

Azimuthal angular correlations of D mesons and charged particles in pp at 7 TeV and p-Pb at 5.02 TeV with the ALICE detector at the LHC

Fatiha Lehas

for the ALICE collaboration 5th International Conference on New Frontiers in Physics 2016

- 2 ALICE detector
- 3 Analysis strategy

Motivation

- 2 ALICE detector
- 3 Analysis strategy

4 Results

5 Conclusions and Outlook

in pp collisions

- Test for pQCD calculations for the production cross-sections.
- Reference for p-Pb and Pb-Pb measurements.

in p-Pb collisions

- Control experiment for the Pb-Pb measurements.
- Studies of cold nuclear matter effects.

in Pb-Pb

- Studies on the interaction of heavy quarks with the medium.
- Study the transport properties in the hot and dense medium.

Why D-hadron correlations studies are interesting?

Why Correlations?

- Flavour conservation in QCD (charm quarks are produced in pairs) => Jet formation due to the fragmentation of charm quark.
- Correlation distributions are sensitive to the fragmentation and production mechanisms of charm quarks in pp collisions.
- Angular correlations are investigated also in p-Pb collisions for possible modifications due to the presence of cold nuclear matter.

Why D-hadron correlations studies are interesting?

Why D mesons?

- $D^0 = c \bar{u}, D^+ = c \bar{d}, D^{*+} = c \bar{d} (m_c \approx 1.5 \text{ GeV}/c^2).$
- $Q^2 > 4m_c^2 => lpha_s < 1 =>$ pQCD calculation applicable
- D⁰, D⁺ and D^{*+} cross-section at $\sqrt{s} = 7$ TeV, |y| < 0.5.
- Large p_T coverage [1,24] GeV/c and well described by the pQCD predictions ALICE, JHEP 1201 (2012) 128.

Fatiha Lehas (UU)

1 Motivation

2 ALICE detector

3 Analysis strategy

4 Results

5 Conclusions and Outlook

ALICE detector

Central barrel	Muon spectrometer	
Pseudorapidity $ \eta < 0.9$	Pseudorapidity -4.0 $< \eta <$ -2.5	

Fatiha Lehas (UU)

ALICE detector

Central barrel

ITS

Inner Tracking System vertexing, tracking and Particle Identification. **TPC**

Time Projection Chamber Tracking and Particle Identification.

TOF

Time-Of-Flight Tracking and Particle Identification.

pp@7TeV 300 M minimum bias events
Integrated luminosity 5 nb⁻¹ **p-Pb@5.02TeV** 100 M minimum bias events
Integrated luminosity 50 nb⁻¹

ALICE detector : PID using ITS, TPC and TOF

More about PID in

Eur. Phys. J. Plus 131 (2016) 168

1 Motivation

- 2 ALICE detector
- 3 Analysis strategy

4 Results

Analysis strategy : Steps

- D meson (trigger) reconstruction invariant mass spectra.
- Associated tracks selection.
- Single-event (SE) and mixed-event (ME) distributions.
- Corrected single events for signal and background.
- Projection on $\Delta \varphi$ for signal and background.
- Normalise the $\Delta \varphi$ -distributions to the number of triggers (D mesons).
- Remove secondary tracks.
- Remove the B feed-down contribution.

Analysis strategy - D-meson reconstruction

- Optimised to maximize the significance $(\frac{S}{\sqrt{S+B}})$ / Reduce the background / Keep the selection efficiency large enough. - Selection cuts complemented by the particle identification (PID).

Analysis strategy : D-meson reconstruction

Selection criteria required for D-meson candidate daughters :

- $|\eta| <$ 0.8, $\chi^2/NDF <$ 2,
- $p_T > 0.3 \text{ GeV}/c \ (p_T > 0.1 \text{ GeV}/c \text{ for } D^{*+})$,
- 70 (at least) out of 159 space points in the TPC,
- 2 (at least) out of 6 hits in the ITS.

PRL 113 (2014) 232301

Invariant mass spectra

D* Δ InvMass in the range [5,8] GeV/c

- Peak => Signal region [mean- 2σ , mean+ 2σ]
- SB => Sideband region [mean+4 σ ,mean+8 σ]
- M => Invariant mass spectra
- Scale_{factor} = $\frac{\int_{Peak} Background(M)}{\int_{SB} Background(M)}$

Analysis strategy :Single events(SE) and mixed events(ME)

 $C_{\textit{inclusive}}(\Delta \varphi) = Signal(\Delta \varphi) - Scale_{\textit{factor}} imes \textit{Background}(\Delta \varphi)$

Analysis strategy : Correction for the efficiency

• Efficiency correction for D mesons

A Monte Carlo (MC) sample is used (enhanced production). The efficiency map is obtained. Invariant mass spectra, SE and ME are weighted by the inverse of the efficiency.

• Efficiency correction for associated tracks

A Monte Carlo (MC) Sample is used (minimum bias production) The efficiency map is obtained.

SE and ME are weighted by the inverse of the efficiency.

Fatiha Lehas (UU)

Analysis strategy : B feed-down subtraction

Subtraction of the contribution of D meson from B using a MC PYTHIA template. Prompt D fraction (f_{prompt}) is computed using FONLL.

S.Bjelogrlic, PhD thesis, 2016.

$$\begin{split} \widetilde{C}_{promptD}(\Delta\varphi) &= \frac{1}{f_{prompt}} \left(\widetilde{C}_{inclusive}(\Delta\varphi) - (1 - f_{prompt}) \widetilde{C}_{feed-down}^{MCtempl}(\Delta\varphi) \right) \\ f_{prompt} &= \left(1 + \frac{(Acc \times \epsilon)_{feeddownD^{*+}}}{(Acc \times \epsilon)_{promptD^{*+}}} \frac{\frac{d\sigma}{dp_T}^{feeddownD^{*+}} |y| < 0.5}{\frac{d\sigma}{dp_T}^{promptD^{*+}} |y| < 0.5} \right) \end{split}$$

Fatiha Lehas (UU)

Analysis strategy : Correction for the purity

S.Bjelogrlic, PhD thesis, 2016.

$$Purity = \frac{\int_{0}^{DCA_{XY}^{cut}} f_{prim}(DCA_{XY}) dDCA_{XY}}{\int_{0}^{DCA_{XY}^{cut}} f_{prim}(DCA_{XY}) + f_{sec}(DCA_{XY}) dDCA_{XY}}$$
$$C_{promptD}(\Delta\varphi) = purity \times \widetilde{C}_{promptD}(\Delta\varphi)$$

Fatiha Lehas (UU)

1 Motivation

- 2 ALICE detector
- 3 Analysis strategy

5 Conclusions and Outlook

Correlations in pp and p-Pb - baseline subtracted

arXiv :1605.06963v1

- The results from pp and p-Pb are compatible within uncertainties.
- No significant cold nuclear matter effect affecting the distribution.

Fatiha Lehas (UU)

Correlations : Data vs theoretical predictions

arXiv :1605.06963v1

- No significant difference between different event generators.
- Measurements and Monte Carlo simulations are in agreement within uncertainties.

Associated yield, NS sigma and baseline for D mesons in pp

Fatiha Lehas (UU)

Motivation

- 2 ALICE detector
- 3 Analysis strategy

4 Results

5 Conclusions and Outlook

- D mesons charged particles correlations were measured in pp collisions at 7 TeV and p-Pb collisions at 5.02 TeV.
- Correlation distributions in pp and p-Pb are similar i.e. there is no significant cold nuclear matter effects.
- The obtained results were compared with those obtained using different Monte Carlo generators which are in agreement with each other within uncertainties.
- Improved results are expected with the high statistics in Run2 and with the upgrade of the LHC Run3 and the upgraded ALICE ITS.

Thank you for your attention Questions ? Comments !

Backup slides

Selection criteria for the associated track :

- ITS Refit : Yes
- TPC Refit : Yes
- Min number of ITS clusters : 3
- Min number of TPC clusters : 70
- pt min : 0.3 [GeV/c]
- $\bullet~\mbox{pt}~\mbox{max}$: $100~\mbox{[GeV/c]}$
- |η| < 0.8</p>

Correlations : D meson average in pp and p-Pb for different p_T ranges

Fatiha Lehas (UU)

System	рр	p–Pb
D-meson species	D^{0}, D^{*+}, D^{+}	D ⁰ ,D ^{*+} (D ⁺)
Signal, background normalization	$\pm 10\%$	$\pm 10\%$
Background Δφ distribution	$\pm 5\%$	$\pm 5\% (\pm 10\%)$
Associated-track reconstruction efficiency	$\pm 10\%, -5\%$	$\pm 4\%$
Primary-particle purity	$\pm 5\%$	$\pm 3.5\%$
D-meson efficiency	$\pm 5\%$	$\pm 5\% (\pm 10\%)$
Feed-down subtraction	up to 8%, $\Delta \phi$ dependent	up to 8%, $\Delta \phi$ dependent
MC closure test	-2% (near side)	-2% (near side), $\pm 2\%$

3 D mesons correlations in pp@7TeV and p-Pb@5.02TeV

Efficiency x Acceptance map for D^0 f(p_T , y_{lab})

Prompt D^0 cross-section - ratios between data and theoretical predictions

Prompt D^0 cross-section

• For D*+
Signal(
$$\Delta M$$
) = $Y_D \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(\Delta M - \mu)^2}{2\sigma^2}}$
Background(ΔM) = $a\sqrt{\Delta M - m_{\pi}} \times e^{b(\Delta M - m_{\pi})}$

• For D⁰ and D⁺
Signal(M) =
$$Y_D \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(M-\mu)^2}{2\sigma^2}}$$

Background(M) = $a \times e^{b(M-m_{\pi})}$