

Charm measurements below top SPS energy

M. Deveaux, Goethe University Frankfurt

What means quark gluon plasma

How to produce QGP

Need high temperatures and/or high pressure. Idea: Collide heavy ions at high beam energies

Nuclear fireball created may undergo phase transition.

How to recognize QGP

Challenge:

Nuclear fireball cools down before reaching detector Most information is lost during cooling

Idea: Find probes, which carry information out.

J/Ψ as a probe for a phase transition

Initial idea:

J/Psi suppression

Observation of J/Ψ suppression is commonly accepted. What about the origin?

Alternative explanation

Alternative explanation (1):

Modification of $c - \overline{c}$ production cross section in nuclear matter.

The production of $c - \overline{c}$ is modified. J/Ψ suppression is trivial consequence. Alternative explanation (2):

Destruction of J/Ψ by collision with nuclear matter.

 J/Ψ is formed but destroyed by normal nuclear matter. J/Ψ suppression occurs in absence of QGP.

To confirm/rule out alternative explanations, additional measurements are needed.

p-A as system of measuring CME

What do we know: J/Ψ dissapears... but we don't know why. How to find out?

• $c - \bar{c}$ production:

Measure all particles containing charm quarks (Easy for J/Ψ , hard for open charm)

• Destruction of J/Ψ :

Check, if the presence of hadrons changes relative amount of charm particles.

Suited collision system: p-A collisions

- $c \overline{c}$ is produced in p-N collision
- Charm particle travels remaining nuclear core
- Nuclear core does not contain QGP (no energy to produce it)

Measuring $\sigma(J/\Psi + N \rightarrow \overline{D} + X)$

Measuring $\sigma(J/\Psi + N \rightarrow D + \overline{D})$

Phase 1: $c - \overline{c}$ formation. Time needed: ~0.25 fm/c

Measuring $\sigma(J/\Psi + N \rightarrow D + \overline{D})$

Phase 1: $c - \overline{c}$ formation. Time needed: ~0.25 fm/c

Phase 2: J/Ψ formation. Time needed: ~0.25 fm/c

Phase 3: J/Ψ travel through nuclear matter.

M. Deveaux, ICNFP2016, 6-14 July 2016, Orthodox Academy of Creta

I/Ψ

Measuring $\sigma(J/\Psi + N \rightarrow D + \overline{D})$

Measurement uncertainties?

Formation length

Known since late 1980s: Word data measures $c - \overline{c}$, not J/Ψ interaction in nucl. matter Additional measuremens are needed...

Experimental proposal for SPS (1990s)

Measurements, initial proposal

D. Kharzeev, H. Satz, PLB 1995, H. Satz – HICforFAIR Workshop: Heavy flavor physics with CBM, FIAS, May 2014

ldea:

- Shoot Au on p-target at SPS.
- Collect J/Ψ, which are emmitted in beam direction.
- => Select J/ Ψ moving slowly in nuclear core.

Problem (1990s):

Existing experiments not suited for doing the job (acceptance).

Today: No J/ Ψ sensitive experiment @ SPS.

Consequence: Issue remained open from ~1990 until today.

Direct measurements – the challenge

Need to perform precision measurements with very low charm X-sections. \Rightarrow High collision rate

Need to measure open charm and J/Ψ. => Next generation instrument.

Required: A unique set of accelerator and detector

A possible technology

FAIR @ Darmstadt/Germany

The CBM - Experiment

Beam energy:

	Au+Au	p+A
SIS100	~12 AGeV	~30 GeV
SIS300	~35 AGeV	~90 GeV

Detector (design performance):

	Au+Au	p+A
<i>J</i> /Ψ	10 ⁷ coll/s	>>10 ⁷ coll/s
D+,-,0	10 ⁵ coll/s	10 ⁷ coll/s

CBM@SIS100 will be available in 2021

Formation length

CBM@SIS100 covers the most interesting energy range for measuring J/ Ψ dissociation.

CBM design features

Systematic errors can be controlled. => Suited for precision *J*/Ψ measurements.

High precision, high rate vertex detector + Time of flight detector: $D^{\pm} \rightarrow K + \pi + \pi$ $D^{0} \rightarrow K + \pi$ $D^{0} \rightarrow K + \pi + \pi + \pi$

Open charm can be measured. Suited to extract $c - \overline{c}$ cross sections.

Measurement uncertainties?

CBM seems particularly well suited to answer these questions.

Different models

Gluonic dissociation Hadronic dissociation negligible

= Mostly no J/Ψ dissociation

Assumptions:

Substantial hadronic dissociation: $I/\Psi + N \rightarrow \Lambda_C + D$

=> Sizable I/Ψ dissociation.

Assumptions:

Hadronic dissociation Multiple channels Fermi motion.

```
=> Sizable J/\Psi
dissociation.
```

Model separation

CBM should be able to distinguish different dissociation mechanisms (to be confirmed)

 J/Ψ suppression forms a classic probe for a phase transition from hadronic matter to QGP

Interpretation of known J/ Ψ suppression is hampered by unknown X-section for hadronic J/ Ψ dissociation.

Measurement so far impossible: $c - \overline{c}$ is boosted out of nuclear core before forming J/ Ψ .

Measurements with CBM with p-A at SIS100 beam energies may

- provide necessary knowledge on hadronic J/Ψ dissociation
- allow for understanding J/Ψ dissociation process
- help to interpret existing data on J/Ψ suppression

Excluding hadronic J/ Ψ suppression would support QGP as origin of the known J/ Ψ .

Dedicated feasibility studies started. Stay tuned.