{\pm}) = m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0) = 0$, sleptons decoupled 1403.5294, 1402.7029 $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 h \tilde{\chi}_1^0, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma$ $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}$ $m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0$, sleptons decoupled e, μ, γ 0-2 b Yes 20.3 270 GeV 1501.07110 $\tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{\mathrm{R}}\ell$ 4 e, µ 0 Yes 20.3 $\tilde{\chi}_{2,3}^0$ 635 GeV $m(\tilde{\chi}_{2}^{0})=m(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{2}^{0})+m(\tilde{\chi}_{1}^{0}))$ 1405.5086 GGM (wino NLSP) weak prod. $1 e, \mu + \gamma$ Yes 20.3 Ŵ 115-370 GeV $c\tau < 1 \text{ mm}$ 1507.05493 GGM (bino NLSP) weak prod. Ŵ 2γ -Yes 20.3 590 GeV $c\tau < 1 \text{ mm}$ 1507.05493 $\tilde{\chi}_1^{\pm}$ Direct $\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Disapp. trk 1 jet Yes 20.3 270 GeV $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})\sim 160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{\pm})=0.2 \text{ ns}$ 1310.3675 $\tilde{\chi}_1^{\pm}$ 495 GeV Direct $\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ dE/dx trk Yes 18.4 $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})\sim 160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{\pm})<15 \text{ ns}$ 1506.05332 Stable, stopped g R-hadron 0 1-5 jets Yes 27.9 ĝ 850 GeV $m(\tilde{\chi}_1^0)=100 \text{ GeV}, 10 \ \mu \text{s} < \tau(\tilde{g}) < 1000 \text{ s}$ 1310.6584 particles Stable g R-hadron trk 3.2 ğ 1.58 TeV 1606.05129 Metastable g R-hadron 3.2 ĝ dE/dx trk 1.57 TeV 1604.04520 $m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}, \tau>10 \text{ ns}$ GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ 10<tan8<50 1-2 μ -19.1 537 GeV 1411.6795 ズズズズ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ 2γ Yes 20.3 440 GeV $1 < \tau(\tilde{\chi}_1^0) < 3$ ns. SPS8 model 1409.5542 displ. ee/eµ/µµ -20.3 1.0 TeV $7 < c\tau(\tilde{\chi}_1^0) < 740 \text{ mm, m}(\tilde{g})=1.3 \text{ TeV}$ 1504.05162 $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/e\mu v/\mu\mu v$ _ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$ displ. vtx + jets 20.3 1.0 TeV $6 < c\tau(\tilde{\chi}_1^0) < 480 \text{ mm}, m(\tilde{g}) = 1.1 \text{ TeV}$ 1504.05162 \tilde{v}_{τ} LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ εμ,ετ,μτ -20.3 1.7 TeV $\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$ 1503.04430 Bilinear RPV CMSSM 20.3 \tilde{q}, \tilde{g} 2 e, µ (SS) 0-3 b Yes 1.45 TeV $m(\tilde{g})=m(\tilde{g}), c\tau_{LSP} < 1 mm$ 1404.2500 $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e e \tilde{\nu}_{\mu}, e \mu \tilde{\nu}_{e}$ $4 e, \mu$ Yes 20.3 $m(\tilde{\chi}_{1}^{0}) > 0.2 \times m(\tilde{\chi}_{1}^{\pm}), \lambda_{121} \neq 0$ 1405.5086 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \to W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \to \tau \tau \tilde{\nu}_e, e \tau \tilde{\nu}_\tau$ 20.3 $3 e, \mu + \tau$ Yes $m(\tilde{\chi}_{1}^{0}) > 0.2 \times m(\tilde{\chi}_{1}^{\pm}), \lambda_{133} \neq 0$ 1405.5086 ĩg ĩg BR(t)=BR(b)=BR(c)=0%6-7 jets 20.3 ĝĝ, ĝ→qqq 0 -**RPV** Decays 1502.05686 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}^0_1, \tilde{\chi}^0_1 \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$ 0 6-7 jets -20.3 m(X10)=600 GeV 1502.05686 2 e, µ (SS) 0-3 b Yes 20.3 ĝ 1404.2500 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$ 2 jets + 2 b 3.2 \tilde{t}_1 0 -ATLAS-CONF-2016-022 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$ $2e,\mu$ -20.3 \tilde{t}_1 $BR(\tilde{t}_1 \rightarrow be/\mu) > 20\%$ ATLAS-CONF-2015-015 2bV51 0.1-4.0 ĩ **Other** Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$ 20.3 0 2cYes 510 GeV $m(\tilde{\chi}_{1}^{0}) < 200 \, GeV$ 1501.01325

*Only a selection of the available mass limits on new states or phenomena is shown.

10⁻¹

Mass scale [TeV]

1

ATLAS Preliminary

ATLAS SUSY results

- ~50 SUSY searches in ATLAS, many updated to Run 2 data (\sqrt{s} = 13 TeV) already
- All ATLAS SUSY Results:
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults</u>
- Many recent ATLAS SUSY results have been presented in the past few weeks:
 - LHCP2016 <u>https://indico.cern.ch/event/442390/</u>
 - HSQCD2016 <u>http://hepd.pnpi.spb.ru/~hsqcd/index.shtml</u>
 - SUSY2016 <u>http://indico.cern.ch/event/443176/</u>
- In the following I will focus only on 4 of the very latest ATLAS SUSY results

<u>Analysis</u>	<u>arXiv</u>	
LLP (pixel+Tile)	<u>1606.05129</u>	All analyses presented
Di-photons: $\gamma\gamma$ + MET	<u>1606.09150</u>	$3.2 \text{ fb}^{-1} @ \sqrt{\text{s}=13 \text{ TeV}}$
ll (Z) + jets + MET	ATLAS-CONF-2015-082	LHC Run 2 data
taus + jets + MET	(to appear soon)	collected in 2015

Search for heavy long-lived charged R-hadrons with the ATLAS detector in 3.2 fb⁻¹ of proton–proton collision data at \sqrt{s} = 13 TeV

arXiv: 1606.05129

LLP (PIXEL + CALO)

LLP - Intro

- gluinos/squarks production can produce **R-hadrons**: **composite colorless** states of squarks/gluinos + SM quarks/gluons
- **R-hadrons at LHC** are expected:
 - To be heavy, hence **slow**, with velocity $\beta = v/c < 1$
 - To have a ionisation energy loss dE/dx larger than any SM particle
 - To be able to change charge when interacting with the detector material
- This search for R-hadrons uses information from the **pixel tracking detector** and the **hadronic calorimeter**, omitting the Muon Spectrometer, to be sensitive to scenarios where R-hadrons decay or turn neutral before arriving in the Muon system
- The search uses dE/dx and velocity measurements to infer the mass:
 - <u>**Pixel**</u>, dE/dx and $\beta \gamma$ with an inverted Bethe-Bloch 5 parameters function
 - <u>**Calorimeter</u>**, β with Time-Of-Flight from calo cells information</u>

$$m_{\beta\gamma} = p/\beta\gamma$$

Object selection

R-hadron candidate track:

- ≥ 7 silicon detector hits
- ≥ 2 calorimeter clusters used to measure dE/dx

 $p_T > 50 \ GeV$

- $\Delta R \ge 0.3$, w.r.t. any jet with: $p_T > 50 \ GeV$, anti- k_t , R = 0.4
- $p < 6.5 \ TeV$ (unphysical tracks)

 $|z_0^{PV} sin(\theta)| \le 0.5 \ mm \ (\text{Z coordinate w.r.t. the PV})$

 $|d_0| \leq 2.0 \ mm$ (IP closest traverse impact parameter)

Cosmic rays rejection:

tracks rejected when a similar specular track is observed

Z->muons rejection:

tracks rejected if m_{inv} in [81, 101] GeV Observable-quality cut: tracks rejected if $\sigma_{\beta} < 0.12$ BP + IBL + Pixel PST SCT

Event selection

Online selection: $E_T^{miss} > 70$ GeV **trigger**, from calo input only (signal eff. ~ 32%-50%)

Offline selection:

- Primary Vertex: at least 2 tracks with $p_T > 400 \text{ MeV}$
- At least one R-hadron candidate

Final signal selection:

$$p_T > 200 \ GeV$$

$$\beta < 0.75$$

$$\beta \gamma < \begin{cases} 1.35, & \text{for } m_{R-had} \le 1.4 \ TeV \\ 1.15, & \text{for } m_{R-had} > 1.4 \ TeV \end{cases}$$

Signal region: defined in the plane m_{β} - $m_{\beta\gamma}$

2 events pass final selection, but no statistically significant excess observed

background

16

Source	Relative uncertainty [±%]
Theoretical uncertainty on signal	14–57
Uncertainty on signal efficiency	20–16
 Trigger efficiency 	2
QCD uncertainty (ISR, FSR)	14
^L Pile-up	7–1
· Pixel $\beta\gamma$ measurement	1–3
^L Calorimeter β measurement	10–2
Luminosity	5
Uncertainties on background estimate	30–43

The background is evaluated • in a data-driven manner:

distributions estimating the

•

Data/Bkg

LLP Results

95% CL exclusion limits:

Selection efficiency:

- 9% 15% for gluino and stop R-hadrons
- 6% 8% for sbottom Rhadrons
- gluino masses up to 1580 GeV
- **sbottoms** up to **805** GeV
- **stops** up to **890** GeV

A search for supersymmetry in events containing a leptonically decaying Z boson, jets and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector

CDS: ATLAS-CONF-2015-082

LL (Z) + JETS + MET

- The "on-shell Z" search targets pair-production of squarks/gluinos, with:
 - 2 same-flavor opposite-sign (SFOS) leptons (e/μ) in final states
 - di-lepton invariant mass compatible with the Z mass

•	Simplified						
	model	Model	Production mode	Quark flavours	$m(\tilde{g})/m(\tilde{q})$	$m(\tilde{\chi}_2^0)$	$m(\tilde{\chi}_1^0)$
	mouci	$\tilde{g} - \tilde{\chi}_2^0$ on-shell	ĨĨ	u, d, c, s	x	у	1 GeV

- Signals generated over 2-D grid, varying the gluino/squark mass (*x* axis) and the X⁰₂, X⁰₁ neutralino masses (*y* axis)
- All other sparticles decoupled

• Signal region (SR)

(see backup slides for Control (CR) and validation (VR) regions)

On-shell Z regions	E ^{miss} [GeV]	H ^{incl} [GeV]	n _{jets}	<i>m_{ℓℓ}</i> [GeV]	SF/DF	$\Delta \phi$ (jet ₁₂ , $p_{\rm T}^{\rm miss}$)	$m_{\rm T}(\ell_3, E_{\rm T}^{\rm miss})$ [GeV]	n _{b-jets}
Signal region								
SRZ	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4	-	-

- Dominant bkg in SRs is the "flavour-symmetric" (FS), where the 2 leptons come from independent decays. It is dominated by: *ttbar* (50-70%), WW, ZZ, ZTT The FS bkg is 60-90% of the total bkg. It is data-driven (DD) estimated using control samples of eµ events
- Z/γ +jets is small but can mimic signal. It is DD estimated with γ +jets events
- WZ/ZZ diboson production is 5-20% bkf of SRZ and 30% of "edge" SRs. It is estimated MC simulation, after validation in dedicated 3l (WZ) and 4l (ZZ) VRs
- Other rare bkgs (ttW, ttZ, ttWW) are MC estimated

(see backup slides for syst. uncertainties)

II+jets+MET – "Z" results

Dilepton invariant mass over full $m_{\rm ll}$ range

Kinetic variables in the SR range (example)

- Agreement in off-Z region
- Excess for $m_{ll} \sim m_Z$

SRs/VRs summary plot

• SRZ: significance of 2.2 σ

The results are interpreted in the context of the simplified model

 $m_g > 1.1 \text{ TeV}, \text{ for } m(X_2^0) = 700 \text{ GeV}$

Search for supersymmetry in a final state containing two photons and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions at the LHC using the ATLAS detector

arXiv: <u>1606.09150</u>

DIPHOTON + MET

Di-photon - Intro

- Results interpreted in the context of general gauge mediation (GGM) SUSY model → Gravitino G with m_G << 1 GeV is the LSP
- In this **model-dependent search** we take m_g (gluino) and m_X (neutralino) as free parameters, with the $m_X < m_g$ constraint. All other SUSY masses are decoupled (> LHC scale)
- Also, we assume **R**-parity conservation, and the bino-like neutralino X_{1}^{0} as the NLSP, which decays to the G + SM particles , with high probability of γ + G
- The X⁰₁ BR ratio to γ + G is 100% for $m_X \rightarrow 0$ and tends to $\cos^2 \theta_W$ for $m_X \gg m_Z$, with the remainder of the X⁰₁ sample decaying to Z + G. The **photonic channel dominates**.
- In the end we get a long decay chain with **2 photons** + E_t^{miss}

- **Online selection**: di-photon trigger, $p_T > 50$ GeV
- Offline selection:

+ beam, cosmic rays and detector noise cleaning cuts

(objects selection in backup)

SR	$W\gamma\gamma$ CR
2 tight photons with $p_{\rm T} > 75 \text{ GeV}$	2 tight photons with $p_{\rm T} > 50 \text{ GeV}$
	1 <i>e</i> or μ with $p_{\rm T} > 25$ GeV
$\Delta \phi_{\min}(\text{jet}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}}) > 0.5$	$\Delta \phi_{\min}(\text{jet}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}}) > 0.5$
$E_{\rm T}^{\rm miss} > 175 {\rm GeV}$	$50 < E_{\rm T}^{\rm miss} < 175 { m GeV}$
$m_{\rm eff} > 1500 { m GeV}$	N(jets) < 3
	$m_{e\gamma} \notin 83-97 \text{ GeV}$

Signal Region (SR):

- One SR for all gluino/neutralino mass points
- optimized on E_T^{miss} , m_{eff} and p^{γ} on 2 benchmark points: $(m_g, m_{\text{X}}) = (1500, 1300)$ $(m_g, m_{\text{X}}) = (1500, 100)$

Background and uncertainties

R.M. Bianchi - ATLAS SUSY searches

Main bkg sources:

- QCD bkg:
 - real di-photon+jets
 - "jet-faking" events
- "electron-faking" bkg from W,Z, ttbar, with misidentified *e* as photon
- "irreducible" from $W\gamma\gamma$ and $Z\gamma\gamma$
- estimated with data-driven (DD) and simulation-based (MC) methods

Uncertainties:

- GGM signal acceptances and efficiencies estimated using MC simulation over the gluino-bino parameter space
- Photon reco/ID efficiency estimated with DD methods

Source	Nur	mber of events
$\overline{\text{QCD}\left(\gamma\gamma,\gamma j,jj\right)}$	DD	$0.05^{+0.20}_{-0.05}$
$e \rightarrow \gamma$ fakes	DD	0.03 ± 0.02
$W\gamma\gamma$	MC + DD	0.17 ± 0.08
$Z\gamma\gamma$	MC	0.02 ± 0.02
Sum		$0.27\substack{+0.22 \\ -0.10}$
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (1500)$, 100)	7.0
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (1500)$	8.0	

Source of systematic uncertainty	Value
Luminosity	2.1 %
Photon identification	3.0 %
Photon energy scale	0.2 %
Photon energy resolution	0.2 %
Jet energy scale	0.4 %
Jet energy resolution	0.3 %
$E_{\rm T}^{\rm miss}$ soft term	< 0.1%
Pile-up uncertainty	$1.8 \ \%$
MC statistics	2.3 %
Total experimental uncert.	4.7 %

26

Di-photon - Results

- After full selection applied, no events are observed in the SR, to be compared to the SM expectation value of 0.27
- Upper limits on SR events set, using the profile likelihood and CLs prescriptions

Requirement	Number of Events
Two photons, $p_{\rm T}^{\gamma} > 75$	4982
$\Delta \phi_{\min}(\text{jet}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}}) > 0.5$	4724
$m_{\rm eff} > 1500 {\rm GeV}$	1
$E_{\rm T}^{\rm miss} > 175 { m GeV}$	0
Expeected SM background	$0.27^{+0.22}_{-0.10}$
Data	0

New Physics visible σ:

With 3.2 fb-1, 95% CL upper limit on model-independent visible $\sigma_{\rm NP}$ =0.93 fb

GGM model limit:

m_g > 1650 GeV

mass of GGM degenerate octet of gluino states

independent of the mass of the lighter *bino*-like neutralino

Search for squarks and gluinos in events with hadronically-decaying tau leptons, jets and missing transverse momentum in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded with the ATLAS detector

arXiv: (soon)

Check in few days on: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults</u>

SUSY IN TAUS

SUSY in taus - Intro

Two exclusive final states are considered:

- 1 tau
- ≥ 2 taus

Results are interpreted in the context of two models:

- gauge-mediated supersymmetry breaking (GMSB)
- simplified model of gluino-pair production with tau-rich cascade

m(gluino) and $m(X_1^0)$ are free parameters

No excess over the SM prediction is observed in the data, in kinematic distributions. So upper limits are set at 95% CL. The search substantially improves on previous limits

Selection criteria & variables

Online selection: E_T^{miss} trigger

Discriminating variables:

• Transverse mass:

$$m_{\rm T}^{\ell} \equiv m_{\rm T}(\ell, \vec{p}_{\rm T}^{\rm miss}) = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss}(1 - \cos\Delta\phi(\ell, \vec{p}_{\rm T}^{\rm miss}))}$$

- H_T (Total visible transverse energy): $H_T = \sum p_T^{\text{taus}} + \sum p_T^{\text{jets}}$
- E_T^{miss}
- Effective mass $m_{eff} = H_T + E_t^{miss}$
- Stransverse mass:

$$m_{\rm T2}^{\tau\tau} = \sqrt{\min_{\vec{p}_{\rm T}^{a} + \vec{p}_{\rm T}^{b} = \vec{p}_{\rm T}^{\rm miss}} \left(\max\left[m_{\rm T}^{2}(\tau_{1}, \vec{p}_{\rm T}^{a}), m_{\rm T}^{2}(\tau_{2}, \vec{p}_{\rm T}^{b}) \right] \right)}$$

- Sum of transverse masses: $m_{\rm T}^{\rm sum} = m_{\rm T}^{\tau_1} + m_{\rm T}^{\tau_2} + \sum m_{\rm T}^{\rm jets}$
- Total number of jets, N_{jet}
- Number of b-tagged jets, N_{b-jet}

	0-LSP mass spirt	ting		
	< 100 GeV	500-900 GeV	>1200 GeV	
1τ channel	Compressed SR	Medium-Mass SR	High-Mass SR	
Trigger plateau	$E_{\rm T}^{\rm miss}$ >	• 180 GeV, $p_{\rm T}^{\rm jet_1} > 12$	0 GeV	
Tau leptons	$N_{ au}^{ m m}$	$p_{\rm T}^{\rm redium} = 1, p_{\rm T}^{\tau} > 20 \; {\rm Ge}$	eV	
Light leptons		$N_{\ell} = 0$		
Multi-jet rejection	$\Delta \phi(\text{jet}_{1,2}, \vec{p}_{\text{T}}^{\text{miss}}) \ge 0.4$			
$p_{\mathrm{T}}^{ au}$	< 45 GeV	_	-	
$p_{\mathrm{T}}^{\mathrm{jet}_1}$	> 300 GeV	_	> 220 GeV	
$p_{\mathrm{T}}^{\mathrm{jet}_2}$	_	_	> 220 GeV	
N _{jet}	≥ 2	≥ 5	≥ 5	
$m_{\mathrm{T}}^{ au}$	> 80 GeV	> 200 GeV	> 200 GeV	
$E_{ m T}^{ m miss}$	> 300 GeV	> 300 GeV	-	
H_{T}	_	> 550 GeV	> 550 GeV	

2τ channel	Compressed SR High-Mass SR		GMSB SR		
Trigger plateau	$E_{\rm T}^{\rm miss} > 180 { m GeV}, p_{\rm T}^{ m jet_1} > 120 { m GeV}$				
Tau leptons	$N_{ au}^{ m loos}$	$e^{e} \geq 2$, $p_{\mathrm{T}}^{\tau} > 20 \mathrm{Ge}$	×V		
Multi-jet rejection	$\Delta \phi(\text{jet}_{1,2}, \vec{p}_{\text{T}}^{\text{miss}}) \ge 0.4$				
$m_{\mathrm{T}}^{ au_1} + m_{\mathrm{T}}^{ au_2}$	_	> 350 GeV	> 150 GeV		
$H_{ m T}$	_	> 800 GeV	> 1700 GeV		
N _{jet}	≥ 2	≥ 3	≥ 2		
$m_{ m T2}^{ au au}$	> 60 GeV	-	_		
$m_{ m T}^{ m sum}$	> 1400 GeV	-	-		

There are many searches still ongoing...

...and new data to analyze!

ATLAS Public results

- Public results portal:
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/WebHome</u>
- Luminosity / Data:
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u> <u>LuminosityPublicResultsRun2</u>
- SUSY:
 - <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u> <u>SupersymmetryPublicResults</u>

BACKUP SLIDES

ICNFP 2016 July 2016

SUSY search variables

\mathbf{E}_{t}^{miss}

- In SUSY searches, final states typically include <u>undetectable objects</u> (SUSY LSP), which causes a momentum imbalance in the event
- Thus we often require events to have a quite large E_T^{miss}
- E_T^{miss} in ATLAS computed as negative vector sum of E_T from calibrated electrons, muons, photons and jet candidates, combined with all remaining tracks associated to the primary vertex but not associated to those objects

E_T^{miss} "soft term"

• to account for soft energy in the event that is not associated with any of the selected objects

\mathbf{H}_{T}

• H_T is the total visible transverse energy, as the scalar sum of the transverse momenta of the photons, leptons and jets in the event

m_{eff}

• The "effective mass", as the sum of H_T and $E_t^{miss:}$

$$M_{eff} = \sum_{k} |p_{Tk}| + E_T^{miss} = H_T + E_T^{miss}$$

$jet-p_T^{miss}$ separation

• The difference between the phi angle (transversal) of a jet and the p_T^{miss} , used to suppress mismeasured jets

LLP ANALYSIS BACKUP SLIDES

ICNFP 2016 July 2016

Calo information

- ATLAS Calorimeter: 3 radial layers in Barrel + 3 radial layers in each end cap
- β is estimated from time-of-flight measurements based on timing and distance information from calo cells crossed by the extrapolated track
- To reduce detector noise only cells with E_{min} =500 MeV are considered
- Time resolution depends on cells and layer type and calibrations have been applied
- Final resolution:
 - Single cell-time resolution: 1.3 ns at large radii up to 2.5 ns at small radii
 - β resolution: 0.06 to 0.23

Timing studies and control sample

- For timing studies a control sample of Z->µµ events in data and simulation is used
- The expected β distro:
 - for background, it is taken from data
 - for R-hadrons, it is from simulation
- Very good agreement between data and simulation with control sample,
- --> this supports the usage of simulated beta distribution for R-hadrons

- Calibrations:
 - Compared to the 8TeV analysis, here the distance of flight is computed by taking eta and path length, instead of cell centers
 --> more accurate β measurement on high-eta cells (negligible on central cells)
 - A cell-time smearing applied in simulation to match data cell-time resolution
 - Corrections for late-arriving particles are applied, from simulated samples

dE/dx measurement with Pixel

- Pixel consists of 3 similar layers
 + the inner IBL
- A neural network algorithm is used to cluster single pixel charges
- For each cluster a dE/dx is estimated, then an overall dE/dx measure is calculated
- **Mean dE/dx** = 1.12 MeV g⁻¹ cm² (RMS=0.13)
- ==> beta gamma by inverting the Bethe-Block relation:

 $m = p / \beta \gamma$

R-hadrons signal

 $m_g = 600 - 2000 \text{ GeV}$ (gluino) $m_{b/t} = 600 - 1400 \text{ GeV}$ (sbottom/stop)

- Masses of other SUSY particles are set at very high values for LHC to ensure their contribution to production cross section is negligible
- For a given *sparticle* mass the production cross section for **gluino** Rhadrons is typically **an order of magnitude higher** than for **bottom**squark and **top**-squark R-hadrons.
- The **probability** for a gluino to form a **gluon-gluino bound state** is assumed, based on a colour-octet model, to be **10%**

R-hadrons signal

 $m_g = 600 - 2000 \text{ GeV}$ (gluino) $m_{b/t} = 600 - 1400 \text{ GeV}$ (sbottom/stop)

- Pair production of gluinos and squarks simulated with Pythia + AUET2B (underlying event) + CTEQ6L1 (PDF) + specialized hadronization routines to get R-hadrons
- GEANT4 **full detector simulation** with gluino/squark R-hadron interaction based on Regge model (hep-ph/0908.1868): moderate R-hadron interaction with the detector, with typical calorimeter deposit of 10 GeV
- Corrections for **QCD radiative effects** are applied to get ISR jets in final states.

R-hadron selection cuts

Simulated <i>R</i> -hadron mass [GeV]	600	800	1000	1200	1400	1600	1800	2000
$\beta \gamma^{\max}$	1.35	1.35	1.35	1.35	1.35	1.15	1.15	1.15
β^{\max}	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
$m_{\beta\gamma}^{\min}$	350	450	500	575	650	675	750	775
$m_{eta}^{ ilde{m}_{ ilde{n}}}$	350	450	500	575	650	675	750	775

Table 1: Final selection requirements as a function of the simulated R-hadron mass.

R-hadrons signals and event yields

D h a draw		37	a con a secondaria de la constante	N7	37
<i>K</i> -nadron	mass [Gev]	$N_{ m sig} \pm \sigma_{N_{ m sig}}$	$e_{\Pi,\pm\sigma_{eff}}$	$N_{\rm bkg} \pm \sigma_{N_{\rm bkg}}$	<i>IN</i> _{obs}
	600	3340±660	0.113±0.022	4.5±1.4	3
	800	500±110	0.105 ± 0.022	1.75±0.53	3
	1000	143 ± 28	0.137±0.027	1.23 ± 0.37	2
Gluino	1200	36.5 ± 6.4	0.133 ± 0.023	0.77±0.25	2
	1400	12.2 ± 2.2	0.151 ± 0.028	0.54±0.19	2
	1600	3.6±0.6	0.140 ± 0.023	0.185 ± 0.071	1
	1800	1.00 ± 0.18	0.11±0.02	0.138±0.057	1
	2000	0.378 ± 0.063	0.12 ± 0.02	0.126±0.053	1
	600	36.1±7.7	0.064±0.014	4.5±1.4	3
	800	6.6±1.5	0.073±0.016	1.75±0.53	3
Bottom squark	1000	1.62 ± 0.33	0.082 ± 0.017	1.23 ± 0.37	2
	1200	0.407 ± 0.077	0.079 ± 0.015	0.77±0.25	2
	1400	0.122 ± 0.024	0.082 ± 0.016	0.54±0.19	2
	600	47.5±9.5	0.085±0.017	4.5±1.4	3
	800	10.7 ± 2.3	0.118±0.025	1.75±0.53	3
Top squark	1000	2.70 ± 0.52	0.137 ± 0.026	1.23 ± 0.37	2
	1200	0.72 ± 0.13	0.141 ± 0.025	0.77±0.25	2
	1400	0.216±0.039	0.146 ± 0.027	0.54±0.19	2

Table 3: Expected signal yield (N_{sig}) and efficiency (eff.), estimated background (N_{bkg}) and observed number of events in data (N_{obs}) for the full mass range after the final selection using 3.2 fb⁻¹ of data. The stated uncertainties include both the statistical and systematic contribution.

Z (LL) + JETS + MET BACKUP

ICNFP 2016 July 2016

II+jets+MET- Object selection

Offline selection:

Primary Vertex: the vertex with the largest Σp_T^2 , over all tracks $p_T > 400$ MeV

Two selections: "baseline" (a) to select objects used in Etmiss computation, and the more stringent "signal" (b) to select jets and leptons in final selection Electrons: (b)

- from PV, isolated, $p_{\rm T} > 25$ GeV, $|\eta| < 2.47$
- $|z_0 \sin \theta| < 0.5 \text{ mm from PV}, |d_0/\sigma_{d0}| < 5$ (PV and IP closeness requirements)
- Efficiency: 70% for $p_{\rm T} \sim 25$ GeV, up to 99% for $p_{\rm T} > 200$ GeV

Muons (b):

- from PV, isolated, $p_{\rm T} > 25$ GeV, $|\eta| < 2.4$, $|z_0 \sin \theta| < 0.5$ mm, $|d_0 / \sigma_{d0}| < 3$
- Efficiency: 95 % for $p_{\rm T}$ ~ 25 GeV, up to 99% for $p_{\rm T}$ > 60 GeV

Jets (b):

- anti- k_t , R=0.4, from topo clusters; $p_T > 30$ GeV, $|\eta| < 2.5$; b-jet tagger: MV2C20 NN algorithm Photons (b):
- isolated, $p_{\rm T}$ > 37 GeV, $|\eta|$ < 2.37 (and outside 1.37 < $|\eta|$ < 1.52)

 E_T^{miss} calculation includes the "soft term"

Pile-up correction and overlap removal applied

Signal and SM simulation

SM background:

Physics process	Generator	Parton Shower	Cross section	Tune	PDF set
$t\bar{t} + W$ and $t\bar{t} + Z$ [57, 58]	MG5_AMC@NLO	Рутніа 8.186	NLO [59, 60]	A14	NNPDF23LO
$t\overline{t} + WW$ [57]	MG5_AMC@NLO	Рутніа 8.186	LO [30]	A14	NNPDF23LO
<i>tī</i> [61]	Powheg Box v2 r3026	Рутніа 6.428	NNLO+NNLL [62, 63]	Perugia2012	NLO CT10
Single-top (Wt) [61]	Powheg Box v2 r2856	Рутніа 6.428	Approx. NNLO [64]	Perugia2012	NLO CT10
WW, WZ and ZZ [67]	Sherpa 2.1.1	Sherpa 2.1.1	NNLO [65, 66]	SHERPA default	NLO CT10
$Z/\gamma^*(\rightarrow \ell\ell) + \text{jets} [68]$	Sherpa 2.1.1	Sherpa 2.1.1	NNLO [69, 70]	SHERPA default	NLO CT10

• Full simulation with Geant4

SUSY signal samples:

SUSY signals	MG5_aMC@NLO	Pythia 8,186	LO	A14	NNPDF2.3LO
SUST Signals		r ythia 8.180	LO	714	ININI DI 2.5LO

- Up to one additional parton in the matrix element
- EvtGen is used to simulate *bottom/charm* hadron decays
- Fast simulation

LL+jets+MET – Event selection regions

"on-shell Z" channel $(m_{ll} \sim m_{Z})$

• $m_{ll} - E_T^{miss}$ plane

Source	Relative systematic uncertainty [%]			
	SRZ	SR-low	SR-medium	SR-high
Total systematic uncertainty	22	14-32	20-75	27-51
Flavour symmetry (statistical)	13	9-26	16-74	25-50
Flavour symmetry (systematic)	10	8-11	8-9	8-9
Z/γ^* + jets (systematic)	12	0-3	0-2	0-3
Z/γ^* + jets (statistical)	1	0-6	0-2	0-1
WZ/ZZ generator uncertainty	7	0-8	0-5	0-6
Fakes (systematic)	3	0-10	0-8	0-14
Fakes (statistical)	2	1-5	2-5	1-7

- Luminosity: 2.1 % on 2015 data
- Other corrections are also evaluated and taken into account. Among them: JES, JER, pileup, E_T^{miss} "soft term" resolution, lepton reconstruction and efficiency and trigger

• Event yields

	SRZ	SRZ ee	SRZ μμ
Observed events	21	10	11
Total expected background events	9.5 ± 2.2	5.0 ± 1.2	4.5 ± 1.1
Flavour-symmetric ($t\bar{t}$, Wt , WW and $Z \rightarrow \tau\tau$) events	4.6 ± 1.6	2.3 ± 0.8	2.3 ± 0.8
Z/γ^* + jets events	1.4 ± 1.1	0.8 ± 0.5	0.6 + 0.8 - 0.6
WZ/ZZ events	2.9 ± 1.0	1.6 ± 0.5	1.3 ± 0.4
Rare top events	0.5 ± 0.1	0.26 ± 0.07	0.28 ± 0.08
Fake lepton events	$0.0^{+0.7}_{-0.0}$	$0.0^{+0.7}_{-0.0}$	$0.0^{+0.07}_{-0.0}$
p(s=0)	0.0079	0.047	0.019
Significance	2.4	1.7	2.1
Observed (Expected) S^{95}	$20.3 (9.6^{+4.4}_{-2.8})$	$11.5(6.6^{+3.3}_{-2.1})$	$13.2(7.17^{+3.4}_{-2.1})$
$\langle \epsilon \sigma \rangle_{\rm obs}^{95} [{\rm fb}]$	6.3	3.6	4.1

LL+jets+Met - "Z" Results - II

DIPHOTON BACKUP

Di-photon - Object selection

Offline selection:

- Primary Vertex: the vertex with the largest Σp_T , and at least 2 tracks with $p_T > 400 \text{ MeV}$
- Photons:
 - isolated, $p_{\rm T}$ > 25 GeV, $|\eta|$ < 2.37 (and outside 1.37 < $|\eta|$ < 1.52)
 - overlap-removal ($\Delta R=0.4$): electron retained
- Electrons: from PV, $p_T > 25$ GeV, $|\eta| < 2.37$ (and outside 1.37 < $|\eta| < 1.52$)
- Muons: from PV, $p_{\rm T}$ > 25 GeV, $|\eta|$ < 2.7
- Jets:
 - anti- $k_{\rm t}$, R=0.4, $p_{\rm T}$ > 40 GeV, $|\eta|$ < 2.8
 - Overlap removal: photon-jet->photon retained; electron-jet-> electron (R<0.2) or jet (R<0.4) retained; muon-jet->jet retained
- Pile-up correction applied

Source	Number of events
QCD $(\gamma\gamma, \gamma j, jj)$	$0.05^{+0.20}_{-0.05}$
$e \rightarrow \gamma$ fakes	0.03 ± 0.02
$W\gamma\gamma$	0.17 ± 0.08
Ζγγ	0.02 ± 0.02
Sum	$0.27^{+0.22}_{-0.10}$
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (1500, 100)$	7.0
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (1500, 1300)$	8.0

Estimated background events

	*	
	Requirement	Number of Events
	Two photons, $p_{\rm T}^{\gamma} > 75$	4982
	$\Delta \phi_{\min}(\text{jet}, \boldsymbol{p}_{T}^{\text{miss}}) > 0.5$	4724
	$m_{\rm eff} > 1500 {\rm GeV}$	1
Final selected events	$E_{\rm T}^{\rm miss} > 175 { m GeV}$	0
	Expeected SM background	$0.27^{+0.22}_{-0.10}$

SUSY IN TAUS BACKUP

ICNFP 2016 July 2016

Uncertainties

Source of uncertainty	1τ Compressed SR	1τ Medium-Mass SR	1τ High-Mass SR
Top generator modelling	8.1%	6.5%	11.7%
V+jets generator modelling	1.5%	6.4%	6.3%
Jet energy scale	2.0%	6.7%	0.4%
Jet energy resolution	0.6%	0.2%	0.7%
<i>b</i> -tagging efficiencies	1.9%	3.2%	7.7%
Tau energy scale	1.8%	2.8%	5.5%
Total	12.5%	16.0%	20.5%

Source of uncertainty	2τ Compressed SR	2τ High-Mass SR	2τ GMSB SR
Top generator modelling	60.2%	23.4%	21.5%
V+jets generator modelling	4.2%	6.3%	4.3%
Jet energy scale	14.1%	2.0%	6.0%
Jet energy resolution	8.1%	1.2%	4.3%
<i>b</i> -tagging efficiencies	8.8%	5.1%	7.7%
Tau energy scale	19.1%	13.1%	8.5%
Total	72.0%	35.7%	35.3%

Results – 1τ kinematic distros

Results – 2τ kinematic distros

(a) m_T^{sum} distribution for the Compressed SR selection of the 2τ channel without the $m_T^{\text{sum}} > 1400$ GeV requirement

(b) $m_T^{\tau_1} + m_T^{\tau_2}$ distribution for the High-Mass SR selection of the 2τ channel without the $m_T^{\tau_1} + m_T^{\tau_2} > 350$ GeV requirement

- ĝĝ MM

ĝĝ HM

-GMSB

1000

m_T^t+m_T^t [GeV]

1200

OTHER BACKUP SLIDES

ICNFP 2016 July 2016

A SUSY PRIMER

ICNFP 2016 July 2016

SUSY Primer

Eur. Phys. J. C (2014) 74:2801

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates
Higgs bosons	0	+1	$H^0_u \ H^0_d \ H^+_u \ H^d$	$h^0 H^0 A^0 H^\pm$
			$\widetilde{u}_L \widetilde{u}_R \widetilde{d}_L \widetilde{d}_R$	(same)
squarks	0	-1	$\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$	(same)
			$\widetilde{t}_L \widetilde{t}_R \widetilde{b}_L \widetilde{b}_R$	$\widetilde{t}_1 \widetilde{t}_2 \widetilde{b}_1 \widetilde{b}_2$
			$\widetilde{e}_L \widetilde{e}_R \widetilde{ u}_e$	(same)
sleptons	0	-1	$\widetilde{\mu}_L \widetilde{\mu}_R \widetilde{ u}_\mu$	(same)
			$\widetilde{ au}_L \widetilde{ au}_R \widetilde{ u}_ au$	$\widetilde{ au}_1 \widetilde{ au}_2 \widetilde{ u}_ au$
neutralinos	1/2	-1	$\widetilde{B}^0 \hspace{0.2cm} \widetilde{W}^0 \hspace{0.2cm} \widetilde{H}^0_{u} \hspace{0.2cm} \widetilde{H}^0_{d}$	$\widetilde{N}_1 \widetilde{N}_2 \widetilde{N}_3 \widetilde{N}_4$
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	\widetilde{C}_1^{\pm} \widetilde{C}_2^{\pm}
gluino	1/2	-1	\widetilde{g}	(same)
goldstino (gravitino)	1/2 (3/2)	-1	\widetilde{G}	(same)

Standard Model

Neutralino X₀¹ scenarios

• 3 typical scenarios for the lightest Neutralino X_0^1

Ref: 1

SUSY decay chain

SUSY cross sections

8 TeV

13 TeV

ATLAS DATA AND LINKS

ICNFP 2016 July 2016

2015 ATLAS data

2016 ATLAS Pile-up

Non-ATLAS references

- 1. I. Melzer-Pellmann, P. Pralavorio, DOI: 10.1140/epjc/s10052-014-2801-y
- 2. Borschensky et al., DOI: 10.1140/epjc/s10052-014-3174-y
- 3. *Claire David*, http://davidc.web.cern.ch/davidc/index.php?id=research.