

Overview on upgrades, future plans and prospects for the CMS experiment

Giacomo Bruno on behalf of the CMS Collaboration

Center for Cosmology, Phenomenology and Particle Physics (CP3) Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium

> ICNFP 2016 Conference 14/7/2016

• LHC schedule and CMS physics program

• Phase-1 upgrades

• Phase-2 (HL-LHC)

- Phase-1: Run2 and Run3 until 2023
 - Upgrades foreseen by CMS in Long Shutdown 2 (LS2)
 - $_{\circ}~$ 300 fb⁻¹ to be collected at 13 14 TeV
- Phase-2: High-Luminosity LHC (HL-LHC) for ~10 years starting in 2026
 - Major upgrades foreseen by CMS in LS3
 - $_{\circ}$ 3000 fb⁻¹ to be collected at 14 TeV

CMS

CMS after long shutdown 1

Run 2 + Run 3: the energy jump era

Large increase in x-section (and thus sensitivity) for new high-mass particles

Direct discovery

- Higgs couplings and signal strength measured up to a few percent for
 - Scenario 1: all systematic uncertainties left unchanged w.r.t. Run 1
 - Scenario 2: theoretical uncertainties and other systematics scaled by ¹/₂ and square root of integrated luminosity, respectively.

Rare processes

- HH $\rightarrow b \overline{b} \gamma \gamma$
 - Higgs self-coupling
- H→µ⁺µ⁻
- $jjW^+_LW^+_L \rightarrow jjl^+l^+\nu\nu$
 - Vector boson scattering

- Pixel Tracker
 - New detector
 - High-rate readout chip
- Hadronic Calorimeter
 - Improved photodetectors
 - Faster and more robust electronics
- L1-Trigger System
 - Exploit additional muon and calorimeter information
 - Move to high-performance FPGA-based electronics

Phase-1 – pixel upgrade

- 4 layers/3 disks (1 more space-point w.r.t. current detector)
 - 3 cm inner radius
- New readout chip: recovers inefficiency at high rate (up to PU 100)
- Less material: two-phase CO2 cooling, new mechanical structures, new cabling and powering scheme (DC-DC)
- Radiation hardness: expected to survive 500 fb-1 ($5 \times 10^{15} \text{ neq/cm}^2$)
- Status: full detector to be installed in Year End Technical Stop 2016-17
 Pilot detector already taking 2016 collision data

Phase-1 – HCAL upgrade

- Photodetectors
 - Barrel, and endcap detectors: replacement of Hybrid PhotoDiodes with SiPM
 - Solve problem of frequent electrical discharges (noise, lower gain, longevity)
 - Iongitudinal segmentation of readout
 - Forward detector: replacement of single-anode PMT with new dual-anode PMTs
 - Suppress anomalous signals caused by particles going through PM tubes
- Front-end electronics:
 - New readout chips (including TDC) matching SiPM
 - Allow identification of anomalous signals with timing at 25 ns operation
- Back-end electronics:
 - New μTCA system to support larger data volumes (HL-LHC like)
- Status: HF upgrades completed and taking data. The rest after LS2

- Goal: maintain Run-1 performance during Run-2 and Run-3
 - Fight the expected x6 increase in rates
 - Pile-up subtraction and isolation
 - Improved efficiency and resolution
 - Increased flexibility

How:

- Move to FPGA-based architecture, and µTCA back-end to implement more sophisticated algorithms and exploit
 - Full granularity of CALO information
 - o additional MUON information
- Status:
 - Global calo trigger in operation since 2015
 - Full system deployed and currently being commissioned with collision data

- Goal: exploit LHC physics potential at 3000 fb⁻¹ and 14 TeV in 10 years of running
- Challenge:
 - Radiation-induced ageing of detectors after Run 3
 - 140 pile-up interactions (5-7×10³⁴ cm⁻²s⁻¹ and 25 ns operation)
 Muon System

 Replace Tracker
 Replace DT & CSC FE/BE electronics

Complete RPC coverage in region 1.5 < η < 2.4 (new GEM/RPC technology) Muon-tagging 2.4 < η < 3

top-pair production + 140 additional p-p interactions

Barrel EM calorimeter

- Replace FE/BE electronics
- Lower operating temperatur

Replace endcap Calorimeters

- Radiation tolerant high granularity
- 3D capability

Trigger/HLT/DAQ

- Track information at L1
- L1-Trigger ~ 750 kHz
- HLT output ~7.5 kHz

- Radiation tolerant higher granularity - less material -better p_T resolution
- Extended η region up to η ~ 3.8
- Tracks trigger at L1

Pixel upgrade

- 4 barrel + 10 forward disks
- coverage up to |η|~3.8
- High granularity (6x)
- High radiation tolerance
 - Thin planar sensors and small pixel area
- Readout at 750kHz

Outer tracker upgrade

• Detectors

- 6 barrel layers; 5 forward disks vs current 10/11
- Double-sensor modules for trigger at L1
- Higher granularity
 - shorter strips (2.5-5 cm) in 3 outer layers (2S)
 - 4 X current detector
 - Strips + long pixels (0.1 x 1.5 mm) in 3 inner layer (PS)
- High radiation tolerance
- Mechanics and Electronics
 - Lower material budget
 - Operations at -30 °C
 - Readout at 750kHz

Endcap calorimeter

- Radiation dose in Endcap ECAL and HCAL scintillating calorimeters causes
 dramatic reduction in light transmission. Need for new detectors
- High-granularity sampling calorimeters (HGC):
 - Electromagnetic: EE (Σdepth~26 X_0 , 1.5λ): 28 layers of Silicon-W absorber.
 - Front Hadronic: FH (Σdepth~3.5 λ): 12 layers of Silicon/Brass.
 - Back Hadronic Calorimeter (BH): Σdepth~5 λ): 12 layers of Scintillator/Brass (2 depths readout).
 - Tracking capability for pile-up rejection based on ILC Calice detector

- Electromagnetic Calorimeter
 - PbWO4 crystals will receive 100 times less dose than endcap – no need for replacement
 - New front-end and back-end electronics to satisfy HL-LHC trigger requirements (12.5 µs latency and 750 kHz readout)
 - Cooling to 8 ^oC and optimization of VFE (very-front-end) electronics to reduce noise in the APD
 - Single crystal information to L1 trigger
- HadronicCalorimeter
 - Doubly-doped plastic scintillators will replace innermost tiles during LS3
 - Photodetectors and electronics already replaced

Muon detectors

- Irradiation tests to confirm prediction that current chambers should survive ¹/_e until end of HL-LHC
- Complete instrumentation in $1.6 < |\eta| < 2.4$
 - GEM detectors in the two innermost stations
 - improved RPC in 2 outer stations
 - Higher rate capability
 - Both with finer η segmentation
- Extend coverage to match endcap calorimeter ($\eta \sim 3$) with additional GEM
- Replace DT and part of CSC electronics to cope with irradiation, trigger latency, and readout rate
- Installation schedule
 - First GEM detector to be installed in LS2
 - RPCs and remaining GEMs will be installed during LS3(2024-2025)

Trigger and computing

• L1 Trigger

- o Output: 100kHz → 750kHz
- ∘ Latency: $3.4\mu s \rightarrow 12.5\mu s$
- $_{\circ}$ New track-trigger
- ECAL: full crystal granularity
- Muon: full DT η granularity (and info from new detectors)
- DAQ and High-Level Trigger
 - No major changes in the architecture and algorithms
 - Output rate: 1 kHz \rightarrow 7.5kHz (keep rejection factor of 100)
 - Processing power estimated to be 25(140 PU)/50(200 PU) x w.r.t. Run-1
 - Throughput: 1 Tb/s \rightarrow 30Tb/s (800 links @ 100Gb/s)
 - $_{\circ}$ Output to storage: 2 / 3 GB/s \rightarrow 27 / 42 GB/s
- Software and computing
 - Many-cores and parallel computing being explored to face the expected high demands in CU and storage

-	-		
LHC	LHC	HL-LHC	
Run-I	Phase-I upgr.	Phase-II upgr.	
7-8 TeV	13 TeV	13 TeV	
35	50	140	200
100 kHz	100 kHz	500 kHz	750 kHz
1 MB	1.5 MB	4.5 MB	5.0 MB
1 kHz	1 kHz	5 kHz	7.5 kHz
0.21 MHS06	0.42 MHS06	5.0 MHS06	11 MHS06
2 GB/s	3 GB/s	27 GB/s	42 GB/s
	LHC Run-I 7-8 TeV 35 100 kHz 1 MB 1 kHz 0.21 MHS06 2 GB/s	LHC LHC Run-I Phase-I upgr. 7-8 TeV 13 TeV 35 50 100 kHz 100 kHz 1 MB 1.5 MB 1 kHz 1 kHz 0.21 MHS06 0.42 MHS06 2 GB/s 3 GB/s	LHC LHC HL-I Run-I Phase-I upgr. Phase-I 7-8 TeV 13 TeV 13 T 35 50 140 100 kHz 100 kHz 500 kHz 1 MB 1.5 MB 4.5 MB 1 kHz 1 kHz 5 kHz 0.21 MHS06 0.42 MHS06 5.0 MHS06 2 GB/s 3 GB/s 27 GB/s

HLT

sec

LV1

μs

L1 (track-)Trigger performance

Offline performance

Physics performance: $B \rightarrow \mu^+ \mu^-$

$\mathcal{L}~(fb^{-1})$	$N(\mathbf{B}_s^0)$	$N(\mathbf{B}^0)$	$\delta {\cal B}({\rm B}^0_s\to \mu^+\mu^-)$	$\delta {\cal B}({\rm B}^{0}\to \mu^{+}\mu^{-})$	B ⁰ sign.	$\delta rac{\mathcal{B}(\mathrm{B}^0 \to \mu^+ \mu^-)}{\mathcal{B}(\mathrm{B}^0_\mathrm{s} \to \mu^+ \mu^-)}$
20	18.2	2.2	35%	> 100%	$0.0 - 1.5 \sigma$	> 100%
100	159	19	14%	63%	$0.6 - 2.5 \sigma$	66%
300	478	57	12%	41%	$1.5 - 3.5 \sigma$	43%
300 (barrel)	346	42	13%	48%	$1.2 - 3.3 \sigma$	50%
3000 (barrel)	2250	271	11%	18%	$5.6 - 8.0 \sigma$	21%

- HL–LHC is a tough machine mostly for precision physics and rare processes observation
- The next few years will tell us if there will be more to be studied in detail
- CMS has taken up the challenge

BACK-UP

