The Mu3e Experiment at PSI

Antoaneta Damyanova

On behalf of the Mu3e Collaboration

5th International Conference on New Frontiers in Physics OAC, July 2016

Mu3e

An experiment searching for charged Lepton Flavour Violation (cLFV) in the muon decay $\mu^+ \rightarrow e^+ e^- e^+$

Lepton Flavour Violation

It has been observed in the neutrino sector

...but not in the charged lepton sector

A. Damyanova

History of LFV Experiements

SINDRUM (1988) $BR(\mu
ightarrow eee$) $< 1 imes 10^{-12}$

SINDRUM II (2006) $BR(\mu Au \rightarrow eAu) < 7 \times 10^{-13}$

 $\begin{array}{l} \mathsf{MEG} \ (2016) \\ \mathcal{BR}(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13} \end{array}$

Updated from W.J. Marciano, T. Mori and J.M. Roney,

Ann.Rev.Nucl.Part.Sci. 58, 315 (2008)

LFV within the Standard Model

Heavily suppressed: $\sim (\Delta m_v^2/m_W^2)^2$

 $BR(\mu
ightarrow eee$) $\sim {\cal O}(10^{-54})$

Observing cLFV = New Physics

$\mu^+ ightarrow e^+ e^- e^+$ is sensitive to new physics!

e.g. SUSY, Seesaw models, GUT, new heavy bosons, etc.

The Idea of Mu3e

Probe the muon decay $\mu^+ \rightarrow e^+e^-e^+$ with a branching ratio sensitivity $BR(\mu \rightarrow eee) < 10^{-16}$

• Look for $e^+e^-e^+$

 Suppress backgrounds by more than 16 orders of magnitude

Seems easy, doesn't it?

The Mu3e Experiment at PSI

Mu3e Requirements: Beam Line

▶ $2 \times 10^9 \mu/s$ stopped on target

continuous beam

• focussed on a spot of $\sim 2 \text{ cm}$

surface muons with momentum 28 MeV/c

Mu3e Requirements: Identify the Signal

Identify the signal: $\mu^+ \rightarrow e^+ e^- e^+$

- ▶ two e^+ , one e^-
- from the same vertex
- at the same time

$$\blacktriangleright \sum \vec{p}_i = 0$$

 $\blacktriangleright \sum E_i = m_\mu c^2$

Requirements

Mu3e Requirements: Discriminate Internal Conversion

Irreducible background: $\mu^+ \rightarrow e^+ e^- e^+ \nu_e \bar{\nu}_\mu$

 $\sum \vec{p}_i \neq 0$ $\sum E_i \neq m_\mu c^2$

Only momentum resolution better than 0.5 MeV/c can discriminate the signal!

The Mu3e Experiment at PSI

Mu3e Requirements: Reduce Accidental Coincidences

Higher beam intensity \iff higher accidental coincidence probability

Combination of e^+ from one or more Michel decays and e^- from

- Bhabha scattering
- photon conversion
- misreconstruction

Signature:

- not coincident in time
- not from the same vertex

 $\blacktriangleright \sum \vec{p}_i \neq 0, \ \sum E_i \neq m_\mu c^2$

Requires very good time, momentum and vertex resolutions.

Mu3e Requirements: Minimize Multiple Scattering

Momentum measurement: use 1T magnetic field

Momentum resolution: $p_e^{max} = 53 \ MeV/c \Rightarrow$ dominated by multiple scattering, not pixel size and time resolutions.

$$rac{\sigma_{P}}{p} \sim rac{ heta_{MS}}{\Omega}$$

RMS $heta_{MS} \sim rac{x}{X_{0}}$

Good momentum resolution requires low material budget.

Mu3e Requirements: Detector Summary

To probe the $\mu^+ \rightarrow e^+e^-e^+$ at a level of 10^{-16} , the Mu3e detector needs:

- \blacktriangleright to handle very high rates $10^8 10^9 \ \mu/s$ \blacktriangleright high momentum resolution $\lesssim 0.5 \ MeV$ \blacktriangleright very good timing resolution $\sim \mathcal{O}(100 ps)$
- excellent vertex resolution $\sim 300 \ \mu m$
- very low material budget

 $\sim 1\%~X_0$ / layer

Still looking easy?

Α.	Damvanova	

The Mu3e Experiment at PSI

Mu3e Detector Design: Target

Mu3e Detector Design: Inner Pixel Layers

Mu3e Detector Design: Outer Pixel Layers

Mu3e Detector Design: Pixels

High Voltage Monolithic Active Pixel Sensors: HV-MAPS

- Fast charge collection via drift
- Readout logic and amplifier embedded in the pixel N-well
- Can be thinned down to $< 50 \ \mu m$

I.Perić, P. Fischer et al., NIM A 582 (2007) 876

Mu3e R&D Status: Pixels

Current prototype version: MUPIX 7

Characteristics:

- Thickness: 50 μm
- Pixel size: 103 $\mu m \times 80 \ \mu m$
- Chip size: $3.2 \times 3.2 \ mm^2$
- Pixel matrix: 30 × 40
- LVDS link: 1.25 Gbit/s

Performance:

- ► Efficiency: > 98%
- Time resolution: < 14 ns</p>

Design

Mu3e Simulated Performance: Pixels Only

Needs better accidental suppression \Leftrightarrow better timing

Mu3e Detector Design : Scintillating Fibers

Mu3e R&D Status: Fibers

Thin plastic scintillating fibers readout by silicon photomultipliers. Low material budget & good timing resolution

- Characteristics:
 - Fibers thickness: 250 μm
 - ► Fiber ribbons: 2-4 staggered fiber layers
 - ▶ Ribbon dimensions: 280 mm × 16 mm
 - ► SiPM readout: in array configuration
 - Custom SiPM digitizer: MuStic

Performance:

- σ_t ~ 1 ns round fibers, clear coating, single fiber resolution;
- σ_t ~ 550 ps square fibers, Al coating, triple fiber readout ;

Design

Mu3e Detector Design: Recurl Pixel Stations

Design

Mu3e Detector Design: Scintillating Tiles

Mu3e R&D Status: Scintillating Tiles

Large scintillating tiles provide accurate time information for tracks recurling out of the central region.

Characteristics:

- **•** Tiles dimensions: $6.5 \times 6.0 \times 6.5 \ mm^3$
- SiPM readout: $3 \times 3 mm^2$ area
- Custom SiPM digitizer: MuStic

Performance:

▶ Time resolution: ~ 70 ps

Efficiency: > 99.7%

Design

Mu3e Detector Design: Full Phase I

Design

Mu3e Simulated Performance: Phase I

Summary and Outlook

The Phase I Mu3e Experiment aims to

- Probe $\mu^+ \rightarrow e^+ e^- e^+$ with a sensitivity of 1 in 10¹⁵
- Handle up to $10^8 \ \mu/s$
- ▶ Pixel, fiber and tile prototypes meet the requirements
- Superconducting magnet delivery expected in 2017
- Assembly at PSI will start in 2017

The Mu3e Collaboration

PAUL SCHERRER INSTITUT

ETH zürich

