Space-time development of in-medium hadronization Scenario for leading hadron

B. GUIOT

in collaboration with B. Z. Kopeliovich

ICNFP 2016

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

B. GUIOT Space-time development of in-medium hadronization

Outline

Semi inclusive DIS (SIDIS) on nuclei

2 Vacuum hadronization

In-medium hadronization and nuclear absorption

Semi inclusive DIS (SIDIS) on nuclei

Vacuum hadronization In-medium hadronization and nuclear absorption Results

Outline

Semi inclusive DIS (SIDIS) on nuclei

2 Vacuum hadronization

In-medium hadronization and nuclear absorption

Scenario for leading quark

- Quark kicked-out by the virtual photon
- Propagates through the nuclear medium
- Turns into a white object which eventually will give a hadron

Depending of the kinematic, the colorless dipole (pre-hadron) can be produced inside or outside of the medium (semi-classical picture).

 Additional effect in comparison to DIS on nucleon : Fermi motion, induced energy loss, nuclear absorption.

Semi inclusive DIS (SIDIS) on nuclei

Vacuum hadronization In-medium hadronization and nuclear absorption Results

Typical observable : multiplicity ratio

•
$$R_A(v, Q^2, z_h, p_t^2) = \frac{1}{N_A^e} \frac{dN_A^h(v, Q^2, z_h, p_t^2)}{d...} / \frac{1}{N_D^e} \frac{dN_D^h(v, Q^2, z_h, p_t^2)}{d...}$$

Models with Induced energy loss or nuclear absorption explain (more or less) the data...

Models based on nuclear absorption

 After production length, Lp, a white pre-hadron (dipole) is formed

2 Inelastic interaction with the medium gives $R_A < 1$

Remark : Due to energy loss and energy conservation Lp = 0 for $z = \frac{E_h}{v} = 1$

What can we learn : Lp, dependence of the dipole cross section on time, with Q^2 (color transparency)

Remark : at z = 1, $Lp = 0 \Rightarrow$ biggest path for nuclear absorption \Rightarrow minimal value for R_A

Models based on induced energy loss (IEL)

- IEL of the quark during the length Lp
- Oddification of the vacuum frag. function by a shift of $z = \frac{E_h}{v}$

Simple implementation :

- X.N. Wang et al. Phys. Rev. Lett. 77 (1996) 231
- F. Arleo hep/0306235v2

 $zD^A(z,Q^2) = \int_0^{\nu-E_h} d\varepsilon D(\varepsilon,\nu,Lp,\hat{q}) z^* D^N(z^*,Q^2)$; $z^* = \frac{z}{1-\varepsilon/\nu}$

• $R_A \simeq D^A/D^N$: suppression since $D^N(z)$ decreases with zWhat can we learn : Lp, \hat{q} which caracterises the interacting medium

Remark : at
$$z = 1$$
, $Lp = 0 \Rightarrow$ No IEL $\Rightarrow R_A = 1$

Induced energy loss v.s nuclear absorption

 Issue : Both effects have to be taken into account. But some models working with just nuclear absorption or IEL can reproduce the data

Goals :

- Build a model for (in-medium) hadronization which includes both effects.
- Quantify each contribution
 - We already know that at z = 1, all suppression should come from nuclear absorption
- Solution Learn more about Lp, \hat{q} , dipole cross section (evolution)
- Build a code which will be given to the experimentalist group at UTFMS (working on CLAS data for SIDIS)

Outline

2 Vacuum hadronization

In-medium hadronization and nuclear absorption

Hadronization based on Berger's model (for leading hadron)

Fragmentation function in the Born Approximation :

•
$$\frac{\partial D(z,k_t)}{\partial k_t} \propto \frac{(1-z)^2}{k_t^4}$$

Including vacum energy loss :

•
$$\tilde{z} = \frac{z}{1 - \Delta E/E}$$

• $Lp = \frac{4E(1-\tilde{z})}{k_t^2}$

Improved fragmentation function : $\frac{\partial D}{\partial L_p} \propto 1 - \tilde{z}$

Vacuum energy loss

Perturbative energy loss :

 \bullet Energy conservation $\Rightarrow \beta < 1-z$, β energy fraction taken by the emitted gluon

$$\frac{\Delta E}{E}(Q^2, z, L) = \int_{\lambda/E}^{1-z} d\beta \int_{I_{min}}^{I_{max}} dI_g \beta \frac{dn_g}{dI_g d\beta}$$

• Gluon radiation length :
$$l_g = \frac{2E\beta}{q_t^2}$$

• $l_{min} = \frac{2E\beta}{Q^2}$, $l_{max} = min\left[\frac{2E\beta}{\lambda^2}, L\right]$
• $\frac{dn_g}{dl_g d\beta}(\beta, l_g) = \frac{2\alpha_s}{3\pi} \frac{1 + (1 - \beta)^2}{\beta l_g}$: gluon number distribution

Non-perturbative energy loss based on lund strings

Result for vacuum energy loss

When $\frac{\Delta E}{E} = 1 - z$, energy loss is stoped

Vacuum fragmentation function and production length

$$D^{N}(z,Q^{2},E) \propto \int_{Lp_{max}}^{Lp_{min}} dLp \frac{\partial D^{N}}{\partial Lp}(z,Q^{2},E,Lp)$$
$$Lp_{min} = \frac{4E(1-\tilde{z}(Lp_{min}))}{Q^{2}}, \ Lp_{max} = \frac{4E(1-\tilde{z}(Lp_{max}))}{\lambda^{2}}$$

Outline

2 Vacuum hadronization

In-medium hadronization and nuclear absorption

In-medium fragmentation function and multiplicity ratio

$$D^{A}(z,Q^{2},E) \propto \int db \int dz_{l} \rho(b,z_{l}) \int_{Lp_{max}}^{Lp_{min}} dLp \frac{\partial D^{N}}{\partial Lp}() Tr(...,z_{l}+Lp,\infty)$$

- $\rho(b, z_l)$: nuclear density
- Tr(z, Q², E, z_l + Lp,∞) : suppression factor due to nuclear absorption. Also called color transparency factor
- Multiplicity ratio : $R^A \simeq \frac{1}{A} \frac{D^A}{D^N}$

Color transparency factor

$$Tr = \left| \frac{\int d^2 r_1 d^2 r_2 \psi_h^*(r_2) G(z_2, r_2, z_1, r_1) \psi_{q\bar{q}}(r_1)}{\int d^2 r \psi_h^*(r) \psi_{q\bar{q}}(r)} \right|^2$$

- G(z₂, r₂, z₁, r₁) : Green function, solution of the 2 dim light cone Schrodinger equation [Phys. Rev. D62, 054022]
- ReV= harmonic oscillator , Im $V(z_2,r)=-rac{\sigma_{qar q}(r)}{2}
 ho(z_2)$

Imaginary part responsible for the suppression. $\sigma_{q\bar{q}}(r)$ is the dipole-nucleon cross section

- Small r approx. $\sigma_{q\bar{q}}(r) \propto r^2$ (pQCD)
- $\sigma_{qar{q}}(r) = C(s)r^2$ with $C(s) = rac{\sigma_{tot}^\pi(s)}{\langle r_{\pi}^2
 angle}$. No free parameter!

Dipole wave function

•
$$\psi_{q\bar{q}}(z, Q^2, E, Lp, r) \propto exp\left\{-\frac{1}{2}\frac{r^2}{\langle r_{q\bar{q}}^2 \rangle}\right\}$$

• $\langle r_{q\bar{q}}^2 \rangle(z, Q^2, E, L=0) \propto \frac{1}{Q^2}$

- Q^2 dependence responsible for color transparency. Higher Q^2 , smaller dipole size, less suppression ($\sigma_{q\bar{q}} \propto r^2$)
- $\langle r_{q\bar{q}}^2 \rangle = \langle r_{\pi}^2 \rangle$ gives the pion wave function and the maximum nuclear absorption

Plot : B. Z. Kopeliovich et al., 0311220v3

Outline

- 2 Vacuum hadronization
- In-medium hadronization and nuclear absorption

Results for
$$\langle r_{q\bar{q}}^2
angle = \langle r_{\pi}^2
angle$$

No free parameter

• With max suppression, our model based on nuclear absorption still 20% above data for z = 0.75... Is something missing?

Missing ingredient

Should give :

- small contribution at high z
- onn-negligeable contribution for medium z

Induced energy loss could work

• Still not implemented. But IEL z dependence not so different from vacuum energy loss. Could mimick it using bigger value for α_s

Results with "induced energy loss" : $\alpha_s \rightarrow 3\alpha_s$

• $\langle r_{q\bar{q}}^2 \rangle = \langle r_{\pi}^2 \rangle$ good approximation for sufficiently low energy and heavy nucleus

Results for Hermes

• Hermes energy at higher energy than CLAS. The approximation $\langle r_{q\bar{q}}^2 \rangle = \langle r_{\pi}^2 \rangle$ is less accurate and the suppression is more overestimated.

Summary and outlooks

- Interest of CLAS experiment : high statistics and low energy $(\langle r_{q\bar{q}}^2 \rangle = \langle r_{\pi}^2 \rangle$ is a good approx.)
- At CLAS energy, short production length $Lp < 1 {
 m fm}$ for z > 0.5
- Implementation of our model without free parameters shows that both IEL and nuclear absorption give non negligeable contribution to R_A (not the usual conclusion)
- Implementation of IEL will allow to test models and give more constraints on \hat{q}

Acknowledgment : CCTVAL project, FONDECYT project n° 3160493

Interest of SIDIS on nuclei

 Clear kinematics : z, Q² and v are easily measurable independent variables :

 \Rightarrow Best tool for testing models Importance for LHC :

- Some results can be appplied to AA collisions at RHIC or LHC. For instance, high *p*_t jet suppression.
- B. Z. Kopeliovich et al. : [arXiv:1208.4951]
 - Will change the estimated value of *q̂* for QGP

