Highlights from HADES Au+Au collisions at 1.23 AGeV

Outline

- Which matter?
- HADES and results
 - Strangeness
 - Dileptons
- Future

Christina Deveaux for the HADES collaboration

Which matter?

Heavy ion collisions at the few AGeV energy regime offer:

- Access to moderate T, high μ_B
- Long lived, high density medium
- Baryon resonance rich matter

Trajectories: Ivanov et al., PRC 73 (2006)

S. Vogel et al. PRC 78 (2008) 044909

Rapp, Wambach, Adv. Nucl. Phys. 25 (2000)

HADES

Italigh Acceptance DiElectron

- Seactrometer Fixed target experiment
- Fellowing that have saverage, 18°-85° in
- SK180GSI Darmstadt
- R18AGeV for heavy ion
- Protenapinobeienwinduced reactions Gera@a000 channels
- 5058HDærvæstadatær(U4DerMstydet/,s peak data sata), Wuppertal, Frankfurt, Giessen, München

Cyphusics Focus:

- Enplose properties of Fraatter at high baryonic densities
- Orsay

Cexcitation function for low mass

- lepton pairs and (multi) strange
- baryons and mesons Santiago de Compostela

HADES Data Sets

558.3 hours 31 days 7.31 × 10⁹ evts

HADES is a high rate heavy ion experiment at low energies: access to many observables, including rare probes $\rho/\omega/\phi$

Plethora of runs over several years, see Nuclear Physics A (931) 2014, 41–51 for an overview

Performance

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500 polarity * momentum [MeV/c]

Time-of-Flight

Energy Loss

Vertex reconstruction

200 Low conversion RICH rings probability ~2%

Centrality determination based on Glauber model

Hadrons

HADES is able to measure many different species of hadrons:

- charged pions
- protons
- π⁰ and η

...and strange particles on which this talk will focus.

Hadrons: Strangeness

HADES confirms inverse slope of K⁻ lower than of K⁺ with highest

quality data available

However:

New measurements from HADES question the "classical" interpretation with repulsive/attractive potentials explaining this observation...

Ph.D. H. Schuldes, Frankfurt

Hadrons: Strangeness

HADES extended knowledge:

- K⁻ / K⁺ ratio energy dependence
- K⁰s measurement
- A measurement

$$NN \rightarrow N\Lambda K^{+}$$
 $E_{thr} = 1.58 \; GeV$
 $NN \rightarrow NNK^{+}K^{-}$ $E_{thr} = 2.49 \; GeV$

Ph.D. T.Scheib, Frankfurt

These are all sub-threshold measurements!

Why is there strangeness at all?

Hadrons: Strangeness

It is ongoing work from theory and experiment to fully understand the origin of strangeness.

However HADES put an important piece in the puzzle:

- Enhanced Φ production at low beam energy
 - 30% of K⁻ result from Φ decays
 - not from strangeness exchange as believed

Hadrons: Strangeness overview

- All strange particles are produced below NN threshold
- Systematic comparison of data
- Particle yields rise with centrality (M/A_{Part} ~ A_{part}^α ,α>1)
- Within uncertainties agreement with KaoS and FOPI
- Multiple interactions?
- Multi-step processes?
- In-medium potential?
- Feeddown from higher N* resonances?

Comparison to models is ongoing...

Dileptons

We saw hints of medium modifications from subthreshold strangeness production. Another way to check is to look at dileptons

→ measure their yield

Cocktail:

- π⁰ from charged pions multiplicity, cross-checked with HADES measurement (γ-conversion)
- n from HADES measurement (γconversion)
- of from the K+K- channel
- w from the Statistical Hadronization Model

Additional radiation from baryon rich medium compared to naïve vacuum expectations:

Dileptons

HADES performed a thorough study of various collision systems in the same energy regime.

Freeze-out contributions removed (π⁰ by normalization, η by subtraction)
The remaining radiation in C+C is already present in N+N

- Visible enhancement in p+Nb (for slow dileptons, < 800 MeV)
- Much stronger excess in Ar+KCI
- Even stronger excess in Au+Au
 Question of "medium" is about the
 effects beyond simple superposition of
 NN collisions

Regeneration of baryonic resonances

Dileptons

150 < M_{ee} < 550 MeV medium radiation dominated

0 < M_{ee} < 150 MeV freeze-out dominated

Around the π⁰ mass slope is ~constant Effect from intermediate mass range: radiation!

How to understand? Examine models...

Models' point of view

"System size and energy dependence of dilepton production" Bratkovskaya, Aichelin, et al., PRC 87 (2013) 064907

In HSD:

Dilepton excess above NN mostly due to Δ regeneration & decay

In GiBUU:

more baryon resonances are included, e.g. N*(1520)

comparison with data in preparation

Future HADES@SIS100 High statistics p+A and A+A (AgAg@1.65 AGeV) and pion induced reactions **FAIR** 2020-21 MAINTENANCE FAIR PHASE 0 2018-20 Detector Upgrades FAIR PHASE 0 2016-18

FAIR Phase 0 : Detector upgrades

development ongoing...

MDC electronics upgrade

RICH
Photo detector
plane with PMTs

FWStraw tubes →
3 stations

ECAL
New detector!
Lead glass

Summary

Investigation of properties of baryon rich dense matter (in-medium effects) is the purpose of the HADES experiment at GSI.

HADES has measured a large set of energy and system sizes. Preliminary results from recent AuAu@1.23AGeV collisions include:

- Strangeness:
 - yields and inverse slope confirms and complements existing results
 - All strangeness produced in sub-threshold
 - New: enhanced φ production!
- Dileptons:
 - Excess yield in the intermediate mass range
 - particularly pronounced for AuAu system
- Deeper understanding of observed effects needs comparison with models! Ongoing...

HADES @ SIS18/SIS100

Stay tuned ©